Review Article

Aleksandra Ivanoska-Dacikj and Urszula Stachewicz*

Smart textiles and wearable technologies – opportunities offered in the fight against pandemics in relation to current COVID-19 state

https://doi.org/10.1515/rams-2020-0048 Received Jul 28, 2020; accepted Sep 27, 2020

Abstract: Recent outbreak of the COVID-19 pandemic has changed the world dramatically, posing profound challenges to our healthcare infrastructure, economic systems, social and cultural life but also to our freedom. What this pandemic made us realize so far, is that, despite the tremendous advances in medicine and pharmacy, in the initial moments, which are crucial in the containment of spreading of any pandemic, the key role is played by the non-pharmaceutical measures. These measures are the ones that bridge the time between pandemic outbreaks and the development of drugs or vaccines and are crucial for the number of human lives spared. Smart textiles and novel materials as part of the personal protective equipment (PPE) and telemedicine are crucial factors in the healthcare system. Here, we present an overview on the use of textiles in the fight against pandemics, in the past and current COVID-19, we analyze the morphology of the commonly used face masks, made of cotton and typically used polypropylene (PP). We also present the perspective that smart textiles, wearable technologies and novel materials are offering in the fight against future pandemics, mainly as part of the personal protective equipment and telemedicine.

Keywords: COVID-19; textiles; pandemics; personal protective equipment; telemedicine

Email: ustachew@agh.edu.pl

Aleksandra Ivanoska-Dacikj: Research Centre for Environment and Materials, Macedonian Academy of Sciences and Arts, 1000 Skopje, North Macedonia; Email: aivanoska@manu.edu.mk

1 Introduction

More than 100 years since the outbreak of the 1918 influenza pandemic, we now seem to face another one. In December 2019, pneumonia of unknown cause was detected in Wuhan, the capital of China's Hubei province. It was later disclosed that it is a new type of coronavirus which was named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the respiratory disease it is causing coronavirus disease (COVID-19) [1, 2]. Since the first outburst, it spread worldwide. The World Health Organization (WHO) declared the 2019-20 coronavirus outbreaks a Public Health Emergency of International Concern (PHEIC) on 30 January 2020 [3] and a pandemic on 11 March 2020 [4]. By mid-May 2020, only within the 6 months from Wuhan detection, there have been more than 4.36 million cases reported worldwide in more than 200 countries and territories, resulting in more than 297,000 deaths [5]. Undisputedly, the coronavirus pandemic is posing profound challenges to our healthcare infrastructure, economic systems, social and cultural life but also to our private lives and personal freedom [6–9].

a

The SARS-CoV-2, similarly to common viruses, is mainly transmitted through respiratory droplets [10, 11] and contact [12]. What makes it specific is the particularly high speed of its transmission which originates from the longer median incubation period (the time from infection to appearance of symptoms) and the longer serial interval (the time between successive cases) [13]. The basic principles of prevention and control of infectious diseases are the elimination of the source of infection, cutting off the transmission routes and protection of the vulnerable population [12]. An available SARS-CoV-2 vaccine would be an effective measure to protect the population at risk and that is why research institutions and enterprises are working hard on developing one [14]. Biotech companies are developing mRNA vaccine as a potential candidate against COVID-19, and have successfully obtained a SARS-CoV-2 antibody. According to the WHO draft landscape of COVID-19 candidate vaccines until September 2020, there are 38

^{*}Corresponding Author: Urszula Stachewicz: International Centre of Electron Microscopy for Materials Science, Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, 30-059 Cracow, Poland;

candidate vaccines in clinical evaluation and 149 in preclinical evaluation [15]. Another remaining challenge in the elimination of the source of infection and cutting off the transmission routes is the quick and reliable diagnostics which will allow fast case identification, isolation, and contact tracing [16–18]. Meanwhile, the measures of protection against COVID-19, which proved to be effective in reducing virus spread [19], are limited to physical distancing, reduced traveling, improved hygiene and wearing of personal protective equipment especially for occupational groups at risk of COVID-19 [20–24].

In recent years the results from the tremendous research in the field of material, surface, and aerosol science and engineering [25] have enriched the textile materials with properties (like improved filtration, antibacterial and antiviral activity, breathability, etc.) crucial for successful prevention of the spread of infectious diseases. This fact is placing textiles on the front line in the fight against the current pandemic and the textile industry – an important player since many textile companies are currently implementing the production of protective masks and protective clothing using their production facilities [26].

Another specification of COVID-19 is the exponential growth in the number of new cases that can easily lead to systemic healthcare failure. Therefore WHO recommends patients with mild symptoms and without cardinal chronic conditions to be cared for at home while keeping a communication link with the healthcare personnel [27]. Here the smart textile role for sensing and monitoring of body parameters as part of telemedicine could play an important role [28]. Nanotechnology and smart textiles are promising in tackling the pandemic [29].

This review article presents an overview of the use of textiles in the fight against pandemics, past and current, additionally, the morphology of the commonly used face masks, made of cotton and typically used polypropylene (PP) is analyzed. Finally, the perspective that smart textiles, wearable technologies and novel materials are offering in the future pandemics is presented, since the situation of COVID-19 is a proof that future pandemics are going to happen and that we should be prepared.

2 Role of textiles in the past pandemics

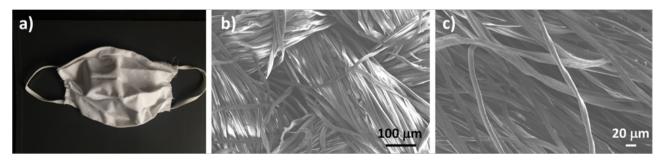
There were several influenza pandemics in the last century during which influenza viruses spread on a world-wide scale and infected a large proportion of the world population. The deadliest one, by far, is the 1918 influenza

pandemic, commonly referred to as the Spanish flu which lasted from 1918 to 1920 [30]. Older estimations say it killed 40 to 50 million people [31] while current revisions claim that between 50 million and 100 million people worldwide were killed by this disease [32]. That is why the Spanish flu pandemic has been described as "the greatest medical holocaust in history" [33]. In 1918, the virology was at its infancy so the available tools to control the spread of the flu were mainly limited to non-pharmaceutical measures such as isolation, quarantine, improved personal hygiene, disinfection, and avoiding grouping, which doesn't differ much from the current situation with COVID-19. The healthcare workers were instructed to wear gauze masks when treating flu patients. It was also suggested to change the clothes when leaving the influenza wards. The face masks used were a half meter of gauze folded like a triangle that was worn over the mouth, nose and chin [34]. These gauze masks acted to prevent the spread of the infectious droplets from the wearer's mouth and nose and also to protect him/her to put the contaminated hands in the nose or mouth. In some regions, the whole population was obliged to wear masks, for instance, in San Francisco. There are no consistent studies on whether the wearing of masks helped to prevent the spread of the disease. Some studies found that the mask-wearing led to "a rapid decline in the number of cases of influenza" [35], while others, like the one in the Great Lakes, did not confirm this. The obtained results showed that mask-wearing by healthcare workers did not have an effect on whether or not they would be infected. 8% of those who used the mask and 7.75% of those who did not, developed infection [36]. Despite this, the masks were used by a wide population in order to protect themselves from getting infected. At that time, the number of companies specialized in mask manufacturing was really small, one such manufacturer was the Prophylacto Manufacturing Company of Chicago, and it was really hard for them to meet this increased demand. As a response to this shortage, women all over America organized in churches and community groups used their spare time for mask making.

Other, less serious pandemics occurred in 1957 (Asian influenza) and 1968 (Hong Kong influenza). The main efforts to fight these pandemics were directed to vaccine supplying and the non-pharmaceutical measures like closing schools, restricting travel, closing borders, or recommending wearing masks, were generally not taken [37].

The masks used in these past pandemics were cloth masks made of common textiles, usually cotton. They were not subject to regulation, and there is insufficient research and substantiated evidence that they are an effective measure to prevent the spread of infectious diseases. However,

they were consistently used by healthcare professionals from the late 19th century to the mid-20th century when they were replaced by modern medical masks. Their use continues in developing countries [38].


3 Role of the textiles in the current COVID-19 pandemic

Since the coronavirus outbreak, the demand for personal protective equipment (PPE) and especially medical masks and respirators has risen to a point where fears of shortages are driving many countries to take increasingly devious measures [39]. In absence of an available vaccine, PPE is considered an essential infection control measure. This global overwhelmed demand-led WHO to issue a document that summarizes their recommendations for the rational use of PPE. According to WHO's estimations, the current global stockpile of PPE is insufficient, especially for medical masks and respirators. This is not only a result of the high number of people infected with COVID-19 but also by misleading information, panic buying and stockpiling [40]. The supply chain distribution due to the subsequent lockdowns to high risk-related practices kept the businesses unsustainable in difficult and unpredicted times [41].

Various types of masks are used worldwide by health-care workers and the general population which are reduced mainly to cloth masks (Figure 1), medical masks, and respirators [42], see the examples in Figure 2. But only medical masks and respirators are subject to regulation. Medical masks are intended to be worn by healthcare professionals during treating and nursing patients to protect them from infecting [43, 44]. They are not designed to protect the wearer from inhaling airborne bacteria or virus particles [45]. The masks are usually pleated to allow the user to expand them and cover the area from the nose

to the chin. The masks are secured to the head with ear loops, head ties, or elastic straps. The performance of surgical masks is evaluated based on bacterial filtration efficiency, splash resistance, microbial cleanliness, breathability [46], and water repellency [47]. On the other hand, a respirator is a device that can be fitted on the wearer's face providing a seal around the mouth and nose and in such a way protects the wearer from respiratory infections. Its filtration capacity is strictly regulated [42]. Usually, the masks are made up of a multi-layered structure, see Figure 2. The layers are made from non-woven fabric made of melt-blown polymer, most commonly polypropylene (PP), but also polystyrene (PS), polycarbonate (PC), polyethylene (PE), or polyester is used. In Figure 2(a-d) we have presented the typical face masks all containing the common PP layer at the outside, similar to the one used in the vacuum cleaner dust bag (Figure 2e), which are often used to produce homemade masks. From the morphology point of view the PP fibers present in the masks and vacuum cleaner bags are similar and therefore have a similar ability in stopping spread of the infectious droplets as many commercial masks. The SEM micrographs in Figure 2(f-h) show the melt-blown PP fibers with the approximate fiber diameter of 10 µm that is present in all the imaged masks including respiratory KN95/FFP2 (Figure 2c) and FFP3V conforming to EN149:2001 standards (Figure 2d). Additionally, the surgical and respiratory masks containing the extra layer of PP with the diameter of 1 µm are presented, see Figure 2(i-j). The additional layer of smaller in diameter fibers (approximately 1µm) is able to stop also the airborne particles enhancing the protection level of the facial masks, (Figure 2k).

The WHO in the guidance on infection prevention and control strategies when COVID-19 is suspected, recommends the use of particulate respirator at least as protective as a US National Institute for Occupational Safety and Health (NIOSH)-certified N95, European Union (EU) standard FFP2, or equivalent [48]. These respirators filter

Figure 1: The homemade cloth face mask: **a**) the photo showing the typical shape of cotton masks; **b**) SEM micrographs of cotton fibers – traditional weave and **c**) SEM micrograph focusing on individual cotton fibers with the diameter approximately 10 μ m.

