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Abstract: In this paper, the unified Jacobi–Ritz method
(JRM) is utilized to analyze the dynamic response of rec-
tangular plates with general boundary conditions. First,
the structural energy functional is established in the fra-
mework of the first-order shear deformation theory, and
the rectangular plate is divided into several equal parts
according to the domain decomposition method. Then,
the artificial springs are introduced to ensure the conti-
nuity of segments and diversified boundary conditions.
The Jacobi orthogonal polynomials are expanded to repre-
sent the displacement field in one direction. Finally, the
free and forced vibration characteristics of the rectangular
plate can be obtained by utilizing the Rayleigh–Ritz
method, where the Newmark-β integration method is
adopted to realize the time-domain solutions for tran-
sient vibration response. The results for different struc-
tural scale parameters and various boundary conditions
are presented, and the validity and accuracy of the pre-
sented method are verified by comparing the results
from published literature and FEM. The results of the
study can provide technical support for vibration con-
trol of the plate structure.

Keywords: Jacobi polynomials, steady and transient vibra-
tion, rectangular plate, general boundary condition

1 Introduction

The rectangular plate structure has been widely used in
practical engineering, which is usually subjected to var-
ious steady and transient loads. Therefore, an accurate
analysis of the vibration characteristics of the rectangular
plate can guide well its design in actual engineering
applications.

In recent years, numerous studies have been con-
ducted on the free and steady vibration of various struc-
tures, including the dynamic stiffness method [1], the
separation variables method [2–4], the Ritz method [5–9],
the generalized differential quadrature method [10], and
the finite-element method (FEM) [11,12]. Yang et al. [13]
carried out the exact solutions for the rectangular ceramic
plate based on the 3D linear equations. Considering the
influence of the initial stresses, Akbarov et al. [14] applied
the 3D FEM to obtain the forced vibration response of the
rectangular composite plate based on the 3D linearized
theory. Wu et al. [15] studied the dynamic response of
the rectangular plate under external load by applying the
principle of mixed variables. Fan [16] performed the forced
vibration of the rectangular plate by means of the damped
complex modes analysis method. Based on the Hamilton
variation principle, the research studies of Xiao and his
colleagues [17–19] demonstrated the free and forced
vibration characteristics of a thin rectangular plate on
the nonlinear elastic foundation by using the Galerkin
method. In the framework of Mindlin’s first-order theory,
Zhang et al. [20] illustrated the forced vibration character-
istics of the rectangular piezoelectric plate, and the trigono-
metric series solutions were obtained under two types of
boundary conditions. Nasirshoaibi and Mohammadi [21]
applied the modal expansion method for vibration analysis
of an elastically connected rectangular plate. According to
the FSDT, a great deal of research studies on composite
plates and shells were conducted by Shi et al. [9,22,23],
who developed the improved Fourier series method, and
the influences of boundary conditions and material
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parameters on the vibration characteristics of the structure
were also discussed. Agarana and Ehigbochie [24] put to
use the finite-difference method to analyze the dynamic
response of the elastic orthotropic mindlin plate, and the
results were compared with those obtained from the pub-
lished literature. Yahnioglu and Yesi [25] extended the
FEM to study the vibration characteristics of a thick com-
posite plate based on the 3D linearized theory of elastic
waves. More research studies on the steady vibration
response of rectangular plates can be found in the litera-
ture [26–31].

With regard to the transient vibration, Ou and Mak
[32] developed the time-domain FEM and BEM to investi-
gate the transient vibration and sound radiation of the
stiffened plate; the stiffeners can be located at any position
inside the plate. Fan [33] obtained the transient vibra-
tion solutions of the rectangular plate under viscoelastic
restraints by using the modal strain energy (method, and
the vibration displacement function was approximately
selected as a double infinite series. Geng et al. [34,35] dealt
with the transient vibration response of an impacted plate
by using the interpolated time-domain equivalent source
method, and a steel ball impact experiment was carried
out on the clamped rectangular steel plate to verify the
effectiveness of the method. Considering the nonlinear
effect, He and Kashiwagi [36] carried out the transient
vibration response of the vertical plate under the impact
of a pulse-type wave by using the full-nonlinear boundary-
element method. Based on von Karman’s large deflection
plate theory, Sheikh and Mukhopadhyay [37] investigated
the transient vibration characteristics of stiffened plate
structures by using the spline finite strip method, and
the spline functions and finite-element shape functions
represented the two direction displacement interpola-
tion functions. Hajheidari and Mirdamadi [38] estab-
lished the transient vibration analysis model of the lami-
nated plate in the framework of the classical lamination
plate theory, and the numerical solutions were obtained
by using the spectral FEM. Skocilas et al. [39] carried
out the transient vibration response of the thin plate

