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Abstract: Recent outbreak of the COVID-19 pandemic has
changed the world dramatically, posing profound chal-
lenges to our healthcare infrastructure, economic systems,
social and cultural life but also to our freedom. What
this pandemic made us realize so far, is that, despite the
tremendous advances in medicine and pharmacy, in the
initial moments, which are crucial in the containment of
spreading of any pandemic, the key role is played by the
non-pharmaceutical measures. These measures are the
ones that bridge the time between pandemic outbreaks
and the development of drugs or vaccines and are crucial
for the number of human lives spared. Smart textiles and
novel materials as part of the personal protective equip-
ment (PPE) and telemedicine are crucial factors in the
healthcare system. Here, we present an overview on the
use of textiles in the fight against pandemics, in the past
and current COVID-19, we analyze the morphology of the
commonly used face masks, made of cotton and typically
used polypropylene (PP). We also present the perspective
that smart textiles, wearable technologies and novel ma-
terials are offering in the fight against future pandemics,
mainly as part of the personal protective equipment and
telemedicine.
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1 Introduction
More than 100 years since the outbreak of the 1918 in-
fluenza pandemic,wenow seem to face another one. InDe-
cember 2019, pneumonia of unknown cause was detected
in Wuhan, the capital of China’s Hubei province. It was
later disclosed that it is a new type of coronavirus which
wasnamed severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2) and the respiratory disease it is causing –
coronavirus disease (COVID-19) [1, 2]. Since the first out-
burst, it spreadworldwide. TheWorldHealthOrganization
(WHO) declared the 2019–20 coronavirus outbreaks a Pub-
lic Health Emergency of International Concern (PHEIC) on
30 January 2020 [3] and a pandemic on 11 March 2020 [4].
By mid-May 2020, only within the 6 months from Wuhan
detection, there have been more than 4.36 million cases
reported worldwide in more than 200 countries and terri-
tories, resulting inmore than 297,000 deaths [5]. Undisput-
edly, the coronavirus pandemic is posing profound chal-
lenges to our healthcare infrastructure, economic systems,
social and cultural life but also to our private lives and per-
sonal freedom [6–9].

The SARS-CoV-2, similarly to common viruses, is
mainly transmitted through respiratory droplets [10, 11]
and contact [12]. What makes it specific is the particularly
high speed of its transmission which originates from the
longer median incubation period (the time from infection
to appearance of symptoms) and the longer serial interval
(the time between successive cases) [13]. The basic princi-
ples of prevention and control of infectious diseases are
the elimination of the source of infection, cutting off the
transmission routes and protection of the vulnerable pop-
ulation [12]. An available SARS-CoV-2 vaccine would be an
effectivemeasure to protect the population at risk and that
is why research institutions and enterprises are working
hard on developing one [14]. Biotech companies are de-
veloping mRNA vaccine as a potential candidate against
COVID-19, and have successfully obtained a SARS-CoV-2
antibody. According to theWHOdraft landscape of COVID-
19 candidate vaccines until September 2020, there are 38
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candidate vaccines in clinical evaluation and 149 in pre-
clinical evaluation [15]. Another remaining challenge in
the elimination of the source of infection and cutting off
the transmission routes is the quick and reliable diagnos-
ticswhichwill allow fast case identification, isolation, and
contact tracing [16–18]. Meanwhile, the measures of pro-
tection against COVID-19, which proved to be effective in
reducing virus spread [19], are limited to physical distanc-
ing, reduced traveling, improved hygiene and wearing of
personal protective equipment especially for occupational
groups at risk of COVID-19 [20–24].

In recent years the results from the tremendous re-
search in the field ofmaterial, surface, and aerosol science
and engineering [25] have enriched the textile materials
with properties (like improved filtration, antibacterial and
antiviral activity, breathability, etc.) crucial for successful
prevention of the spread of infectious diseases. This fact
is placing textiles on the front line in the fight against the
current pandemic and the textile industry – an important
player since many textile companies are currently imple-
menting the production of protectivemasks and protective
clothing using their production facilities [26].