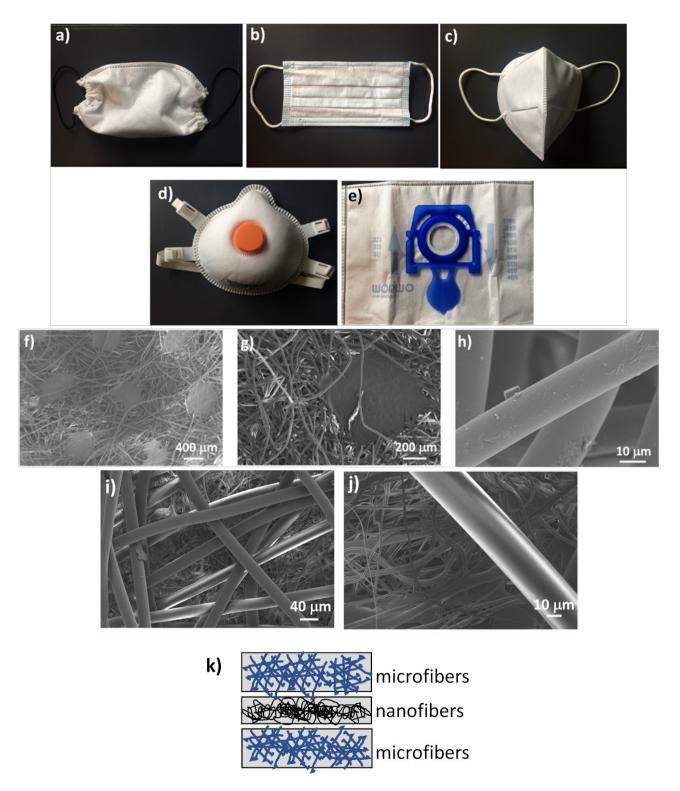


Figure 2: Typical commercial face masks from various materials: a) spundbond based on PP; b) surgery face masks, 3 layers with PP fibers and microfibers in between; c) KN95/FFP2 respiratory; d) respiratory FFP3V conforming to EN149:2001 standards; e) vacuum cleaner dust bag; (f-h) scanning electron micrographs showing the top layer of PP fibers of all the masks (a-d) and vacuum cleaner dust bag (e). (i-j) SEM micrographs indicating the inside layer of 1 μm PP fibers present in masks presented in b, c, and d; k) schematic of the typical 3 layers used in the surgical or respiratory masks.

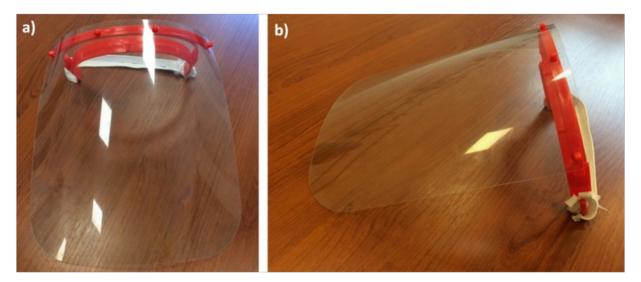


Figure 3: The example of the plastic safety face shield screen a) front and b) side view, produced by the volunteers at AGH University of Science and Technology in Krakow, Poland [62].

at least 95% for N95-respirators (42 CFR Part 84) and at least 94% for FFP2-respirators (EN 149 standard) of airborne particles. The inner filtration layer is made of fine PP mash, with fibers diameter less than a micron, obtained by melt blowing [35, 49]. When masks form a tight seal with the face, the 95% efficiency refers to particle sizes ranging from 0.1-0.3 µm [50]. The masks should preferably be used in combination with a face shield that covers the entire front and sides of the face and extends to the chin or below, see example in Figure 3. Face masks are capable of blocking virus nanoparticles, which are typically around 100 nm in diameter, but there are parts of the respiratory fluid droplets containing a variety of other components including insoluble particulates reaching the size of 5-20 µm in diameter. These droplets can be caught by regular masks and prevent person-to-person infection through droplet transmission [51, 52]. During the 2019-20 coronavirus pandemic, there has been a shortage in N95 and FFP2 masks supply due to constraints on the supply of nonwoven PP fabric as well as the cessation of exports from China, a country which controls 50% of global production of masks [49]. In this acute shortage of protective medical equipment, an interesting trend worldwide emerged many companies, universities and tech enthusiasts armed with 3D printers produced a large number of medical visors or medical face shields (Figure 3) that were distributed for free to hospitals and clinics [53, 54]. Specifically, concerning COVID-19, special attention was paid to informing the general public about the best practice of wearing the masks [11, 51, 55], giving many instructions on how to produce the masks by themselves and how and when to wear them [56]. Among the very efficient anti-viral materials are

the electrospun nonwoven filters consisting of the fibers with a diameter below 100 nm, suitable for low cost and mass facial masks production [57, 58].

Despite the challenges with the shortages of PPE, there is another problem resulting from the prolonged use of personal protective equipment. Nurses, doctors and other healthcare workers, who have been pushed to the frontline of the outbreak, are spending more than 8 h at hospitals wearing PPE, consisted of gowns, gloves, medical mask or respirator and eye protection (goggles or face shield). This is not without consequences, many skin conditions and injuries caused by prolonged use of PPE were described like pressure injuries, contact dermatitis, itch, pressure urticaria, seborrheic dermatitis, acne, pruritus, folliculitis, maceration and erosions of the epidermis [59– 61]. They are frequently reported by the healthcare workers during the COVID-19 pandemic and are generally caused by the hyper-hydration effect of PPE, friction, epidermal barrier breakdown, and contact reactions.

Another health problem related to prolonged use of PPE is the development of headaches. In very recent research, conducted among frontline healthcare personnel working in high-risk areas of a tertiary institution during the current COVID-19 outbreak in Singapore, the association of the PPE exposure and the headaches, either with the use of N95 face mask alone or in combination with protective eyewear (mainly goggles), was studied. 81.0% of the respondents reported having PPE associated headaches (described as bilateral in location) when they wore either N95 face mask, with or without protective eyewear. 91.3% of the respondents with an underlying pre-existing headache stated that the increased PPE

usage aggravated their background headaches in terms of frequency and attack duration [63]. Such side effects caused by prolonged wearing of PPE, emphasize the need for lighter, breathable and yet protective materials and also the necessity of more comprehensive testing (pre- and post-market) to meet the real working conditions.

Another important role that smart textiles could play in future pandemics is being a part of the telemedicine system. The COVID-19 pandemic brought telemedicine into a new light and is likely to accelerate its development and implementation. Telemedicine is the tool that could help the healthcare systems to overcome the problems they are currently facing mainly connected to overcrowding in hospitals and treatment of patients with chronic illnesses. Telemedicine enables a reduction in direct contacts between healthcare workers and patients and thus a decrease in human exposure to the infection [61]. Remote sensing and monitoring are the crucial aspects of telemedicine and here smart textiles offer many solutions [15, 64].

3.1 Hydrophobicity and permeability of personal protective clothing

Usually, personal protective clothing is made of materials based on impermeable textiles and coatings. Although these materials are successful in blocking contaminants and offer good protection, they are bulky and heavy and are seldom found to be breathable [65]. Thus, they offer poor comfort to the wearer in prolonged use. Currently, there is a great interest in developing protective clothing based on nonwoven micro- and nanoporous membranes. The advantages of these kinds of materials, besides their low price, are the facts that they offer excellent protection while maintaining lightweight and breathable [5, 32]. The presence of micron and nano-sized pores in the membranes enables the transport of air and water vapor and restricts entry of water and other liquid droplets [65]. Recently, it has been demonstrated that water-resistant yet breathable materials can be fabricated by using hydrophobic materials from which porous membranes with interconnected pores are obtained [66, 67]. Yung et al. [67] prepared a novel kind of hydrophobic fibrous membranes with good water/windproof and breathable performance via electrospinning by using polyvinylidene fluoride (PVDF) as raw polymer. They regulated the fibrous and porous structure of the membranes by tuning the N,N-dimethyl acetamide (DMAc)/acetone ratios and NaCl concentrations in the PVDF solutions. The obtained membranes exhibited simultaneously good waterproof and breathable performance while keeping excellent mechanical properties, high strength and toughness [66, 68–71].

By controlling the pore size and overall porosity the water-resistance and permeability could be simultaneously enhanced. A reduction in pore size would lead to higher resistance to water droplets entry improving permeability. On the other side, a higher overall porosity in the material would ease the transmission of air and water vapor through the material and thus improve the breathability. Li et al. [72], in their study, evaluated the effect of the pore size, pore length and overall porosity on the electrospun membranes' breathability and water-resistance. They used electrospinning to prepare membranes based on polyurethane (PU) and fluorinated PU. The porosity and pore size of the membranes was tuned by controlling the relative humidity during the electrospinning process and its duration. They found out that the breathability mainly depended on the porosity and pore length. So electrospinning, apart from melt blowing [73], is another crucial process in fiber manufacturing that is already extensively used in the filtration industry [74–78] and many types of sensors [79]. Electrospinning belongs to electrohydrodynamic processes [80-82] involving the polymer solution jetting controlled with the electrostatic forces [83–86]. The advantage of nanofibers is the high surface area to volume ratio which allows filtering particles and enhancing the superhydrophobic properties [66, 87, 88]. The porosity in the electrospun membranes can be controlled by the arrangement of fibers [89] or the use of special collectors [90-93]. For mass production of nanofibers, needleless electrospinning is commonly used [94–101].

Chen et al. [102] presented an effective approach to mimic the self-cleaning hierarchical structure of lotus by fabricating a flexible hybrid material, PVDF microfibers decorated with inorganic ZnO nanowires covered with oleic acid. This hierarchical structure exhibited superhydrophobicity and self-cleaning properties and at the same time was permeable to air and water vapor. PVDF is known for its high piezoelectricity and ferroelectric properties [103, 104], but also exhibits high mechanical strength, high thermal stability, and biocompatibility [105-108] which make it an ideal candidate for polymerbased piezoelectric generators and therefore is used in many smart textiles technologies [109-111] also as electrospun fibers [68, 112–115]. This concept of energy harvesting in smart textiles was recently applied in a self-powered electrostatic adsorption face mask [116] with enhanced removal efficiency and filtration life for ultrafine particulates or droplets [117]. All the mentioned technologies including the electrospun membranes have been applied in the current situation concerning COVID-19, one of the recent suggestions is Ag or Cu nanoparticles impregnation [15, 118–120].

4 Smart textiles in future pandemics

Smart textile is a "functional textile material, which interacts actively with its environment, *i.e.* it responds or adapts to changes in the environment" [121, 122]. The fast development of microelectronics and its implementation in smart textiles led to remarkable improvements and new potentials in the textile field [123–126]. Also, the changes in our lifestyles and usage of smart electronic devices in daily routines open the possibilities of acceptance of smart textiles as comfortable and reliable devices. Smart textiles find applications in all sectors from automotive [127, 128] and sports [129, 130] to buildings and interior design [131, 132], but here our focus is on their use in the fight against pandemics as part of the healthcare and medicine systems and personal protective equipment.

4.1 Smart textiles for protective clothing

Protective equipment has become an important subject during the current COVID-19 pandemic, it's even become a symbol of the fight against this globally spread virus. Nevertheless, dealing with this pandemic has also shown deficiencies related to PPE, first of all, the shortages in their supply and second the health problems they cause in healthcare workers during prolonged use. To be prepared for the next pandemic we need to apply what we have learned from the current situation. We should pay special attention to the protective equipment; develop capacities for rapid PPE production and no less importantly develop novel PPE that is cost-effective, safe, comfortable and "smart" at the same time. In terms of gowns and drapes, there are more details provided in some previous reviews [64] and studies related to environmental conditions [133] and thermo-physiological discomfort [134] of medical textiles [135].

The recent studies on the SARS-CoV-2 virus stability in different environmental conditions and on various surfaces showed that the virus can survive on cloth or standard textiles for several days, but on smooth surfaces like stainless steel or plastic even for up to a week [136, 137]. Thus, all textiles or medical equipment used in hospitals by medical personnel or patients could easily be contam-

inated by infectious carriers [135]. That is why the fabrication of inexpensive antimicrobial and antiviral materials is of great interest. For this purpose, the use of metals is widespread due to their ability to deactivate bacteria [138]. Here, in particular, silver stands out attributed to its distinctive physiochemical properties, and its demonstrated toxicity towards bacteria, fungi, virus, leishmania, malaria, and neoplastic [139]. A recent in-vivo study demonstrated that aqueous solution of colloidal Ag alone enabled effective sterilization of biodegradable PU based scaffolds [140]. The compressed-PU facial masks were modified with the hydrophobic coating to obtain the selfcleaning characteristic [141], to address the wetting and blocking water spatter in protective textiles used during COVID-19. In other study fibers with antimicrobial properties were obtained by electrospinning dispersed silver in polyvinylpyrrolidone (PVP) solution [138]. Their toxicity against Escherichia coli and Staphylococcus aureus was demonstrated. In a similar study [142], electrospun nanocomposites based on polyacrylonitrile (PAN) modified with silver nanoparticles were obtained from solution of dimethyl formamide (DMF). The obtained membranes possessed good antimicrobial properties and a case for using these fibers as filters to protect the personnel from bacterial contamination was presented.