with viscoelastic isotropic and anisotropic materials, in
which the selected model was defined by applying the
constitutive equations related to stress and deforma-
tion. Pang et al. [40] conducted a study on the safety
of the platform deck structure caused by the transient
impact load during the rocket launch process based on
the FEM.

From the above analysis, the published literature
have ample analysis ways for the steady vibration response
of the rectangular plate; however, the research studies on
the transient vibration response of rectangular plate struc-
tures are relatively lacking, particularly for damped tran-
sient attenuation vibration characteristics. Based on this
background, this study aims at conducting the dynamic
responses of rectangular plate structures subject to general
boundary restraints based on the FSDT. The multi-segment
principle and unified Jacobi orthogonal polynomials are
introduced to ensure the convergence and effectiveness
of the algorithm. Meanwhile, the dynamic response
characteristics of the rectangular plate are parameter-
ized research.

2 Mathematical formulation

2.1 Rectangular plate

Figure 1 shows the analytical model of rectangular plate,
where a, b, and h represent the length, width, and thick-
ness of the structure, respectively. The cartesian coordi-
nate system (x, y, z) is adopted to describe the model, in
which x, y, and z, respectively, represent the length,
width, and thickness directions of the structure, u, v,
and w, respectively, denote the displacement fields in
the x-, y-, and z-directions of the middle surface. The
rectangular plate boundary conditions can be obtained
by introducing three groups of linear springs (ku, kv, and
kw) and two groups of rotational springs (kx and ky) at
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Figure 1: Calculation model of rectangular plate structure.
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ends x = 0, x = a, y = 0, and y = b. Various boundary
conditions can be simulated by setting different spring
stiffness values. The rectangular plate is divided into H
segments based on the DDM, where the ith segment is
connected to the i + 1th segment by artificial springs.
Normally, the stiffness of the connecting spring is set to
infinity, indicating a direct strong coupling effect. Figure 2
exhibits the excitation point and the test point of the
rectangular plate, and the load acts at the center of
the structure in the z-direction. There are three vibration
test points and one excitation point. The excitation point
and test point are signified by first alphabet EP and TP,
respectively, for subsequent analysis.

2.2 Expressions of rectangular plate’s
energy

The structural energy functional is established based on
FSDT [41–43], and the assumed displacement field of the
ith segment is expressed as
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The strains of the rectangular plate are taken as
follows:
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The stress of the rectangular plate is shown as
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where σx
i , σy

i , τxy
i , τxz

i , and τyz
i , respectively, represent

normal and shear stresses. Qij (i,j = 1, 2, 6) can be
expressed as
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where E and μ represent elastic modulus and Poisson’s
ratio, respectively, and the forces and moments can be
expressed as,

N
N

N

σ
σ
σ

z
M
M

M

σ
σ
σ

z z
Q
Q

κ
σ
σ z

d ,

d , ¯ d .

x
i

y
i

xy
i h

h xx
yy

xy

x
i

y
i

xy
i

h

h xx
yy

xy

xz
i

yz
i

h

h
xz
yz

2

2

2

2

2

2

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎧

⎨
⎩

⎫

⎬
⎭

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎧

⎨
⎩

⎫

⎬
⎭

⎡

⎣
⎢

⎤

⎦
⎥ { }

∫

∫ ∫

=

= =

− /

/

− /

/

− /

/

(6)