Another specification of COVID-19 is the exponen-
tial growth in the number of new cases that can easily
lead to systemic healthcare failure. Therefore WHO recom-
mends patients with mild symptoms and without cardinal
chronic conditions to be cared for at home while keeping
a communication link with the healthcare personnel [27].
Here the smart textile role for sensing and monitoring of
body parameters as part of telemedicine could play an im-
portant role [28]. Nanotechnology and smart textiles are
promising in tackling the pandemic [29].

This review article presents an overview of the use of
textiles in the fight against pandemics, past and current,
additionally, the morphology of the commonly used face
masks, made of cotton and typically used polypropylene
(PP) is analyzed. Finally, the perspective that smart tex-
tiles, wearable technologies and novel materials are offer-
ing in the future pandemics is presented, since the situa-
tion of COVID-19 is a proof that future pandemics are going
to happen and that we should be prepared.

2 Role of textiles in the past
pandemics

There were several influenza pandemics in the last cen-
tury during which influenza viruses spread on a world-
wide scale and infected a large proportion of the world
population. The deadliest one, by far, is the 1918 influenza

pandemic, commonly referred to as the Spanish flu which
lasted from 1918 to 1920 [30]. Older estimations say it killed
40 to 50 million people [31] while current revisions claim
that between 50million and 100million peopleworldwide
were killed by this disease [32]. That is why the Spanish
flu pandemic has been described as “the greatest medi-
cal holocaust in history” [33]. In 1918, the virology was at
its infancy so the available tools to control the spread of
the flu were mainly limited to non-pharmaceutical mea-
sures such as isolation, quarantine, improved personal hy-
giene, disinfection, and avoiding grouping, which doesn’t
differ much from the current situation with COVID-19. The
healthcare workers were instructed to wear gauze masks
when treating flu patients. It was also suggested to change
the clothes when leaving the influenza wards. The face
masks used were a half meter of gauze folded like a tri-
angle that was worn over the mouth, nose and chin [34].
These gauze masks acted to prevent the spread of the in-
fectious droplets from the wearer’s mouth and nose and
also to protect him/her to put the contaminated hands in
the nose or mouth. In some regions, the whole population
was obliged to wear masks, for instance, in San Francisco.
There are no consistent studies on whether the wearing of
masks helped to prevent the spread of the disease. Some
studies found that the mask-wearing led to “a rapid de-
cline in the number of cases of influenza” [35], while oth-
ers, like the one in the Great Lakes, did not confirm this.
The obtained results showed that mask-wearing by health-
care workers did not have an effect on whether or not they
would be infected. 8% of those who used the mask and
7.75% of those who did not, developed infection [36]. De-
spite this, the masks were used by a wide population in
order to protect themselves from getting infected. At that
time, the number of companies specialized in mask man-
ufacturing was really small, one such manufacturer was
the Prophylacto Manufacturing Company of Chicago, and
it was really hard for them to meet this increased demand.
As a response to this shortage, women all over America
organized in churches and community groups used their
spare time for mask making.

Other, less serious pandemics occurred in 1957 (Asian
influenza) and 1968 (Hong Kong influenza). The main ef-
forts to fight these pandemicswere directed to vaccine sup-
plying and the non-pharmaceutical measures like closing
schools, restricting travel, closing borders, or recommend-
ing wearing masks, were generally not taken [37].

The masks used in these past pandemics were cloth
masksmadeof common textiles, usually cotton. Theywere
not subject to regulation, and there is insufficient research
and substantiated evidence that they are an effective mea-
sure to prevent the spread of infectious diseases. However,
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they were consistently used by healthcare professionals
from the late 19th century to the mid-20th century when
they were replaced by modern medical masks. Their use
continues in developing countries [38].