The importance of PPE repellency to viruses was demonstrated in a very recent study of the level of contamination on the surface of medical masks [143]. The results showed that respiratory viruses were present on the outer surface of about 1 in 10 medical masks worn by healthcare personnel which could easily lead to selfcontamination of the wearer of the mask. To provide antimicrobial and antiviral properties of the medical textiles, they have to be impermeable to body fluids like blood, urine, saliva, and sweat which are the main carriers of infectious vectors. Galante et al. [144], very recently, demonstrated a simple, durable and scalable coating on nonwoven PP textile that was both superhemophobic and anti-virofouling. The treatment consisted of polytetrafluoroethylene (PTFE) nanoparticles in a solvent thermally sintered to PP microfibers which created a robust, low surface energy, and multi-layer, multi-length scale rough surface. The authors demonstrated that the obtained material could effectively repel various liquids including water and fetal bovine serum and that the treatment could significantly reduce the attachment of serum protein and infectious non-enveloped virions to the surface. Moreover, the treated textiles exhibited unprecedented mechanical durability, maintaining their liquid, protein, and viral repellency even after extensive and harsh abrasion and washing. Besides washing, SARS-CoV can be inactivated by UV

light (254 nm), at pH above 12 or below 3, and above the temperature of 65°C, similar conditions can be applied for SARS-CoV-2 [145, 146]. Among metals Cu besides Ag, also showed effectiveness in the inactivation of SARS-CoV, indicating the possibility Cu ions to be used for destroying viral proteins and lipids [119, 137].

4.2 Smart textiles for monitoring and sensing as part of the telemedicine

The healthcare systems worldwide are facing a current problem – how to maintain the capacity and provide quality health care not only to those suffering from COVID-19 but also to patients with chronic and acute diseases. The health systems globally, to cope with the unique challenges imposed by COVID-19 are seeking help in telemedicine so they can provide care for the patients while keeping them in their homes [147]. One of the key features of telemedicine is that it relies extensively on remote sensing and monitoring. These sensors should enable continuous accurate monitoring of the user's physiological states in the long-term. Textiles and clothing are omnipresent in our daily life and are the layers closest to our body providing an ideal platform for the integration of electronics to monitor physiological processes through the skin. There are already wearable non-textile products on the commercial market, for instance, smartwatches and wrist bands, which are used to monitor activity and the wearer's health parameters. But, electronic devices integrated into textiles can offer several advantages, such as enhanced mobility and comfort for the user [148]. Reliability, performance, consistency over time, and comfort are the most important features that smart textiles should fulfill to enable their applications in the commercial market.

Smart textiles used for monitoring body parameters could be divided into two basic groups. One that is focused on physical sensors that react to physical changes in their environment, for example, electric fields, pressure, temperature, and movement. These can be used to detect body movements, changes in thoracic volume during breathing, but also electric signals from the body, such as electrocardiography (ECG) from the heart and electromyography (EMG) from skeletal muscles [149]. The second group is focused on biosensors that incorporate a biological recognition element into their operation (for example, enzyme, antibody, cell receptor, or organelle) and are an emerging field in the area of wearable sensors. They can monitor the composition of biofluids, such as sweat, tears, saliva, urine, or interstitial fluid (ISF) [150]. Here, we focus on smart textile sensors of body parameters that are relevant

for monitoring in a home-cared patient during a pandemic similar to COVID-19. Another challenge for telemedicine is drug delivery, which in the aerosol therapy is using nebulizers containing special meshes or filter to improve the treatment efficiency and reducing the contamination [151].

4.2.1 Perspectives of smart textiles as part of the telemedicine

The stages of treatment for most medical conditions include prevention, immediate care, rehabilitation, and long-term support. Smart textiles have a role to play in each of these stages. Integrating smart garments into our lives is a natural step. One of the probable future scenarios is that as the field of fibertronics becomes more mature, the hybrid structures will include more electronic functionality at the fiber level until we eventually end up with electronic textiles where all advanced electronic function, such as batteries, lightning, communication and computing is embedded in the textile fibers [152, 153]. Smart textiles are expected to become more streamlined and move into a wearer's daily life. They will noninvasively monitor a wide range of body parameters ultimately enabling a comprehensive medical diagnostics and performance assessment. But their acceptance by the medical community will require extensive and successful validation in human testing and improved understanding of the clinical relevancy of the provided information. Besides challenges connected to smart textiles and their fabrication, design, device operation, relevance, stability, implementation, data interpretation, etc., there are other challenges that telemedicine is facing mainly connected to encryption and security. To ensure the safety of the information gathered by a portable telemedicine system access rights and encryption algorithms have to be implemented and a stringent data protection policy developed. The data and communication have to be protected from tampering and communication have to be secured from all potential errors [154]. Having all the challenges in the head of us the optimal outcome is to emerge from the current crisis with a clearer vision of how to deploy telemedicine to achieve its benefits while avoiding or minimizing potential abuse and exploitation [147].

Smart or e-textiles start to include natural fabrics and become sensors of human body temperature, sweat, or breathing [155] or bending able to monitor human touch [156]. As the strain sensors can be incorporated in smart garment parts, it can be a part of face masks too, together with other biosensing capabilities for detecting viruses. The data collection from patients throughout the

wearable devices in the current COVID-19 pandemics could give a new look into public health surveillance and also new possibility of tacking and reacting to the patient's responses [157–160]. The skin-integrated sensors capable of reporting fever, cough, breath, hypoxemia, or loss of smell are being developed including the machine learning techniques [161]. The diagnosis together with the treatment is a crucial part of development in many integrated technologies seeking the adaptation in clinical practices during COVID-19 pandemic and vaccine development [162].

It is clear from the above that in the future, one should think of smart and intelligent PPE that not only protects but also detects, is capable of self-decontamination along with being comfortable, durable, and possibly biodegradable [163]. During the COVID-19 the waste products increase [164–166] rising many new challenges for the pulp and paper industry [167]. Biodegradable nonwovens are often based on polylactic acids (PLA) or any natural fibers being extensively developed in recent years [168–172]. Many new fabrics and designs have been tested against the blocking droplets in face masks built of a few covering multilayers [173]. Personal protection and healthcare purposes are facing now many challenges related to the solid waste management sector during the pandemic, as the singleuse plastic usage is set to bounce back due to its growth. The main concern is associated with hygiene and personal protection [174-178].

4.2.2 Monitoring breathing

Since the COVID-19 is an acute respiratory syndrome monitoring breathing is of the crucial importance of patient treatment. Respiratory rate values are used to support the assignment of patients to different categories and to make decisions on the use of supplemental oxygen [179]. The treatment of patients affected by acute respiratory insufficiency from COVID-19 is also tailored considering respiratory rate values [180].

Breathing can be monitored by measuring the changes in the thoracic volume caused by lung displacement in the process of breathing. Several technological solutions have been developed to register breathing induced thoracic strain. Textile-based strain sensors can be fabricated by using stretchable fabrics modified with inherently conductive polymers or by using polymers loaded with conductive particles like carbon-based nanofillers [52]. Knitting with conductive yarns is another approach to creating textile piezoresistive sensors [54]. Using multiple sensors gives a possibility besides breathing rate the capacity and type of breathing to be indicated. For instance,

deep breathing would cause a large change in signal amplitude. Another promising approach of respiratory monitoring is by using smart textiles based on fiber optic sensors integrated into the textile for monitoring different vital body parameters [181, 182]. For respiratory monitoring, the fibers were stitched onto a textile in a sinusoidal shape. The fibers were illuminated with a laser and light was detected with photodiodes. The curvature of the bends affected the light attenuation through the fiber. Analysis of the bending of these fibers was used to indicate the movements caused by the changes in the thoracic volume. This technology has the advantage of being compatible with MRI scanners [183]. In a more recent study, highly flexible polymeric optical fibers (POFs) that react to applied pressure were integrated into a fabric-carrier to form a wearable sensing system [184]. The wearable system enables detailed monitoring of the breathing rate and type. The sensor is usually placed at different positions of the torso. The authors confirmed the utility of such a monitoring device by a comparison of the results with the output of commercial respiratory measurements devices.

Many textile-based wearable systems are being developed for getting recordings of cardiorespiratory and motion signals by combing textile sensors for ECG and breathing frequency detection with portable electronic and signal preprocessing technologies [185]. Wearable technology during Covid-19 – combine the trackers and apps that can measure vital signs related to developing symptoms [186], but also monitoring with the assessments [187]. The availability of a large number of accurate data collected from breathing monitoring could contribute to improving the development of predictive models for the risk of hospital admission, and the development of diagnostic and prognostic models. Effective breathing monitoring would be an important contribution to managing similar scenarios like current COVID-19 that may occur in the next months or years [188].

4.2.3 Monitoring heart activity

Acute myocardial injury and chronic damage to the cardiovascular system are possible complications associated with COVID-19 [189, 190]. Cardiac involvement has been reported in patients with COVID-19, which may be reflected by electrocardiographic (ECG) changes [191] Therefore, particular attention should be given to cardiovascular protection during treatment for COVID-19 and here monitoring of heart activity plays a crucial role.

ECG records the electrical activity of the heart from the skin's surface and ECG monitoring traditionally relies

upon adhesive electrodes coupled to the skin with gel. Many challenges arise with potential in-home use of this type of electrode but the major issue is the use of the gel. In recent years, much effort has been focused on the development of "dry" electrodes that are directly integrated into clothing [147]. An et al. [192] developed a new hybrid textile electrode suitable for long-term ECG monitoring. In this study, four different conductive fabrics for electrode materials and also the electrode size were investigated. The results showed that the optimal hybrid textile electrode could perform equally well as commercial wet electrodes in electrocardiograph machines. Recently, Weder et al. [193] reported the development of a portable ECG measuring device (ECG-belt), contemplated to pass the disadvantages of current wearable systems. The ECG-belt employed embroidered, self-humidifying electrodes with Ag/Ti coating for long-term ECG-monitoring which met all the requirements concerning cytotoxicity and signal stability. Fontana et al. [194] assessed the clinical applicability for overnight monitoring of this ECG-belt to screen patients for breathing-related disorders during sleep. When compared to reference gel electrodes, ECG-belt data showed acceptable quality and accuracy. Therefore, they concluded that the ECG belt is an applicable tool for continuous ECG patient monitoring. In a very recent study Arquilla et al. [195], developed and designed sewn electrodes that can be integrated into wearable garments for ECG monitoring. They showed that the sewn textile electrodes reliably recorded the ECG signal and did not exhibit changes in resistance during the stretch, bend, or wash testing and that they are a promising option for implementation into a garment-integrated ECG monitoring system.

4.2.4 Monitoring of blood oxygen saturation

Monitoring of blood oxygen saturation is crucial in COVID-19 patients because COVID pneumonia initially causes a form of the oxygen deprivation that is called "silent hypoxia". This means that COVID patients do not feel chest discomfort or shortness of breath, even as their oxygen levels fall. And by the time they do, they have noticeable trouble breathing and alarmingly low oxygen levels, justifying using urgently a ventilator. Silent hypoxia progressing rapidly to respiratory failure explains cases of COVID-19 patients dying suddenly after not feeling short of breath [196–198]. This hypoxia can be detected, thus healthcare workers are advised to use pulse oximetry [199], a simple, fast, easy to use, noninvasive method for real-time monitoring of hypoxemia. It can provide an early warning system for the breathing problems and low oxygen saturation levels

associated with COVID-19 pneumonia. Pulse oximetry enables monitoring of the percentage of Hb in blood, which is saturated with oxygen. It works by measuring the absorption of light through body tissue with a high perfusion rate of blood, usually at the finger or earlobe. Hb has a different absorption spectrum depending on whether it is oxygenated (oxy-Hb) or deoxygenated (deoxy-Hb). Oxygen saturation is estimated by measuring the absorption of two different wavelengths of light through the tissue. Light-emitting diodes (LEDs) are typically used as the light source and photodiodes as light detectors. These optical components may be placed in a transmission mode configuration, on either side of the tissue, or else in reflectance mode on the same side of the tissue. Photonic textiles using organic LEDs (OLEDs) or woven polymer optical fibers (POFs) offer an alternative to conventional LEDs, to create a textile-based pulse oximetry system. Rothmaier et al. [200] have demonstrated such a system, using a cotton glove with woven POFs positioned at a fingertip of the glove. To improve the reliability of reflectance oximeters Liu et al. [201] demonstrated a novel optical fiber sensor probe for simultaneously monitoring the photoplethysmogram and contact pressure to provide reliable blood oxygen saturation monitoring. This probe combined a reflectance pulse oximeter with a fiber Bragg grating contact pressure sensor and enables more comfort of the user because it can be used in loosely fitting garments and the measurements can only be recorded when appropriate pressure is applied.