The following equation can be obtained by substi-
tuting equation (4) into equation (6):
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Figure 2: The excitation point and the examination point of the
rectangular plate.
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where Nx, Ny, Nxy, Mx, My, Mxy, Qxz, and Qyz, respectively,
represent the force, moment resultants, and transverse
shear force of the structure, κ̄ is the shear correction
factor, and the value of the study is set as 5/6. Aij, Bij,
and Dij (i, j = 1, 2, 6) are the extensional, extensional-
bending coupling, and bending stiffness of the rectan-
gular plate, which are shown as
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The strain energy is expressed as
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The following equation can be obtained by substi-
tuting equations (3) and (7) into equation (9)
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The boundary potential energy Ub for a rectangular
plate is shown as
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The potential energy of the connective spring is
given by
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The total potential energy is expressed as
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The kinetic energy of the ith segment is shown as
below
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The work done by the external concentrated load on
the ith rectangular plate segment is

W f w xd ,i
w i i,∫= (16)

where fw i, is the external concentrated load inflicted in
the z-direction.

2.3 The displacement function and the
characteristic equation of the system

Based on the multi-segment partitioning principle, the
Jacobi orthogonal polynomials [44–46] are expanded to
represent the displacement field in one direction. The
recurrence formulas of Jacobi polynomials are derived as

P ϕ 1,α β
0

, ( )( )
= (17a)
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where ϕ 1, 1[ ]∈ − , α β, 1> − , and i 2, 3, ...=

Each of the displacement function components of the
plate is written in the form of Jacobi polynomials and
trigonometric series as follows:
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where Am, Bm, Cm, Dm, and Em indicates the expansion
coefficients.

The Lagrangian energy function of a rectangular
plate is given by

W T U U .
N

i i
V
i

BS
1

1
( )∑= + − −

−

� (19)

Minimizing the energy function with respect to
unknown expansion coefficients

ϑ
ϑ A B C D E0, , , , , .m m m m m

∂

∂

= =

� (20)

Therefore, the dynamic response equation of rectan-
gular plate is derived as

ωK M Q F,2( )− = (21)

where K, M, and Q respectively signify the stiffness,
mass, and coefficients matrix. By solving equation (21),
the free vibration results for the rectangular plate can be
obtained.

2.4 Vibration response solution

The unknown coefficients matrix of the rectangular plate
under external excitation is derived as

ωQ K M F,2 1( )= −

− (22)

where F denote the external excitation matrix, and the
steady forced vibration response of rectangular plate can
be obtained by substituting the above results into equa-
tion (18).

The Rayleigh damping is used in this study

a bC M K,= + (23)

where C denotes the dampingmatrix, a and b are denoted
as follows:

a
w w

w w
ξ b ξ

w w
2

, 2 ,i j

i j i j
=

+

=

+

(24)

where wi and wj denote the ith and jth frequency of
the structure and ξ is the damping ratio. The Rayleigh
damping is set as a = 2, b = 0.00003 in this study.

Assuming that the acceleration is constant within the
time range of [t, t + Δt], two parameters β and γ are
introduced at the same time:

x β x βx tΔ ̇ 1 ̈ ̈ Δ ,i i i 1[( ) ]= − +
+

(25a)

x x t γ x γx tΔ ̇ Δ 1
2

̈ ̈ Δ .i i i i 1
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⎣
⎛
⎝

⎞
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⎤

⎦
= + − +

+
(25b)

In this study, β = 1/2, γ = 1/4, and the above formula
can be solved to obtain

x
γ t

x
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x
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ẍ 1
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̇ 1
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(26b)

The incremental balance equation is shown as

x x x FM ̈ C ̇ K .i i i i1 1 1 1+ + =
+ + + +

(27)

Substituting equation (26) into equation (27) can be
obtained

x FK .i i1 1[ ] =
+ +

(28)

where

γΔt
β

γΔt
K K 1 M C,2[ ] = + + (29)
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The response of the structure at any time can be
obtained by repeating the iteration until the end of
the time.