3 Role of the textiles in the current
COVID-19 pandemic

Since the coronavirus outbreak, the demand for personal
protective equipment (PPE) and especially medical masks
and respirators has risen to a point where fears of short-
ages are driving many countries to take increasingly de-
vious measures [39]. In absence of an available vaccine,
PPE is considered an essential infection control measure.
This global overwhelmed demand-led WHO to issue a doc-
ument that summarizes their recommendations for the ra-
tional use of PPE. According to WHO’s estimations, the
current global stockpile of PPE is insufficient, especially
for medical masks and respirators. This is not only a re-
sult of the high number of people infected with COVID-
19 but also by misleading information, panic buying and
stockpiling [40]. The supply chain distribution due to the
subsequent lockdowns to high risk-related practices kept
the businesses unsustainable in difficult and unpredicted
times [41].

Various types of masks are used worldwide by health-
care workers and the general population which are re-
duced mainly to cloth masks (Figure 1), medical masks,
and respirators [42], see the examples in Figure 2. But only
medical masks and respirators are subject to regulation.
Medical masks are intended to be worn by healthcare pro-
fessionals during treating and nursing patients to protect
them from infecting [43, 44]. They are not designed to pro-
tect the wearer from inhaling airborne bacteria or virus
particles [45]. The masks are usually pleated to allow the
user to expand them and cover the area from the nose

to the chin. The masks are secured to the head with ear
loops, head ties, or elastic straps. The performance of sur-
gical masks is evaluated based on bacterial filtration effi-
ciency, splash resistance, microbial cleanliness, breatha-
bility [46], and water repellency [47]. On the other hand,
a respirator is a device that can be fitted on the wearer’s
face providing a seal around the mouth and nose and in
such a way protects the wearer from respiratory infections.
Its filtration capacity is strictly regulated [42]. Usually, the
masks are made up of a multi-layered structure, see Fig-
ure 2. The layers are made from non-woven fabric made of
melt-blown polymer, most commonly polypropylene (PP),
but also polystyrene (PS), polycarbonate (PC), polyethy-
lene (PE), or polyester is used. In Figure 2(a-d) we have
presented the typical face masks all containing the com-
mon PP layer at the outside, similar to the one used in the
vacuum cleaner dust bag (Figure 2e), which are often used
to produce homemademasks. From the morphology point
of view the PP fibers present in the masks and vacuum
cleaner bags are similar and thereforehave a similar ability
in stopping spread of the infectious droplets as many com-
mercial masks. The SEMmicrographs in Figure 2(f-h) show
the melt-blown PP fibers with the approximate fiber diam-
eter of 10 µm that is present in all the imaged masks in-
cluding respiratory KN95/FFP2 (Figure 2c) and FFP3V con-
forming to EN149:2001 standards (Figure 2d). Additionally,
the surgical and respiratory masks containing the extra
layer of PPwith the diameter of 1 µmare presented, see Fig-
ure 2(i-j). The additional layer of smaller in diameter fibers
(approximately 1µm) is able to stop also the airborne par-
ticles enhancing the protection level of the facial masks,
(Figure 2k).

The WHO in the guidance on infection prevention
and control strategies when COVID-19 is suspected, rec-
ommends the use of particulate respirator at least as pro-
tective as a US National Institute for Occupational Safety
and Health (NIOSH)-certified N95, European Union (EU)
standard FFP2, or equivalent [48]. These respirators filter

Figure 1: The homemade cloth face mask: a) the photo showing the typical shape of cotton masks; b) SEM micrographs of cotton fibers –
traditional weave and c) SEM micrograph focusing on individual cotton fibers with the diameter approximately 10 µm.
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Figure 2: Typical commercial face masks from various materials: a) spundbond based on PP; b) surgery face masks, 3 layers with PP fibers
and microfibers in between; c) KN95/FFP2 respiratory; d) respiratory FFP3V conforming to EN149:2001 standards; e) vacuum cleaner dust
bag; (f-h) scanning electron micrographs showing the top layer of PP fibers of all the masks (a-d) and vacuum cleaner dust bag (e). (i-j) SEM
micrographs indicating the inside layer of 1 µm PP fibers present in masks presented in b, c, and d; k) schematic of the typical 3 layers used
in the surgical or respiratory masks.
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Figure 3: The example of the plastic safety face shield screen a) front and b) side view, produced by the volunteers at AGH University of
Science and Technology in Krakow, Poland [62].