4.2.5 Monitoring the composition of body fluids

Wearable biosensors are garnering substantial interest due to their potential to provide continuous, real-time physiological information via dynamic, noninvasive measurements of biochemical markers in biofluids, such as sweat, tears, saliva, and interstitial fluid (ISF) [150]. Blood is the most reliable diagnostic medium; however, as it requires invasive techniques for sampling, it is typically sampled at specified time intervals. Therefore, other body fluids, which can be accessed more easily through non- or minimally- invasive means, must be considered for continuous analysis. Possible samples include urine, saliva, sweat, interstitial fluid (ISF), and wound exudate. Of all these body fluids, sweat is the most accessible within a garment structure.

In a recent study, a flexible poly(3,4-ethylenedioxythio phene):poly(styrenesulfonate) (PEDOT:PSS) fiber-based sensor was proposed, which could accurately measure the amount of salt (*i.e.*, sodium chloride) ions in sweat re-

leased from the human body. The authors performed this using one single strand of hair-like conducting polymer fiber. The fabrication process involved the introduction of an aqueous PEDOT:PSS solution into a sulfuric acid coagulation bath, in which monolithic fibers, with simple geometry and tunable electrical characteristics, were produced. The authors demonstrated that the conductivity of a PEDOT:PSS fiber changed linearly according to the concentration of sodium chloride in liquid. The obtained results suggested the possibility of PEDOT:PSS fiber-based wearable sensors to be developed in skin-attachable nextgeneration healthcare devices, which could reproducibly determine the physiological condition of a human subject by measuring the sodium chloride concentration in sweat [130], which is important for health condition monitoring of any patient.

More related to COVID-19 is the remote monitoring of the glucose level in sweat. Type 2 diabetes (T2D) is major comorbidity of COVID-19 and although the impact of glucose control on the degree of required medical interventions and on mortality in patients with COVID-19 and T2D remains uncertain there is clinical evidence correlating improved glycemic control with better outcomes in patients with COVID-19 and pre-existing T2D [202]. Development of an enzyme-based non-invasive wearable electrochemical sensor to monitor biochemical vital signs of health such as the glucose level in sweat has attracted increasing attention recently, due to the unmet clinical needs for diabetic patients. Very recently, Zhao et al. [203] demonstrated an elastic gold fiber-based three-electrode electrochemical platform for wearable textile glucose biosensing. The gold fiber was functionalized with Prussian blue and glucose oxidase to obtain the working electrode and modified by Ag/AgCl to serve as the reference electrode; and the nonmodified gold fiber served as the counter electrode. The as-fabricated textile glucose biosensors achieved a linear range of 0-500 μ M and a sensitivity of 11.7 μ A mM⁻¹ cm⁻². Importantly, such sensing performance was maintained even under a large strain of 200%, indicating the potential applications in real-world wearable biochemical diagnostics from human sweat.

The fundamental principles of biosensor systems, the challenges in operating biosensors in specific noninvasive biofluids and the physiological relevance of monitoring key biomarkers in these fluids, and finally the prospects of wearable biosensing devices for the biomedical field have been highlighted in a recent review [150]. Regarding the COVID-19 easier diagnostics recent research suggests that saliva can be used as a viable biosample for the detection of COVID-19. Experimental studies showed that the salivary glands could be a potential target for SAR-CoV-2 in-

fection, and hence saliva could be a potential sample for SARS-CoV-2 detection [204, 205]. Researchers from RUCDR Infinite Biologics at Rutgers University have successfully validated saliva as being a viable biosample source for COVID-19 detection when compared to nasopharyngeal or oropharyngeal swabs [206]. Very recently, Murugan et al. [207] proposed to exploit a field-deployable/portable plasmonic fiber-optic absorbance biosensor (P-FAB) platform for one-step, wash-free detection of SARS-CoV-2 virus particles directly in saliva sample with minimal sample pre-processing. Further studies are required but salivary diagnostics may play a crucial role in the detection of COVID-19 and can offer a mass screening of the population and more importantly it can eliminate the requirement of health care professionals to collect samples and risking infections.

5 Conclusions and Perspectives

The COVID-19 outbreak caught us off guard and unprepared, despite the numerous scientific indications that a respiratory pandemic is possible and is going to happen we were not ready for such a rapid spread through the human population. Many governments are still scrambling to 'flatten the curve' as they attempt to maintain increasingly overburdened healthcare systems and mitigate shortages in medical supplies. What can be deduced from what has been learned so far is that, despite the tremendous advances in medicine and pharmacy, in the initial moments, which are crucial in the containment of the spreading of any pandemic, the key role is played by the nonpharmaceutical measures. By applying these measures, we give the medical and pharmaceutical sciences time to develop a cure or a vaccine, which could take anywhere from several years to over a decade but is a permanent solution in the fight against pandemics. In meantime, between pandemic outbreak and finding a cure or vaccine, we should improve the non-pharmaceutical measures applied and here the smart textiles play an important role mainly as part of the personal protective equipment (PPE) and telemedicine. Despite the great progress made so far in this field, several challenges need to be overcome. One of them is including the chemical sensors able to detect viruses from the breath, as at the moment some efforts are already made in monitoring and analysis of biomarkers in sweat [208].

Dealing with the COVID-19 pandemic has shown the deficiencies related to PPE, first of all the shortages in their supply and second the health problems they cause in

healthcare workers during prolonged use. It is necessary to work on the development of capacities for rapid PPE production and even more importantly on the development of novel PPE that is cost-effective, safe, comfortable and "smart" at the same time that not only protects, but also detects, is capable of self-decontamination, is durable and possibly biodegradable.

What we have experienced so far is that COVID-19 requires unprecedented mobilization of healthcare systems. There is only a narrow opportunity to slow transmission and prepare healthcare systems to mitigate the impact of the outbreak. In these terms, telemedicine is brought into a new light. Telemedicine platforms can help to prevent overcrowding in hospitals and decrease human exposures (among healthcare workers and patients). One of the key features of telemedicine is that it relays extensively on remote sensing and monitoring. These sensors should enable continuous accurate monitoring of user's physiological states in the long-term while allowing enhanced mobility and comfort and here smart textiles offer many advantages. As the field of fibertronics becomes more mature smart textiles are expected to become more streamlined and move into a wearer's daily life. They will noninvasively monitor a wide range of body parameters ultimately enabling a comprehensive medical diagnostics and performance assessment.

It is evident that to combat COVID-19 and build resilient healthcare systems to face future pandemics we need lasting investments in research and response strategies. But besides financing projects in the field of vaccine development, diagnostic and treatment, which is undisputedly important, more time and money should also be invested in the non-pharmaceutical measures, highlighting the smart textiles as part of PPE and telemedicine. These non-pharmaceutical measures are the ones that bridge the time between pandemic outbreaks and the development of drugs or vaccines and are crucial for the number of human lives spared.

Acknowledgment and Funding: U. Stachewicz thanks for the support in the "Nanofiber-based sponges for atopic skin treatment" project carried out within the First TEAM programme of the Foundation for Polish Science cofinanced by the European Union under the European Regional Development Fund, project no POIR.04.04.00-00-4571/17-00 and the infrastructure at International Centre of Electron Microscopy for Materials Science (IC-EM) at AGH University of Science and Technology. The authors would like to also acknowledge networking support by the COST Action CA17107, CONTEXT, European Network to connect

research and innovation efforts on advanced Smart Textiles

Conflict of Interests: Authors state no conflict of interest.

References

- [1] World Health Organization (WHO). Naming the coronavirus disease (COVID-19) and the virus that causes it.In, Archived from the original on 28 February 2020. Retrieved 28 February 2020.
- [2] Velavan, T. P., and C. G. Meyer. The COVID-19 epidemic. Tropical Medicine & International Health, Vol. 25, No. 3, 2020, pp. 278-280.
- [3] World Health Organization (WHO). Statement on the second meeting of the International Health Regulations (2005) Emergency Committee regarding the outbreak of novel coronavirus (2019-nCoV). Archived from the original on 30 January 2020, 2020.
- [4] World Health Organization (WHO). Director-General's opening remarks at the media briefing on COVID-19. Archived from the original on 11 March 2020.
- [5] Coronavirus COVID-19 global cases by the center for systems science and engineering (CSSE) at Johns Hopkins University (JHU), ArcGIS. Johns Hopkins CSSE. https://coronavirus.jhu.edu/map. html. Accessed 14 May 2020.
- [6] Neto, M. L. R., R. I. de Souza, R. M. M. Quezado, E. C. S. Mendonca, T. I. de Araujo, D. Luz, et al. When basic supplies are missing, what to do? Specific demands of the local street population in times of coronavirus - a concern of social psychiatry. Psychiatry Research, Vol. 288, 2020, id. 112939.
- [7] Lippi, G., B. M. Henry, C. Bovo, and F. Sanchis-Gomar. Health risks and potential remedies during prolonged lockdowns for coronavirus disease 2019 (COVID-19). Diagnosis, Vol. 7, No. 2, 2020, pp. 85-90.
- [8] Bayham, J., and E. P. Fenichel. Impact of school closures for COVID-19 on the US health-care workforce and net mortality: a modeling study. The Lancet Public Health, Vol. 5, No. 5, 2020, pp. E271-E278.
- [9] Schröder, I. COVID-19: A risk assessment perspective. ACS Chemical Health & Safety, Vol. 27, No. 3, 2020, pp. 160-169.
- [10] Morawska, L. Droplet fate in indoor environments, or can we prevent the spread of infection? Indoor Air, Vol. 16, 2006, pp. 335-347.
- [11] Mittal, R., R. Ni, and J. H. Seo. The flow physics of COVID-19. Journal of Fluid Mechanics, Vol. 894, 2020, id. F2. DOI: 10.1017/jfm.2020.330.
- [12] Yang, P., and X. Wang. COVID-19: a new challenge for human beings. Cellular & Molecular Immunology, Vol. 17, No. 5, 2020, pp. 555-557.
- [13] Lauer, S. A., K. H. Grantz, Q. Bi, F. K. Jones, Q. Zheng, H. R. Meredith, A. S. Azman, et al. The incubation period of coronavirus disease 2019 (COVID-19) from publicly reported confirmed cases: Estimation and application. Annals of Internal Medicine, Vol. 172, No. 9, 2020, pp. 577-582.
- [14] World Health Organization (WHO). Draft landscape of COVID-19 candidate vaccines. 18 June 2020, 2020. 6 p.