3 Validation and discussion

The free, clamped, simply support, and elasticity sup-
port boundary conditions are signified by F, C, S, and E,
respectively. Unless otherwise indicated, the geome-
trical dimensions and material properties in this study
are as follows: a = 1 m, b = 1 m, h = 0.05 m; E = 210 GPa,
ρ = 7,800 kg·m−3, μ = 0.3; M = 8, α = 1, β = 1, H = 6. The

nondimensional frequency is defined as ωb π ρh DΩ 2 2
= / / .

3.1 Convergence study

Combined with the specific conditions of simply sup-
ported square plates on four sides, the convergence of
the method is discussed. It is worth noting that the fol-
lowing conclusions are also valid for rectangular plates
with other boundary conditions. As mentioned earlier,
the artificial springs and DDM are utilized in the proposed
method; therefore, the convergence of the algorithm
depends on the spring stiffness, Jacobi parameters, and
the number of segments.

The frequency parameters of rectangular plates with
different spring stiffnesses are shown in Figure 3. As the
spring stiffness changes in the range of 10−1–1015, the
boundary conditions and continuity conditions change
from free state to clamped state. Obviously, the stiffness
value can be selected as zero for the free boundary con-
dition, and the stiffness values can be selected in the
range of 1012–1015 for the clamped boundary condition.
Whether its a boundary spring or the connective spring,
the dimensionless frequency parameter obviously increases
rapidly, with the spring value increasing in the range of
106–1010. The boundary conditions of the plate used in
this paper are shown in Table 1 [47,48]. It should be
noted that although different coupling and boundary
conditions can be easily simulated by adjusting the stiff-
ness of the artificial springs, modeling rigid constraints
with high stiffness values may generate boundless results
[49,50]; the penalty method with negative stiffness can be
used to determine the appropriate stiffness to obtain accu-
rate results.

Figure 4 exhibits the variation of the dimensionless
results for a different number of segments and the highest
order of the Jacobi polynomial. As expected, the fre-
quency parameters stable quickly when H ≥ 3 and M ≥ 4.
However, the matrix pathological can be obtained if the
convergence parameters are too large. Therefore, the
number of segments H is chosen as 6, and the polyno-
mial truncation number M is selected as 8 in this study.

As mentioned earlier, the Jacobi polynomial can
be transformed into the Chebyshev polynomial or the
Legendre polynomial by selecting different values of
Jacobi parameters. The relative percentage errors of rec-
tangular plates with different Jacobi parameters are
shown in Figure 5, and α = β = 1 is selected as the
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Figure 3: Frequency parameters Ω of rectangular plate with different boundary parameters.
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reference value. Obviously, the maximum relative per-
centage error is almost negligible in the existing method
regardless of the values of α and β, which means that
the introduction of the Jacobi polynomial enriches the
selection and diversity of displacement functions.

3.2 Free vibration characteristics of the
rectangular plate

In this section, the free vibration solutions of the rectan-
gular plate under general boundary constraints are com-
pared with the existing literature. Table 2 shows the com-
parison of dimensionless frequency parameters between
the proposed method and the published literature [51].
The comparison study indicates that the current method
has higher accuracy for free vibration analysis of the rec-
tangular plate. Figure 6 displays the mode shape of a rec-
tangular plate; it is apparent that the proposed method in
this paper can well display the mode shapes of the rectan-
gular plate under general boundary conditions.

Table 3 and Figure 7 show the dimensionless fre-
quency parameters of a rectangular plate with different
shear correction factors under general boundary restraints.

It is not hard to find that the shear correction factor has
little influence on the dimensionless frequency para-
meters. At the same time, the boundary constraint has
a significant impact on the vibration characteristics of
the rectangular plate, and the frequency parameter gra-
dually increases with the enhancement of the boundary
conditions, which means that the enhancement of the
boundary conditions increases the overall stiffness of
the structure.

Table 4 and Figure 8 display the dimensionless fre-
quency parameters of the rectangular plate with various
a/b ratios under general boundary restraints. The results
indicate that the nondimensional frequency parameters
gradually decrease in general with the a/b ratio increase.
That is to say, when the width (b) of the rectangular plate
is fixed, the overall stiffness of the structure gradually
decreases as the length (a) increases.