at least 95% for N95-respirators (42 CFR Part 84) and at
least 94% for FFP2-respirators (EN 149 standard) of air-
borne particles. The inner filtration layer ismade of fine PP
mash, with fibers diameter less than a micron, obtained
by melt blowing [35, 49]. When masks form a tight seal
with the face, the 95% efficiency refers to particle sizes
ranging from 0.1–0.3 µm [50]. The masks should prefer-
ably be used in combination with a face shield that covers
the entire front and sides of the face and extends to the
chin or below, see example in Figure 3. Face masks are ca-
pable of blocking virus nanoparticles, which are typically
around 100 nm in diameter, but there are parts of the res-
piratory fluid droplets containing a variety of other compo-
nents including insoluble particulates reaching the size of
5–20 µm in diameter. These droplets can be caught by regu-
lar masks and prevent person-to-person infection through
droplet transmission [51, 52]. During the 2019–20 coron-
avirus pandemic, there has been a shortage in N95 and
FFP2masks supply due to constraints on the supply of non-
woven PP fabric as well as the cessation of exports from
China, a country which controls 50% of global production
of masks [49]. In this acute shortage of protective medi-
cal equipment, an interesting trend worldwide emerged –
many companies, universities and tech enthusiasts armed
with 3D printers produced a large number of medical vi-
sors ormedical face shields (Figure 3) thatwere distributed
for free to hospitals and clinics [53, 54]. Specifically, con-
cerning COVID-19, special attention was paid to informing
the general public about the best practice of wearing the
masks [11, 51, 55], giving many instructions on how to pro-
duce the masks by themselves and how and when to wear
them [56]. Among the very efficient anti-viral materials are

the electrospun nonwoven filters consisting of the fibers
with a diameter below 100 nm, suitable for low cost and
mass facial masks production [57, 58].

Despite the challenges with the shortages of PPE,
there is another problem resulting from the prolonged
use of personal protective equipment. Nurses, doctors and
other healthcare workers, who have been pushed to the
frontline of the outbreak, are spending more than 8 h at
hospitals wearing PPE, consisted of gowns, gloves, medi-
cal mask or respirator and eye protection (goggles or face
shield). This is not without consequences, many skin con-
ditions and injuries caused by prolonged use of PPE were
described like pressure injuries, contact dermatitis, itch,
pressure urticaria, seborrheic dermatitis, acne, pruritus,
folliculitis, maceration and erosions of the epidermis [59–
61]. They are frequently reportedby thehealthcareworkers
during the COVID-19 pandemic and are generally caused
by the hyper-hydration effect of PPE, friction, epidermal
barrier breakdown, and contact reactions.

Another health problem related to prolonged use of
PPE is the development of headaches. In very recent re-
search, conducted among frontline healthcare personnel
working in high-risk areas of a tertiary institution dur-
ing the current COVID-19 outbreak in Singapore, the as-
sociation of the PPE exposure and the headaches, ei-
ther with the use of N95 face mask alone or in combina-
tion with protective eyewear (mainly goggles), was stud-
ied. 81.0% of the respondents reported having PPE associ-
ated headaches (described as bilateral in location) when
they wore either N95 face mask, with or without protec-
tive eyewear. 91.3% of the respondents with an underly-
ing pre-existing headache stated that the increased PPE
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usage aggravated their background headaches in terms
of frequency and attack duration [63]. Such side effects
caused by prolonged wearing of PPE, emphasize the need
for lighter, breathable and yet protective materials and
also the necessity ofmore comprehensive testing (pre- and
post-market) to meet the real working conditions.

Another important role that smart textiles could play
in future pandemics is being a part of the telemedicine sys-
tem. The COVID-19 pandemic brought telemedicine into
a new light and is likely to accelerate its development
and implementation. Telemedicine is the tool that could
help the healthcare systems to overcome the problems
they are currently facing mainly connected to overcrowd-
ing in hospitals and treatment of patients with chronic
illnesses. Telemedicine enables a reduction in direct con-
tacts between healthcare workers and patients and thus
a decrease in human exposure to the infection [61]. Re-
mote sensing and monitoring are the crucial aspects of
telemedicine and here smart textiles offer many solu-
tions [15, 64].