- [15] Weiss, C., M. Carriere, L. Fusco, I. Capua, J. A. Regla-Nava, M. Pasquali, et al. Toward nanotechnology-enabled approaches against the COVID-19 pandemic. ACS Nano, Vol. 14, No. 6 2020, pp. 6383–6406.
- [16] Udugama, B., P. Kadhiresan, H. N. Kozlowski, A. Malekjahani, M. Osborne, V. Y. C. Li, et al. Diagnosing COVID-19: The disease and tools for detection. ACS Nano, Vol. 14, No. 4, 2020, pp. 3822-3835.
- [17] Wan, D. Y., X. Y. Luo, W. Dong, and Z. W. Zhang. Current practice and potential strategy in diagnosing COVID-19. European Review for Medical and Pharmacological Sciences, Vol. 24, No. 8, 2020, pp. 4548-4553.
- [18] Research to better diagnose COVID-19. British Columbia Medical Journal, Vol. 62, No. 5, 2020, pp. 178-179.
- [19] García de Abajo, F. J., R. J. Hernández, I. Kaminer, A. Meyerhans, J. Rosell-Llompart, and T. Sanchez-Elsner. Back to Normal: An old physics route to reduce SARS-CoV-2 transmission in indoor spaces. ACS Nano, Vol. 14, No. 7 2020, pp. 7704-7713.
- [20] Liu, C., Q. Zhou, Y. Li, L. V. Garner, S. P. Watkins, L. J. Carter, et al. Research and development on therapeutic agents and vaccines for COVID-19 and related human coronavirus diseases. ACS Central Science, Vol. 6, No. 3, 2020, pp. 315–331.
- [21] Ahmed, S. F., A. A. Quadeer, and M. R. McKay. Preliminary identification of potential vaccine targets for the COVID-19 coronavirus (SARS-CoV-2) based on SARS-CoV immunological studies. Viruses-Basel, Vol. 12, No. 3, 2020, id. 254.
- [22] Shoenfeld, Y. Corona (COVID-19) time musings: Our involvement in COVID-19 pathogenesis, diagnosis, treatment and vaccine planning. Autoimmunity Reviews, Vol. 19, No. 6, 2020, id. 102538.
- [23] Wu, S. C. Progress and concept for COVID-19 vaccine development. Biotechnology Journal, Vol. 15, 2020, id. 2000147.
- [24] 't Hoen, E. Protect against market exclusivity in the fight against COVID-19. Nature Medicine, Vol. 26, No. 6, 2020, id. 813. DOI: 10.1038/s41591-020-0876-6. PMID: 32382151.
- [25] Huang, H., C. Fan, M. Li, H.-L. Nie, F.-B.Wang, H.Wang, et al. COVID-19: A call for physical scientists and engineers. ACS Nano, Vol. 14, No. 4, 2020, pp. 3747-3754.
- [26] The textile and clothing industry supplies protective equipment in the fight against corona, Nonwovens Trends. Available from: h ttps://www.nonwovenstrends.com/news/research-instituteseducation/-The-textile-and-clothing-industry-supplies-protect ive-equipment-in-the-fight-against-corona-20523. Accessed 3 April 2020
- [27] WHO. Home care for patients with COVID-19 presenting with mild symptoms and management of their contacts. Available from: https://www.who.int/publications/i/item/home-care-forpatients-with-suspected-novel-coronavirus-(ncov)-infection-p resenting-with-mild-symptoms-and-management-of-contacts. Accessed 13th August 2020.
- [28] Anandjiwala, R. D. Role of advanced textile materials in healthcare. Medical Textiles and Biomaterials for Healthcare, Woodhead Publishing Series in Textiles, 2006. pp. 90-98.
- [29] Goel, S., S. Hawi, G. Goel, V. K. Thakur, O. Pearce, C. Hoskins, et al. Resilient and agile engineering solutions to address societal challenges such as coronavirus pandemic. Materials Today Chemistry, Vol. 17, 2020, id. 100300.
- [30] Price-Smith, A. T. Contagion and chaos: Disease, ecology, and national security in the era of globalization. The MIT Press; Illustrated Edition, 2008, 281 p.

- [31] Patterson, K. D., and G. F. Pyle. The geography and mortality of the 1918 influenza pandemic. Bulletin of the History of Medicine, Vol. 65, No. 1, 1991, pp. 4-21.
- [32] Barry, J. M. Chapter 1: The Story of influenza: 1918 revisited: Lessons and suggestions for further inquiry. In The threat of pandemic influenza: Are we ready? Workshop Summary The National Academies Washington, D.C., 2005. pp. 60-61.
- [33] Potter, C. W. A history of influenza. Journal of Applied Microbiology, Vol. 91, No. 4, 2001, pp. 572-579.
- [34] The French View Of International Scientific Relations After The War. The British Medical Journal, Vol. 2, No. 3018, 1918, pp. 492-492.
- [35] Wang, M. W., M. Y. Zhou, G. H. Ji, L. Ye, Y. R. Cheng, Z. H. Feng, et al. Mask crisis during the COVID-19 outbreak. European Review for Medical and Pharmacological Sciences, Vol. 24, No. 6, 2020, pp. 3397-3399.
- [36] Annual reports of the Navy Department. Report of the Secretary of the Navy. Miscellaneous reports. 1919, Washington Government Printing Office, 1920.
- [37] Cowling, B. J., Y. Zhou, D. K. M. Ip, G. M. Leung, and A. E. Aiello. Face masks to prevent transmission of influenza virus: a systematic review. Epidemiology and Infection, Vol. 138, No. 4, 2010, pp. 449-456.
- [38] Chughtai, A. A., H. Seale, and C. R. MacIntyre. Use of cloth masks in the practice of infection control - evidence and policy gaps. International Journal of Infection Control, Vol. 9, No. 3, 2013. pp. 1-12. DOI: https://doi.org/10.3396/ijic.v9i3.11366.
- [39] Willsher, K., O. Holmes, B. McKernan, and L. Tondo. US hijacking mask shipments in rush for coronavirus protection. The Guardian. Guardian News & Media Limited London, April 3, 2020.
- [40] World Health Organization (WHO). Rational use of personal protective equipment for coronavirus disease (COVID-19): interim guidance, 27 February 2020. World Health Organization, Geneva, April 6, 2020. Available from: https://www.who.int/publications/i/item/rational-use-of-personal-protect ive-equipment-for-coronavirus-disease-(covid-19)-and-consid erations-during-severe-shortages.
- [41] Barbieri, P., A. Boffelli, S. Elia, L. Fratocchi, M. Kalchschmidt, and D. Samson. What can we learn about reshoring after Covid-19? Operations Management Research, Vol. 13, 2020, pp. 131–136.
- [42] MacIntyre, C. R., and A. A. Chughtai. Facemasks for the prevention of infection in healthcare and community settings. BMJ British Medical Journal, Vol. 350, 2015, id. h694.
- [43] Huang, J. T., and V. J. Huang. Evaluation of the efficiency of medical masks and the creation of new medical masks. Journal of International Medical Research, Vol. 35, No. 2, 2007, pp. 213-223.
- [44] Majchrzycka, K. Evaluation of a new bioactive nonwoven fabric for respiratory protection. Fibres & Textiles in Eastern Europe, Vol. 22, No. 1, 2014, pp. 81-88.
- [45] ThomasNet. How Surgical masks are made, tested and used. Available from: https://www.thomasnet.com/articles/other/how-surgical-masks-are-made/. Accessed 18 April 2020.
- [46] Skaria, S. D., and G. C. Smaldone. Respiratory source control using surgical masks with nanofiber media. Annals of Occupational Hygiene, Vol. 58, No. 6, 2014, pp. 771-781.
- [47] Li, Y., T. Wong, J. Chung, Y. P. Guo, J. Y. Hu, Y. T. Guan, et al. In vivo protective performance of N95 respirator and surgical facemask. American Journal of Industrial Medicine, Vol. 49, No. 12, 2006, pp. 1056-1065.

- [48] World Health Organization. Infection prevention and control during health care when COVID-19 is suspected: interim guidance. World Health Organization, Geneva, 19 March 2020. Available from: https://www.who.int/publications/i/item/10665-331495
- [49] Feng, E. COVID-19 has caused a shortage of face masks. But they're surprisingly hard to make. NPR. Available from: https:// www.npr.org/sections/goatsandsoda/2020/03/16/814929294/ covid-19-has-caused-a-shortage-of-face-masks-but-theyre-sur prisingly-hard-to-mak. Accessed 16 March 2020.
- [50] Qian, Y., K. Willeke, S. A. Grinshpun, J. Donnelly, and C. C. Coffey. Performance of N95 respirators: filtration efficiency for airborne microbial and inert particles. American Industrial Hygiene Association Journal, Vol. 59, No. 2, 1998, pp. 128-132.
- [51] Pleil, J. D., J. D. Beauchamp, T. H. Risby, and R. A. Dweik. The scientific rationale for the use of simple masks or improvised facial coverings to trap exhaled aerosols and possibly reduce the breathborne spread of COVID-19. Journal of Breath Research, Vol. 14, No. 3, 2020, id. 030201.
- [52] Sunjaya, A. P., and C. Jenkins. Rationale for universal face masks in public against COVID-19. Respirology, Vol. 25, No. 7, 2020, pp. 678-679.
- [53] Cazon-Martin, A., L. Matey-Munoz, M. I. Rodriguez-Ferradas, P. Morer-Camo, and I. Gonzalez-Zuazo. Direct digital manufacturing for sports and medical sciences: three practical cases. Dyna, Vol. 90, No. 6, 2015, pp. 622-628.
- [54] Stojkovski, B. Balkan Tech Enthusiasts Deploy 3D Printers against COVID-19. Balkan Insight, April 1 2020. Available from https://balkaninsight.com/2020/04/01/balkan-techenthusiasts-deploy-3d-printers-against-covid-19/
- [55] Yao, M. S., L. Zhang, J. X. Ma, and L. Zhou. On airborne transmission and control of SARS-Cov-2. Science of the Total Environment, Vol. 731, 2020, id. 139178.
- [56] Coronavirus: How to make your own face mask. Available from https://www.bbc.com/news/uk-52609777. Accessed 20th June 2020.
- [57] Tebyetekerwa, M., Z. Xu, S. Yang, and S. Ramakrishna. Electrospun nanofibers-based face masks. Advanced Fiber Materials, Vol. 2, No. 3, 2020, pp. 161-166.
- [58] Akduman, C., and E. P. Akçakoca Kumbasar. Nanofibers in face masks and respirators to provide better protection. IOP Conference Series: Materials Science and Engineering, Vol. 460, 2018, id. 012013.
- [59] Darlenski, R., and N. Tsankov. COVID-19 pandemic and the skin: What should dermatologists know? Clinics in Dermatology, (in press) DOI: https://doi.org/10.1016/j.clindermatol.2020.03.012.
- [60] Yan, Y., H. Chen, L. Chen, B. Cheng, P. Diao, L. Dong, et al. Consensus of Chinese experts on protection of skin and mucous membrane barrier for health-care workers fighting against coronavirus disease 2019. Dermatologic Therapy, Vol. 33, No. 4, 2020, id. e13310.
- [61] Rockwell, K. L., and A. S. Gilroy. Incorporating telemedicine as part of COVID-19 outbreak response systems. American Journal of Managed Care, Vol. 26, No. 4, 2020, pp. 147-148.
- [62] Over 20 thousand medical face shields assembled at AGH UST. AGH University, Cracow, Poland. Available from https:// www.agh.edu.pl/en/news-pl/info/article/over-20-thousandmedical-face-shields-assembled-at-agh-ust/. Accessed 20 June 2020.
- [63] Ong, J. J. Y., C. Bharatendu, Y. Goh, J. Z. Y. Tang, K. W. X. Sooi, Y. L. Tan, et al. Headaches associated with personal protective

- equipment A cross-sectional study among frontline health care workers during COVID-19. Headache: The Journal of Head and Face Pain, Vol. 60, No. 5, 2020, pp. 864-877.
- [64] Rutala, W. A., and D. J. Weber. A review of single-use and reusable gowns and drapes in health care. Infection Control and Hospital Epidemiology, Vol. 22, No. 4, 2001, pp. 248-257.
- [65] Baji, A., K. Agarwal, and S. V. Oopath. Emerging developments in the use of electrospun fibers and membranes for protective clothing applications. Polymers, Vol. 12, No. 2, 2020, id. 492.
- [66] Szewczyk, P. K., D. P. Ura, S. Metwally, J. Knapczyk-Korczak, M. Gajek, M. M. Marzec, et al. Roughness and fiber fraction dominated wetting of electrospun fiber-based porous meshes. Polymers, Vol. 11, No. 1, 2019, id. 34.
- [67] Yang, F. F., Y. Li, X. Yu, G. N. Wu, X. Yin, J. Y. Yu, and B. Ding. Hydrophobic polyvinylidene fluoride fibrous membranes with simultaneously water/windproof and breathable performance. RSC Advances, Vol. 6, No. 90, 2016, pp. 87820-87827.
- [68] Szewczyk, P. K., J. Knapczyk-Korczak, D. P. Ura, S. Metwally, A. Gruszczynski, and U. Stachewicz. Biomimicking wetting properties of spider web from Linothele megatheloides with electrospun fibers. Materials Letters, Vol. 233, 2018, pp. 211-214.
- [69] Muthiah, P., S.-H. Hsu, and W. Sigmund. Coaxially electrospun PVDF-teflon AF and teflon AF-PVDF core-sheath nanofiber mats with superhydrophobic properties. Langmuir, Vol. 26, No. 15, 2010, pp. 12483-12487.
- [70] Saghafi, H., T. Brugo, G. Minak, and A. Zucchelli. The effect of PVDF nanofibers on mode-I fracture toughness of composite materials. Composites Part B: Engineering, Vol. 72, 2015, pp. 213-216.
- [71] Yang, Y., A. Centrone, L. Chen, F. Simeon, T. A. Hatton, and G. C. Rutledge. Highly porous electrospun polyvinylidene fluoride (PVDF)-based carbon fiber. Carbon, Vol. 49, No. 11, 2011, pp. 3395-3403.
- [72] Li, Y., F. F. Yang, J. Y. Yu, and B. Ding. Hydrophobic fibrous membranes with tunable porous structure for equilibrium of breathable and waterproof performance. Advanced Materials Interfaces, Vol. 3, No. 19, 2016, id. 1600516.
- [73] Liu, C., Z. J. Dai, R. Zhou, Q. F. Ke, and C. Huang. Fabrication of polypropylene-g-(diallylamino triazine) bifunctional nonwovens with antibacterial and air filtration activities by reactive extrusion and melt-blown technology. Journal of Chemistry, Vol. 2019, 2019, id. 3435095
- [74] Xue, J., T. Wu, Y. Dai, and Y. Xia. Electrospinning and electrospun nanofibers: Methods, materials, and applications. Chemical Reviews, Vol. 119, No. 8, 2019, pp. 5298-5415.
- [75] Mirjalili, M., and S. Zohoori. Review for application of electrospinning and electrospun nanofibers technology in textile industry. Journal of Nanostructure in Chemistry, Vol. 6, No. 3, 2016, pp. 207-213.
- [76] Bhardwaj, N., and S. C. Kundu. Electrospinning: A fascinating fiber fabrication technique. Biotechnology Advances, Vol. 28, No. 3, 2010, pp. 325-347.
- [77] Rajesh, K. P., and T. S. Natarajan. Electrospun polymer nanofibrous membrane for filtration. Journal of Nanoscience and Nanotechnology, Vol. 9, No. 9, 2009, pp. 5402-5405.
- [78] Heikkila, P., A. Taipale, M. Lehtimaki, and A. Harlin. Electrospinning of polyamides with different chain compositions for filtration application. Polymer Engineering and Science, Vol. 48, No. 6, 2008, pp. 1168-1176.