3.3 Steady vibration characteristics of the
rectangular plate

In this section, the steady forced vibration analysis of the
rectangular plate subjected to external excitation load is
carried out. The excitation load is the unit concentrated
force along the z-direction, the analysis frequency band
is from 2 to 1,000 Hz, and the interval is 2 Hz.

Figure 9 displays the comparison results for the
steady vibration response of the present method and
FEM. Obviously, the proposed method is in good agree-
ment with the FEM results, and the trends of the two
curves are basically the same; there is only a small devia-
tion at the single peak. In other words, the current

Table 1: The spring stiffness values of the general edge conditions

Boundary conditions ku kv kw kx ky

F 0 0 0 0 0
E 108 108 108 108 108

S 1015 1015 1015 0 0
C 1015 1015 1015 1015 1015
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Figure 4: Frequency parameters Ω of rectangular plate with different convergence parameters.
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approach can effectively analyze the steady vibration of
the rectangular plate.

After verifying the effectiveness of the proposed method
for the steady forced vibration of the rectangular plate, a
parametric study on the steady vibration characteristics

of the rectangular plate is presented. First, Figure 10
shows the comparison results for the steady vibration
response of the rectangular plate under various boundary
conditions. The results indicate that the boundary condi-
tions have a significant influence on the steady vibration
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Figure 5: Relative percentage error of rectangular plate with different Jacobi parameters.

Table 2: Comparison of the natural frequency of present method and published literature

Boundary conditions SSSS SSSC CSCS

Mode.no Ref. [51] Present Ref. [51] Present Ref. [51] Present

a/b = 0.4 1 7.2500 7.2494 7.4410 7.4447 7.6842 7.6863
2 10.2500 10.2482 10.8840 10.8832 11.6290 11.6299
3 15.2500 15.2472 16.4120 16.4167 17.7090 17.7157
4 22.2490 22.2462 23.9560 23.9567 25.8040 25.8022
5 25.9990 25.9981 26.0930 26.0977 26.2020 26.2064

a/b = 0.6 1 3.7780 3.7775 4.0540 4.0604 4.4270 4.4310
2 6.7780 6.7772 7.5750 7.5700 8.5095 8.5052
3 11.7780 11.7769 12.2540 12.2515 12.4280 12.4219
4 12.1110 12.1106 13.1200 13.1131 14.6050 14.6161
5 15.1110 15.1098 15.6220 15.6236 16.2170 16.2180

CSCS SSSS FSFS ESES

1st mode

3rd mode

5th mode

Figure 6: The mode shape of rectangular plate.
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response of the structure. In addition, the first peak fre-
quency of the steady vibration gradually increases with
the increase of the boundary conditions, while the number
of peaks gradually decreases. At the same time, it is not
difficult to find that the peak of the steady vibration appears
at the natural frequency of the rectangular plate. It can be
concluded that the natural frequency of the structure gra-
dually increases with the enhancement of boundary condi-
tions, while the number of natural frequencies of the struc-
ture within a certain frequency range decrease.

Figures 11–12 show the comparison results for the
steady vibration characteristics of the rectangular plate
with different h/a and a/b ratios. The results demonstrate
that the first peak frequency gradually increases with

increasing h/a ratio, which indicates that the increase
of thickness of the rectangular plate has an obvious influ-
ence on the structural stiffness. In addition, the first peak
frequency of the structure gradually decreases as the
length (a) increases when the width (b) of the rectangular
plate is fixed, while the number of peaks within a certain
frequency range increases, which is consistent with the
conclusion of free vibration.

3.4 Transient vibration characteristics of
rectangular plate

For transient vibration response, three different types of
time-dependent loads are considered in the paper, which
is shown in Figure 13.
(a) Rectangular pulse load

Table 3: Nondimensional frequency parameters of rectangular plate
subject to general boundary conditions

Mode.no CSCS SSSS FSFS ESES CSFS

κ = 3/6 1 2.8321 1.9450 0.9677 1.8392 1.2649
2 5.2943 4.7939 1.5970 3.1285 3.2270
3 6.5499 4.7949 3.5849 4.6285 4.0913
4 8.8248 7.4947 3.8355 5.3910 6.0497
5 9.6420 9.3375 4.5561 6.3000 6.8901

κ = 4/6 1 2.8547 1.9542 0.9692 1.8753 1.2687
2 5.3465 4.8322 1.6029 3.2055 3.2498
3 6.6503 4.8331 3.6058 4.6904 4.1175
4 8.9775 7.5860 3.8574 5.4840 6.1128
5 9.7823 9.4634 4.5889 6.4489 6.9747

κ = 5/6 1 2.8685 1.9601 0.9702 1.9023 1.2710
2 5.3789 4.8561 1.6067 3.2643 3.2641
3 6.7130 4.8569 3.6191 4.7326 4.1336
4 9.0738 7.6436 3.8708 5.5526 6.1523
5 9.8699 9.5420 4.6094 6.5559 7.0275

κ = 1 1 2.8779 1.9642 0.9709 1.9237 1.2727
2 5.4009 4.8725 1.6093 3.3118 3.2739
3 6.7558 4.8733 3.6285 4.7638 4.1446
4 9.1400 7.6834 3.8799 5.6066 6.1795
5 9.9298 9.5958 4.6234 6.6381 7.0636

3/6 4/6 5/6 6/6
0

1

2

3

4 1st mode

�

Fr
eq

ue
nc

y 
pa

ra
m

et
er
�

 CSCS   SSSS   FSFS

 ESES    CSFS

3/6 4/6 5/6 6/6
0

1

2

3

4

5

6

7

8

3rd mode

�

Fr
eq

ue
nc

y 
pa

ra
m

et
er
�

 CSCS   SSSS   FSFS

 ESES    CSFS

Figure 7: Frequency parameters Ω of rectangular plate with different shear correction factors.

Table 4: Nondimensional frequency parameters of rectangular plate
with different a/b radio

Mode.no CSCS SSSS FSFS ESES CSFS

a/b = 0.5 1 8.9615 4.8231 0.9582 2.8350 2.2526
2 10.8082 7.5613 2.6810 5.9866 4.9644
3 14.4478 12.0863 3.8261 6.0269 9.4592
4 19.9047 15.7744 6.2370 10.0635 9.5061
5 22.1490 18.1974 8.4869 10.7104 12.3241

a/b = 1 1 2.8685 1.9601 0.9702 1.9023 1.2710
2 5.3789 4.8561 1.6067 3.2643 3.2641
3 6.7130 4.8569 3.6191 4.7326 4.1336
4 9.0738 7.6436 3.8708 5.5526 6.1523
5 9.8699 9.5420 4.6094 6.5559 7.0275

a/b = 2 1 1.3756 1.2385 0.9812 1.2771 1.0497
2 2.3614 1.9711 1.1739 1.9323 1.5786
3 3.8323 3.1883 1.7673 2.7605 2.5689
4 4.2299 4.1654 2.7593 3.8094 3.9586
5 5.1036 4.8734 3.8973 4.1584 4.0161
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Figure 8: Frequency parameters Ω of rectangular plate with different a/b ratio.
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Figure 9: Comparison of the steady vibration response of the present method and FEM results.
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Figure 10: Comparison of the steady vibration of rectangular plate with different boundary conditions.
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Figure 11: Comparison of the steady vibration of rectangular plate with different h/a ratios.
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Figure 12: Comparison of the steady vibration of rectangular plate with different a/b radios.
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(c) Triangular pulse load
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First, the transient response analysis of the undamped
system is carried out. Figure 14 displays comparison
results for the undamped transient vibration response
of present method and FEM under rectangular pulse

load, in which q0 = 1 N, t0 = 0.005 s, τ = 0.005 s, Δt =
0.0001 s. Obviously, the proposed method is in good
agreement with the FEM calculation results, and the
trends of the two curves are basically the same; in other
words, the present method can effectively analyze the
transient vibration response for the rectangular plate.