- [79] Petropoulou, A., S. Kralj, X. Karagiorgis, I. Savva, E. Loizides, M. Panagi, et al. Multifunctional gas and pH fluorescent sensors based on cellulose acetate electrospun fibers decorated with rhodamine B-functionalised core-shell ferrous nanoparticles. Scientific Reports, Vol. 10, No. 1, 2020, id. 367.
- [80] Jaworek, A., A. Krupa, M. Lackowski, A. T. Sobczyk, T. Czech, S. Ramakrishna, S. Sundarrajan, and D. Pliszka. Electrospinning and electrospraying techniques for nanocomposite non-woven fabric production. Fibres & Textiles in Eastern Europe, Vol. 17, No. 4, 2009, pp. 77-81.
- [81] Stachewicz, U., C. U. Yurteri, J. F. Dijksman, and J. C. M. Marijnissen. Single event electrospraying of water. Journal of Aerosol Science, Vol. 41, No. 10, 2010, pp. 963-973.
- [82] Arnanthigo, Y., C. U. Yurteri, G. Biskos, J. C. M. Marijnissen, and A. Schmidt-Ott. Out-scaling electrohydrodynamic atomization systems for the production of well-defined droplets. Powder Technology, Vol. 214, No. 3, 2011, pp. 382-387.
- [83] Theron, S. A., E. Zussman, and A. L. Yarin. Experimental investigation of the governing parameters in the electrospinning of polymer solutions. Polymer, Vol. 45, No. 6, 2004, pp. 2017-2030.
- [84] Bhattacharjee, P. K., T. M. Schneider, M. P. Brenner, G. H. McKinley, and G. C. Rutledge. On the measured current in electrospinning. Journal of Applied Physics, Vol. 107, No. 4, 2010, id. 044306.
- [85] Rutledge, G. C., and S. V. Fridrikh. Formation of fibers by electrospinning. Advanced Drug Delivery Reviews, Vol. 59, No. 14, 2007, pp. 1384-1391.
- [86] Delamora, J. F., and I. G. Loscertales. The current emitted by highly conducting Taylor cones. Journal of Fluid Mechanics, Vol. 260, 1994, pp. 155-184.
- [87] Vitchuli, N., Q. Shi, J. Nowak, M. McCord, M. Bourham, and X. W. Zhang. Electrospun ultrathin nylon fibers for protective applications. Journal of Applied Polymer Science, Vol. 116, No. 4, 2009, pp. 2181-2187.
- [88] Stachewicz, U., R. J. Bailey, H. Zhang, C. A. Stone, C. R. Willis, and A. H. Barber. Wetting hierarchy in oleophobic 3D electrospun nanofiber networks. ACS Applied Materials & Interfaces, Vol. 7, No. 30, 2015, pp. 16645-16652.
- [89] Stachewicz, U., P. K. Szewczyk, A. Kruk, A. H. Barber, and A. Czyrska-Filemonowicz. Pore shape and size dependence on cel growth into electrospun fiber scaffolds for tissue engineering: 2D and 3D analyses using SEM and FIB-SEM tomography. Materials Science & Engineering C-Materials for Biological Applications, Vol. 95, 2019, pp. 397-408.
- [90] Simonet, M., O. D. Schneider, P. Neuenschwander, and W. J. Stark. Ultraporous 3D polymer meshes by low-temperature electrospinning: Use of ice crystals as a removable void template. Polymer Engineering and Science, Vol. 47, No. 12, 2007, pp. 2020-2026.
- [91] Yao, T., H. Chen, P. Samal, S. Giselbrecht, M. B. Baker, and L. Moroni. Self-assembly of electrospun nanofibers into gradient honeycomb structures. Materials & Design, Vol. 168, 2019, id. 107614.
- [92] Nedjari, S., G. Schlatter, and A. Hébraud. Thick electrospun honeycomb scaffolds with controlled pore size. Materials Letters, Vol. 142, 2015, pp. 180-183.
- [93] Ahirwal, D., A. Hebraud, R. Kadar, M. Wilhelm, and G. Schlatter. From self-assembly of electrospun nanofibers to 3D cm thick hierarchical foams. Soft Matter, Vol. 9, No. 11, 2013, pp. 3164-3172.

- [94] Stachewicz, U., C. A. Stone, C. R. Willis, and A. H. Barber. Charge assisted tailoring of chemical functionality at electrospun nanofiber surfaces. Journal of Materials Chemistry, Vol. 22, No. 43, 2012, pp. 22935-22941.
- [95] Yarin, A. L., and E. Zussman. Upward needleless electrospinning of multiple nanofibers. Polymer, Vol. 45, No. 9, 2004, pp. 2977-2980.
- [96] Teo, W.-E., R. Inai, and S. Ramakrishna. Technological advances in electrospinning of nanofibers. Science and Technology of Advanced Materials, Vol. 12, No. 1, 2010, id. 013002.
- [97] Kostakova, E., L. Meszaros, and J. Gregr. Composite nanofibers produced by modified needleless electrospinning. Materials Letters, Vol. 63, No. 28, 2009, pp. 2419-2422.
- [98] Forward, K. M., and G. C. Rutledge. Free surface electrospinning from a wire electrode. Chemical Engineering Journal, Vol. 183, 2012, pp. 492-503.
- [99] Brettmann, B. K., S. Tsang, K. M. Forward, G. C. Rutledge, A. S. Myerson, and B. L. Trout. Free surface electrospinning of fibers containing microparticles. Langmuir, Vol. 28, No. 25, 2012, pp. 9714-9721.
- [100] Niu, H. T., T. Lin, and X. G. Wang. Needleless electrospinning.
 I. A comparison of cylinder and disk nozzles. Journal of Applied Polymer Science, Vol. 114, No. 6, 2009, pp. 3524-3530.
- [101] Ali, U., H. Niu, M. F. Khurshid, A. Abbas, and T. Lin. Electrospinning behavior of needleless spinneret with a popular mace shape. Journal of the Textile Institute, Vol. 110, No. 3, 2019, pp. 349-357.
- [102] Chen, R. X., Y. Q. Wan, W. W. Wu, C. Yang, J. H. He, J. H. Cheng, et al. A lotus effect-inspired flexible and breathable membrane with hierarchical electrospinning micro/nanofibers and ZnO nanowires. Materials & Design, Vol. 162, 2019, pp. 246-248.
- [103] Crossley, S., and S. Kar-Narayan. Energy harvesting performance of piezoelectric ceramic and polymer nanowires. Nanotechnology, Vol. 26, No. 34, 2015, id. 344001.
- [104] Crossley, S., R. A. Whiter, and S. Kar-Narayan. Polymer-based nanopiezoelectric generators for energy harvesting applications. Materials Science and Technology, Vol. 30, No. 13A, 2014, pp. 1613-1624.
- [105] Szewczyk, P. K., S. Metwally, J. E. Karbowniczek, M. M. Marzec, E. Stodolak-Zych, A. Gruszczynski, et al. Surface-potentialcontrolled cell proliferation and collagen mineralization on electrospun polyvinylidene fluoride (PVDF) fiber scaffolds for bone regeneration. ACS Biomaterials Science & Engineering, Vol. 5, No. 2, 2019, pp. 582-593.
- [106] Szewczyk, P. K., S. Metwally, Z. J. Krysiak, L. Kaniuk, J. E. Karbowniczek, and U. Stachewicz. Enhanced osteoblasts adhesion and collagen formation on biomimetic polyvinylidene fluoride (PVDF) films for bone regeneration. Biomedical Materials, Vol. 14, No. 6, 2019, id. 065006.
- [107] Tonazzini, I., E. Bystrenova, B. Chelli, P. Greco, D. De Leeuw, and F. Biscarini. Human neuronal SHSY5Y cells on PVDF: PTrFE copolymer thin films. Advanced Engineering Materials, Vol. 17, No. 7, 2015, pp. 1051-1056.
- [108] Mota, C., M. Labardi, L. Trombi, L. Astolfi, M. D'Acunto, D. Puppi, et al. Design, fabrication and characterization of composite piezoelectric ultrafine fibers for cochlear stimulation. Materials & Design, Vol. 122, 2017, pp. 206-219.
- [109] Huang, F. L., Q. Q. Wang, Q. F. Wei, W. D. Gao, H. Y. Shou, and S. D. Jiang. Dynamic wettability and contact angles of poly(vinylidene fluoride) nanofiber membranes grafted with acrylic acid. Express Polymer Letters, Vol. 4, No. 9, 2010, pp. 551-558.