Figure 15 displays the comparison of the undamped
transient vibrationwith different boundary conditions under
a rectangular plate. The amplitude of the undamped vibra-
tion response increases with the weakening of boundary
conditions. Undoubtedly, the weakening of boundary
conditions reduces the stiffness of the structure and
makes the structure more prone to vibration. Then, the
comparison of the undamped transient vibration with
different types of time-dependent loads under different
boundary conditions is shown in Figure 16, and the
vibration pickup points are chosen as point 2; the action
time and amplitude of those three kinds of loads are
precisely the same. The influence of the rectangular
pulse load on the structure is always more significant
than that of sine pulse load and triangular pulse load
from the perspective of the amplitude of the displace-
ment response at the initial moment of load application.
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Figure 14: Comparison of the undamped transient vibration response of the present method and FEM.

f(t)

0

tt0 t0+ t1

q0

Rectangular
f(t)

0

tt0 t0+ t1

q0

Sine
f(t)

0

tt0 t0+ t1

q0

Triangular

Figure 13: Sketch of applied load for rectangular plate with three different types of time-dependent loads.
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The displacement response of the sine pulse load and
the triangle pulse load is basically the same under SSSS
boundary conditions, which is smaller than the displa-
cement response caused by the rectangular pulse load
with the passage of time. For CSCS boundary conditions,
the response caused by the rectangular pulse load is
greater than the response caused by the sine pulse
load, while the response caused by the triangular pulse
load is the smallest with the passage of time, owing to
the amplitude of rectangular pulse load acting on the
structure is larger than other loads within a certain
period.

For the damped transient vibration response, Figure 17
displays the comparison of the damped transient vib-
ration with different boundary conditions under the
rectangular pulse load. The amplitude of the damped
vibration response increases with the weakening of the
boundary condition. The comparison of the damped

transient vibration with different types of time-depen-
dent loads is shown in Figure 18. Regardless of the
boundary condition, the maximum vibration displace-
ment at the initial moment is always caused by the rec-
tangular pulse load, followed by the sine pulse load, and
the response caused by the triangle pulse load is the
smallest, owing to the amplitude of the rectangular
pulse load acting on the structure is larger than other
loads within a certain period, which is consistent with
the conclusion of the undamped vibration response.

4 Conclusion

In this paper, the unified Jacobi–Ritz method (JRM) is
utilized to analyze the dynamic response of the rectan-
gular plate with different boundary conditions. The rec-
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Figure 16: Comparison of the undamped transient vibration with different types of time-dependent loads.
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Figure 15: Comparison of the undamped transient vibration with different boundary conditions.
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tangular plate is divided into several equal sections in the
framework of the DDM, and the structural energy func-
tional is established based on the FSDT; five groups of
artificial springs are introduced to ensure the continuity
of the segments and diversified boundary conditions.
The unified Jacobi orthogonal polynomials are expanded
to represent the displacement field of the plate in one
direction, and the other direction is expressed by the
trigonometric series. Polynomials such as Legendre and
Chebyshev are special forms of Jacobi polynomial; in
other words, the introduction of Jacobi polynomials enriches
the selection and diversity of displacement functions.

The free, steady, and transient vibration characteris-
tics of the rectangular plate have been well analyzed
by utilizing the Rayleigh–Ritz method, in which the
Newmark-β integration method is adopted to realize the
time-domain solutions for transient vibration response,
especially for the damped transient vibration response,
as well as the good convergence and feasibility of the
present method have been proved. The effectiveness of

the proposed method is verified by comparing it with the
existing literature and FEM results.

The calculation results of the vibration characteris-
tics for the rectangular plate under different boundary
conditions, structural scale parameters, and load types
are given, indicating that the constraint conditions
and geometric dimensions have a significant impact
on the dynamic response of the rectangular plate.
The results of the study can support the vibration control
of the plate structure and further enrich the research data
of the JRM.
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Figure 17: Comparison of the damped transient vibration response with different boundary conditions.
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Figure 18: Comparison of the damped transient vibration with different types of time-dependent loads.
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