- [110] Naik, R., and T. S. Rao. Self-powered flexible piezoelectric nanogenerator made of poly (vinylidene fluoride)/Zirconium oxide nanocomposite. Materials Research Express, Vol. 6, No. 11, 2019, id. 115330.
- [111] Chen, J. J., Y. Li, X. M. Zheng, F. A. He, and K. H. Lam. Enhancement in electroactive crystalline phase and dielectric performance of novel PEG-graphene/PVDF composites. Applied Surface Science, Vol. 448, 2018, pp. 320-330.
- [112] Szewczyk, P. K., A. Gradys, S. K. Kim, L. Persano, M. Marzec, A. Kryshtal, et al. Enhanced piezoelectricity of electrospun polyvinylidene fluoride fibers for energy harvesting. ACS Applied Materials & Interfaces, Vol. 12, No. 11, 2020, pp. 13575-13583.
- [113] Parangusan, H., D. Ponnamma, and M. A. Al-Maadeed. Stretchable electrospun PVDF-HFP/Co-ZnO nanofibers as piezoelectric nanogenerators. Scientific Reports, Vol. 8, 2018, 8, id. 754.
- [114] Pan, C. T., C. C. Chang, Y. S. Yang, C. K. Yen, Y. H. Kao, and Y. L. Shiue. Development of MMG sensors using PVDF piezoelectric electrospinning for lower limb rehabilitation exoskeleton. Sensors and Actuators A: Physical, Vol. 301, 2020, id. 111708.
- [115] Wang, W. Y., Y. D. Zheng, X. Jin, Y. Sun, B. B. Lu, H. X. Wang, et al. Unexpectedly high piezoelectricity of electrospun polyacrylonitrile nanofiber membranes. Nano Energy, Vol. 56, 2019, pp. 588-594.
- [116] Liu, G., J. Nie, C. Han, T. Jiang, Z. Yang, Y. Pang, et al. Self-Powered electrostatic adsorption face mask based on a tribo-electric nanogenerator. ACS Applied Materials & Interfaces, Vol. 10, No. 8, 2018, pp. 7126-7133.
- [117] Lee, B. Y., K. Behler, M. E. Kurtoglu, M. A. Wynosky-Dolfi, R. F. Rest, and Y. Gogotsi. Titanium dioxide-coated nanofibers for advanced filters. Journal of Nanoparticle Research, Vol. 12, 2010, pp. 2511–2519.
- [118] Kim, H. E., H. J. Lee, M. S. Kim, T. Kim, H. Lee, H. H. Kim, et al. Differential microbicidal effects of bimetallic iron-copper nanoparticles on escherichia coli and MS2 coliphage. Environmental Science & Technology, Vol. 53, No. 5, 2019, pp. 2679–2687.
- [119] Han, n., L. Chen, S. M. Duan, Q. X. Yang, M. Yang, C. Gao, et al. Efficient and quick Inactivation of SARS coronavirus and other microbes exposed to the surfaces of some metal catalysts. Biomedical and Environmental Sciences, Vol. 18, No. 3, pp. 176-180.
- [120] Joe, Y. H., D. H. Park, and J. Hwang. Evaluation of Ag nanoparticle coated air filter against aerosolized virus: Anti-viral efficiency with dust loading. Journal of Hazardous Materials, Vol. 301, 2016, pp. 547-553.
- [121] Stylios, G. K. Novel smart textiles. Materials, Vol. 13, 2020, id. 950.
- [122] Koncar, V. 1 Introduction to smart textiles and their applications. In Smart Textiles and their Applications, Woodhead Publishing Series in Textiles, Oxford, 2016. pp. 1-8. DOI: https://doi.org/10.1016/B978-0-08-100574-3.00001-1.
- [123] Di, J. T., X. H. Zhang, Z. Z. Yong, Y. Y. Zhang, D. Li, R. Li, et al. Carbon-nanotube fibers for wearable devices and smart textiles. Advanced Materials, Vol. 28, No. 47, 2016, pp. 10529-10538.
- [124] Schneegass, S., and O. Amft. Smart textiles fundamentals, design, and interaction. Springer, Cham, Cham, Switzerland, 2017.
- [125] Torres Alonso, E., D. P. Rodrigues, M. Khetani, D.-W. Shin, A. De Sanctis, H. Joulie, et al. Graphene electronic fibers with touch-sensing and light-emitting functionalities for smart textiles. npj Flexible Electronics, Vol. 2, No. 1, 2018, id. 25.

- [126] Chen, G. R., Y. Z. Li, M. Bick, and J. Chen. Smart textiles for electricity generation. Chemical Reviews, Vol. 120, No. 8, 2020, pp. 3668-3720.
- [127] Wagner, M. 16 Automotive applications of smart textiles. In Multidisciplinary Know-How for Smart-Textiles Developers, Woodhead Publishing Series in Textiles, 2013. pp. 444-467.
- [128] Haroglu, D., N. Powell, and A. F. M. Seyam. The response of polymer optical fiber (POF) to cyclic loading for the application of a POF sensor for automotive seat occupancy sensing. Journal of the Textile Institute, Vol. 108, No. 1, 2017, pp. 42-48.
- [129] Vagott, J., and R. Parachuru. An overview of recent developments in the field of wearable smart textiles. Journal of Textile Science & Engineering, Vol. 8, No. 4, 2018, id. 1000368.
- [130] Chittenden, T. Skin in the game: the use of sensing smart fabrics in tennis costume as a means of analyzing performance. Fashion and Textiles, Vol. 4, No. 1, 2017, id. 22.
- [131] Heinzel, T. Reactive architecture, augmented textiles, domotics and soft architecture fabrication: On electronic and reactive textiles in domestic contexts. TEXTILE, Vol. 16, No. 1, 2018, pp. 34-61.
- [132] Ritter, A. 18 Smart coatings for textiles in architecture. In Active coatings for smart textiles, 1st edn, Hu, J., Woodhead Publishing, 2016. pp. 429-453.
- [133] Casanova, L. M., S. Jeon, W. A. Rutala, D. J. Weber, and M. D. Sobsey. Effects of air temperature and relative humidity on coronavirus survival on surfaces. Applied and Environmental Microbiology, Vol. 76, No. 9, 2010, pp. 2712–2717.
- [134] Angelova, R. A., and R. Velichkova. Thermophysiological comfort of surgeons and patient in an operating room based on PMV-PPD and PHS indexes. Applied Sciences-Basel, Vol. 10, No. 5, 2020, id. 216501035.
- [135] Gokarneshan, N. A. Review of some recent breakthroughs in medical textiles research. Current Trends in Fashion Technology & Textile Engineering, Vol. 2, 2018.
- [136] Chin, A. W. H., J. T. S. Chu, M. R. A. Perera, K. P. Y. Hui, H. L. Yen, M. C. W. Chan, et al. Stability of SARS-CoV2 in different environmental conditions. The Lancet Microbe, Vol. 1, No. 1, 2020, pp. e10.
- [137] van Doremalen, N., T. Bushmaker, D. H. Morris, M. G. Holbrook, A. Gamble, B. N. Williamson, et al. Aerosol and surface stability of SARS-CoV2 as compared with SARS-CoV-1. The New England Journal Medicine, Vol. 382, 2020, pp.1564-1567.
- [138] Quirós, J., J. P. Borges, K. Boltes, I. Rodea-Palomares, and R. Rosal. Antimicrobial electrospun silver-, copper- and zinc-doped polyvinylpyrrolidone nanofibers. Journal of Hazard Materials, Vol. 299, 2015, pp. 298-305.
- [139] Deshmukh, S. P., S. M. Patil, S. B. Mullani, and S. D. Delekar. Silver nanoparticles as an effective disinfectant: A review. Materials Science and Engineering: C, Vol. 97, 2019, pp. 954-965.
- [140] Ivanoska-Dacikj, A., G. Bogoeva-Gaceva, A. Krumme, E. Tarasova, C. Scalera, V. Stojkovski, et al. Biodegradable polyurethane/graphene oxide scaffolds for soft tissue engineering: in vivo behavior assessment. International Journal of Polymeric Materials and Polymeric Biomaterials. 2020, DOI: 10.1080/00914037.2019.1655754.
- [141] Ray, S. S., Y.-I. Park, H. Park, S.-E. Nam, I.-C. Kim, and Y.-N. Kwon. Surface innovation to enhance anti-droplet and hydrophobic behavior of breathable compressed-polyurethane masks. Environmental Technology & Innovation, Vol. 20, 2020, id. 101093.
- [142] Lala, N. L., R. Ramaseshan, B. J. Li, S. Sundarrajan, R. S. Barhate, Y. J. Liu, and S. Ramakrishna. Fabrication of nanofibers with an-

- timicrobial functionality used as filters: Protection against bacterial contaminants. Biotechnology and Bioengineering, Vol. 97, No. 6, 2007, pp. 1357-1365.
- [143] Chughtai, A. A., S. Stelzer-Braid, W. Rawlinson, G. Pontivivo, Q. Y. Wang, Y. Pan, et al. Contamination by respiratory viruses on outer surface of medical masks used by hospital healthcare workers. BMC Infectious Diseases, Vol. 19, 2019, id. 491.
- [144] Galante, A. J., S. Haghanifar, E. G. Romanowski, R. M. Q. Shanks, and P. W. Leu. Superhemophobic and antivirofouling coating for mechanically durable and wash-stable medical textiles. ACS Applied Materials & Interfaces, Vol. 12, No. 19, 2020, pp. 22120-22128.
- [145] Darnell, M. E. R., K. Subbarao, S. M. Feinstone, and D. R. Taylor. Inactivation of the coronavirus that induces severe acute respiratory syndrome, SARS-CoV. Journal of Virological Methods, Vol. 121, No. 1, 2004, pp. 85-91.
- [146] Kampf, G., D. Todt, S. Pfaender, and E. Steinmann. Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. Journal of Hospital Infection, Vol. 104, 2020, pp. 246-251.
- [147] Bashshur, R., C. R. Doarn, J. M. Frenk, J. C. Kvedar, and J. O. Woolliscroft. Telemedicine and the COVID-19 pandemic, lessons for the future. Telemedicine and E-Health, Vol. 26, No. 5, 2020, pp. 571-573.
- [148] Wicaksono, I., C. I. Tucker, T. Sun, C. A. Guerrero, C. Liu, W. M. Woo, et al. A tailored, electronic textile conformable suit for large-scale spatiotemporal physiological sensing in vivo. npj Flexible Electronics, Vol. 4, No. 1, 2020, id. 5.
- [149] Coyle, S., and D. Diamond. Medical applications of smart textiles. In Advances in Smart Medical Textiles, Woodhead Publishing, Oxford, 2016. pp. 215-237.
- [150] Kim, J., A. S. Campbell, B. E. F. de Avila, and J. Wang. Wearable biosensors for healthcare monitoring. Nature Biotechnology, Vol. 37, No. 4, 2019, pp. 389-406.
- [151] Ari, A. Practical strategies for a safe and effective delivery of aerosolized medications to patients with COVID-19. Respiratory Medicine, Vol. 167, 2020, id. 105987.
- [152] Gugliuzza, A., and E. Drioli. A review on membrane engineering for innovation in wearable fabrics and protective textiles. Journal of Membrane Science, Vol. 446, 2013, pp. 350-375.
- [153] Heo, J. S., J. Eom, Y. H. Kim, and S. K. Park. Recent progress of textile-based wearable electronics: A comprehensive review of materials, devices, and applications. Small, Vol. 14, No. 3, 2018, id. 1703034.
- [154] Gawel, M. Challenges in the design of sensors for telemedicine. HealthManagement.org, Vol. 5, No. 1, 2010, Available from: file:///C:/Users/echmi/Downloads/challenges-in-the-design-of-sensors-for-telemedicine.pdf.
- [155] Xu, L., Z. Liu, H. Zhai, X. Chen, R. Sun, S. Lyu, et al. Moisture-resilient graphene dyed wool fabric for strain sensing. ACS Applied Materials & Interfaces, Vol. 12, No. 11, 2020, pp. 13265-13274.
- [156] Zhu, C., E. Chalmers, L. Chen, Y. Wang, B. B. Xu, Y. Li, and X. Liu. A nature-inspired, flexible substrate strategy for future wearable electronics. Small, Vol. 15, No. 35, 2019, id. 1902440.
- [157] Zhu, G., J. Li, Z. Meng, Y. Yu, Y. Li, X. Tang, et al. Learning from large scale wearable device data for predicting epidemics trend of COVID-19. Discrete Dynamics in Nature and Society, Vol. 2020, 2020, id. 6152041.

- [158] Whitelaw, S., M. A. Mamas, E. Topol, and H. G. C. Van Spall. Applications of digital technology in COVID-19 pandemic planning and response. The Lancet Digital Health, Vol. 2, No. 8, 2020, pp. e435-e440.
- [159] Budd, J., B. S. Miller, E. M. Manning, V. Lampos, M. Zhuang, M. Edelstein, et al. Digital technologies in the public-health response to COVID-19. Nature Medicine, Vol. 26, No. 8, 2020, pp. 1183-1192.
- [160] Wong, C. K., D. T. Y. Ho, A. R. Tam, M. Zhou, Y. M. LAU, M. O. Y. Tang, et al. Artificial intelligence mobile health platform for early detection of COVID-19 in quarantine subjects using a wearable biosensor: protocol for a randomised controlled trial. BMJ Open, Vol. 10, No. 7, 2020, id. e038555.
- [161] Jeong, H., J. A. Rogers, and S. Xu. Continuous on-body sensing for the COVID-19 pandemic: Gaps and opportunities. Science Advances, Vol. 6, No. 36, 2020, id. eabd4794.
- [162] Tsikala Vafea, M., E. Atalla, J. Georgakas, F. Shehadeh, E. K. Mylona, M. Kalligeros, et al. Emerging technologies for use in the study, diagnosis, and treatment of patients with COVID-19. Cellular and Molecular Bioengineering, Vol. 13, No. 4, 2020, pp. 249-257.
- [163] Krucińska, I., W. Strzembosz, K. Majchrzycka, A. Brochocka, and K. Sulak. Biodegradable particle filtering half-masks for respiratory protection. Fibres and Textiles in Eastern Europe, Vol. 96, 2012, pp. 77-83.
- [164] Di Maria, F., E. Beccaloni, L. Bonadonna, C. Cini, E. Confalonieri, G. La Rosa, et al. Minimization of spreading of SARS-CoV-2 via household waste produced by subjects affected by COVID-19 or in quarantine. Science of the Total Environment, Vol. 743, 2020, id. 140803.
- [165] Saadat, S., D. Rawtani, and C. M. Hussain. Environmental perspective of COVID-19. Science of the Total Environment, Vol. 728, 2020, id. 138870.
- [166] Vaverková, M. D., E. K. Paleologos, A. Dominijanni, E. Koda, C.-S. Tang, M. Wdowska, et al. Municipal solid waste management under COVID-19: Challenges and recommendations. Environmental Geotechnics, Vol. 0, No. 0, 2020, pp. 1-15. DOI: https://doi.org/10.1680/jenge.20.00082.
- [167] Liu, K., H. Wang, H. Liu, S. Nie, H. Du, and C. Si. COVID-19: Challenges and perspectives for the pulp and paper industry worldwide. Bioresources, Vol. 15, No. 3, 2020, pp. 4638-4641.
- [168] Bhat, G., and D. V. Parikh. 3 Biodegradable materials for nonwovens. In: Applications of Nonwovens in Technical Textiles, Woodhead Publishing Limited, 2010. pp. 46-62.
- [169] Maretschek, S., A. Greiner, and T. Kissel. Electrospun biodegradable nanofiber nonwovens for controlled release of proteins. Journal of Controlled Release, Vol. 127, No. 2, 2008, pp. 180-187.
- [170] Gu, J., P. Xiao, P. Chen, L. Zhang, H. Wang, L. Dai, et al. Functionalization of biodegradable PLA nonwoven fabric as superoleophilic and superhydrophobic material for efficient oil absorption and oil/water separation. ACS Applied Materials & Interfaces, Vol. 9, No. 7, 2017, pp. 5968-5973.
- [171] Güzdemir, Ö., V. Bermudez, S. Kanhere, and A. A. Ogale. Melt-spun poly(lactic acid) fibers modified with soy fillers: Toward environment-friendly disposable nonwovens. Polymer Engineering & Science, Vol. 60, No. 6, 2020, pp. 1158-1168.
- [172] Shi, J., L. Zhang, P. Xiao, Y. Huang, P. Chen, X. Wang, et al. Biodegradable PLA nonwoven fabric with controllable wettability for efficient water purification and photocatalysis degradation. ACS Sustainable Chemistry & Engineering, Vol. 6, No. 2, 2018,

- pp. 2445-2452.
- [173] Aydin, O., B. Emon, S. Cheng, L. Hong, L. P. Chamorro, and M. T. A. Saif. Performance of fabrics for home-made masks against the spread of COVID-19 through droplets: A quantitative mechanistic study. Extreme Mechanics Letters, Vol. 40, 2020, id. 100924.
- [174] Sharma, H. B., K. R. Vanapalli, V. R. S. Cheela, V. P. Ranjan, A. K. Jaglan, B. Dubey, et al. Challenges, opportunities, and innovations for effective solid waste management during and post COVID-19 pandemic. Resources, Conservation and Recycling, Vol. 162, 2020, id. 105052.
- [175] Sarkodie, S. A., and P. A. Owusu. Impact of COVID-19 pandemic on waste management. Environment, Development and Sustainability, 2020, DOI: https://doi.org/10.1007/s10668-020-00956v.
- [176] Patrício Silva, A. L., J. C. Prata, T. R. Walker, A. C. Duarte, W. Ouyang, D. Barcelò, et al. Increased plastic pollution due to COVID-19 pandemic: Challenges and recommendations. Chemical Engineering Journal, Vol. 405, 2021, id. 126683.
- [177] Vanapalli, K. R., H. B. Sharma, V. P. Ranjan, B. Samal, J. Bhattacharya, B. K. Dubey, et al. Challenges and strategies for effective plastic waste management during and post COVID-19 pandemic. Science of the Total Environment, Vol. 750, 2021, id. 141514.
- [178] Chua, M. H., W. Cheng, S. S. Goh, J. Kong, B. Li, J. Y. C. Lim, et al. Face masks in the new COVID-19 normal: Materials, testing, and perspectives. Research, Vol. 2020, 2020, id. 7286735.
- [179] Ayebare, R. R., R. Flick, S. Okware, B. Bodo, and M. Lamorde. Adoption of COVID-19 triage strategies for low-income settings. The Lancet. Respiratory medicine, Vol. 8, No. 4, 2020, pp. e22-e22.
- [180] Massaroni, C., A. Nicolò, E. Schena, and M. Sacchetti. Remote respiratory monitoring in the time of COVID-19. Frontiers in Physiology, Vol. 11, 2020, id. 635.
- [181] De Jonckheere, J., F. Narbonneau, M. Jeanne, D. Kinet, J. Witt, K. Krebber, et al. OFSETH: Smart medical textile for continuous monitoring of respiratory motions under magnetic resonance imaging. In 2009 Annual International Conference of the leee Engineering in Medicine and Biology Society, Vols 1-20, 2009. pp. 1473-1476.
- [182] De Jonckheere, J., M. Jeanne, F. Narbonneau, J. Witt, B. Paquet, D. Kinet, et al. OFSETH: A breathing motions monitoring system for patients under MRI. In 2010 Annual International Conference of the leee Engineering in Medicine and Biology Society, 2010. pp. 1016-1019.
- [183] D'Angelo, L. T., S. Weber, Y. Honda, T. Thiel, F. Narbonneau, and T. C. Luth. A system for respiratory motion detection using optical fibers embedded into textiles. In: the 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, August 20-25, 2008, pp. 3694-3697.
- [184] Krehel, M., M. Schmid, R. M. Rossi, L. F. Boesel, G. L. Bona, and L. J. Scherer. An optical fibre-based sensor for respiratory monitoring. Sensors, Vol. 14, No. 7, 2014, pp. 13088-13101.
- [185] Di, M. R., F. Rizzo, P. Meriggi, B. Bordoni, G. Brambilla, M. Ferratini, et al. Applications of a textile-based wearable system for vital signs monitoring. In: 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, 2006. pp. 2223-2226.
- [186] Mobile applications to support contact tracing in the EU's fight against COVID-19, Common EU Toolbox for Member States Brussels, Belgium. Available from: https://ec.europa.eu/health/

- sites/health/files/ehealth/docs/covid-19_apps_en.pdf. Accessed 20th September 2020.
- [187] Seshadri, D. R., E. V. Davies, E. R. Harlow, J. J. Hsu, S. C. Knighton, T. A. Walker, et al. Wearable sensors for COVID-19: A call to action to harness our digital infrastructure for remote patient monitoring and virtual assessments. Frontiers in Digital Health, Vol. 2, No. 8, 2020. DOI: 10.3389/fdgth.2020.00008.
- [188] Kissler, S. M., C. Tedijanto, E. Goldstein, Y. H. Grad, and M. Lipsitch. Projecting the transmission dynamics of SARS-CoV-2 through the postpandemic period. Science, Vol. 368, No. 6493, 2020, pp. 860-868.
- [189] Inciardi, R. M., L. Lupi, G. Zaccone, L. Italia, M. Raffo, D. Tomasoni, et al. Cardiac involvement in a patient with coronavirus disease 2019 (COVID-19). JAMA Cardiology, Vol. 5, No. 7, 2020, pp. 819-824.
- [190] Zheng, Y.-Y., Y.-T. Ma, J.-Y. Zhang, and X. Xie. COVID-19 and the 65 cardiovascular system. Nature Reviews Cardiology, Vol. 17, No. 5, 2020, pp. 259-260.
- [191] He, J., B. Wu, Y. Chen, J. Tang, Q. Liu, S. Zhou, et al. Characteristic electrocardiographic manifestations in patients with COVID-19. Canadian Journal of Cardiology, Vol. 36, No. 6, 2020, pp. 966.e961-966.e964.
- [192] An, X., and G. K. Stylios. A hybrid textile electrode for electrocardiogram (ECG) measurement and motion tracking. materials. Vol. 11, No. 10, 2018, id. 1887.
- [193] Weder, M., D. Hegemann, M. Amberg, M. Hess, L. F. Boesel, R. Abacherli, et al. Embroidered Electrode with Silver/Titanium Coating for Long-Term ECG Monitoring. Sensors, Vol. 15, No. 1, 2015, pp. 1750-1759.
- [194] Fontana, P., N. R. A. Martins, M. Camenzind, R. M. Rossi, F. Baty, M. Boesch, et al. Clinical applicability of a textile 1-Lead ECG device for overnight monitoring. Sensors, Vol. 19, No. 11, 2019, id. 2436.
- [195] Arquilla, K., A. K. Webb, and A. P. Anderson. Textile Electrocardiogram (ECG) Electrodes for wearable health monitoring. Sensors, Vol. 20, No. 4, 2020, id. 1013.
- [196] Wilkerson, R. G., J. D. Adler, N. G. Shah, and R. Brown. Silent hypoxia: A harbinger of clinical deterioration in patients with COVID-19. The American Journal of Emergency Medicine, 2020. DOI: https://doi.org/10.1016/j.ajem.2020.05.044.
- [197] Gattinoni, L., D. Chiumello, P. Caironi, M. Busana, F. Romitti, L. Brazzi, et al. COVID-19 pneumonia: different respiratory treatments for different phenotypes? Intensive Care Medicine, Vol. 46, No. 6, 2020, pp. 1099-1102.
- [198] Jouffroy, R., D. Jost, and B. Prunet. Prehospital pulse oximetry: A red flag for early detection of silent hypoxemia in COVID-19 patients. Critical Care, Vol. 24, No. 1, 2020, id. 313.
- [199] Luks, A. M., and E. R. Swenson. Pulse Oximetry for monitoring patients with COVID-19 at home: Potential pitfalls and practical guidance. Annals of the American Thoracic Society, Vol. 17, No. 9, 2020, pp. 1040-1046.
- [200] Rothmaier, M., B. Selm, S. Spichtig, D. Haensse, and M. Wolf. Photonic textiles for pulse oximetry. Optics Express, Vol. 16, No. 17, 2008, pp. 12973-12986.
- [201] Liu, C., R. Correia, H. K. Ballaji, S. Korposh, B. R. Hayes-Gill, and S. P. Morgan. Optical fibre-based pulse oximetry sensor with contact force detection. Sensors, Vol. 18, No. 11, 2018, id. 3632.
- [202] Zhu, L., Z.-G. She, X. Cheng, J.-J. Qin, X.-J. Zhang, J. Cai, et al. Association of blood glucose control and outcomes in patients with COVID-19 and pre-existing type 2 diabetes. Cell Metabolism,

- Vol. 31, No. 6, 2020, pp. 1068-1077.e1063.
- [203] Zhao, Y., Q. Zhai, D. Dong, T. An, S. Gong, Q. Shi, et al. Highly stretchable and strain-insensitive fiber-based wearable electrochemical biosensor to monitor glucose in the sweat. Analytical Chemistry, Vol. 91, No. 10, 2019, pp. 6569-6576.
- [204] Pasomsub, E., S. P. Watcharananan, K. Boonyawat, P. Janchompoo, G. Wongtabtim, W. Suksuwan, et al. Saliva sample as a non-invasive specimen for the diagnosis of coronavirus disease 2019: a cross-sectional study. Clinical Microbiology and Infection. DOI: 10.1016/j.cmi.2020.05.001
- [205] Azzi, L., G. Carcano, F. Gianfagna, P. Grossi, D. D. Gasperina, A. 5 Genoni, et al. Saliva is a reliable tool to detect SARS-CoV-2. Journal of Infection, Vol. 81, No. 1, 2020, pp. e45-e50.
- [206] Rutgers Launches Genetic Testing Service for New Coronavirus. Available from: https://www.rutgers.edu/news/rutgers-launches-genetic-testing-service-new-coronavirus. Accessed 20-06-2020, 2020.
- [207] Murugan, D., H. Bhatia, V. V. R. Sai, and J. Satija. P-FAB: A fiber optic biosensor device for rapid detection of COVID-19. Transactions of the Indian National Academy of Engineering, Vol. 5, No. 2, 2020, pp. 211-215.
- [208] Oertel, D. S., D. M. Jank, B. Schmitz, and D. N. Lang. Monitoring of biomarkers in sweat with printed sensors combined with sport wearables. In: UbiComp '16: the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct, Heidelberg, Germany, 2016, pp. 893-898. DOI: https://doi.org/ 10.1145/2968219.2968574.