3.1 Hydrophobicity and permeability of
personal protective clothing

Usually, personal protective clothing is made of materi-
als based on impermeable textiles and coatings. Although
these materials are successful in blocking contaminants
and offer good protection, they are bulky and heavy and
are seldom found to be breathable [65]. Thus, they offer
poor comfort to the wearer in prolonged use. Currently,
there is a great interest in developing protective cloth-
ing based on nonwoven micro- and nanoporous mem-
branes. The advantages of these kinds of materials, be-
sides their low price, are the facts that they offer excel-
lent protection while maintaining lightweight and breath-
able [5, 32]. The presence of micron and nano-sized pores
in the membranes enables the transport of air and wa-
ter vapor and restricts entry of water and other liquid
droplets [65]. Recently, it has been demonstrated that
water-resistant yet breathable materials can be fabricated
by using hydrophobic materials from which porous mem-
branes with interconnected pores are obtained [66, 67].
Yung et al. [67] prepared a novel kind of hydrophobic fi-
brous membranes with good water/windproof and breath-
able performance via electrospinning by using polyvinyli-
dene fluoride (PVDF) as raw polymer. They regulated the
fibrous and porous structure of the membranes by tun-
ing the N,N-dimethyl acetamide (DMAc)/acetone ratios
and NaCl concentrations in the PVDF solutions. The ob-
tained membranes exhibited simultaneously good water-

proof andbreathable performancewhile keeping excellent
mechanical properties, high strength and toughness [66,
68–71].

By controlling the pore size and overall porosity the
water-resistance and permeability could be simultane-
ously enhanced. A reduction in pore size would lead to
higher resistance to water droplets entry improving per-
meability. On the other side, a higher overall porosity in
the material would ease the transmission of air and water
vapor through the material and thus improve the breatha-
bility. Li et al. [72], in their study, evaluated the effect of
the pore size, pore length and overall porosity on the elec-
trospun membranes’ breathability and water-resistance.
They used electrospinning to prepare membranes based
on polyurethane (PU) and fluorinated PU. The porosity
and pore size of the membranes was tuned by control-
ling the relative humidity during the electrospinning pro-
cess and its duration. They found out that the breathabil-
ity mainly depended on the porosity and pore length. So
electrospinning, apart from melt blowing [73], is another
crucial process in fiber manufacturing that is already ex-
tensively used in the filtration industry [74–78] and many
types of sensors [79]. Electrospinning belongs to electrohy-
drodynamic processes [80–82] involving the polymer solu-
tion jetting controlled with the electrostatic forces [83–86].
The advantage of nanofibers is the high surface area to vol-
ume ratio which allows filtering particles and enhancing
the superhydrophobic properties [66, 87, 88]. The poros-
ity in the electrospun membranes can be controlled by
the arrangement of fibers [89] or the use of special collec-
tors [90–93]. For mass production of nanofibers, needle-
less electrospinning is commonly used [94–101].

Chen et al. [102] presented an effective approach
to mimic the self-cleaning hierarchical structure of lo-
tus by fabricating a flexible hybrid material, PVDF mi-
crofibers decorated with inorganic ZnO nanowires cov-
ered with oleic acid. This hierarchical structure exhib-
ited superhydrophobicity and self-cleaning properties and
at the same time was permeable to air and water vapor.
PVDF is known for its high piezoelectricity and ferroelec-
tric properties [103, 104], but also exhibits high mechan-
ical strength, high thermal stability, and biocompatibil-
ity [105–108]whichmake it an ideal candidate for polymer-
based piezoelectric generators and therefore is used in
many smart textiles technologies [109–111] also as electro-
spun fibers [68, 112–115]. This concept of energy harvest-
ing in smart textiles was recently applied in a self-powered
electrostatic adsorption face mask [116] with enhanced re-
moval efficiency andfiltration life for ultrafineparticulates
or droplets [117]. All thementioned technologies including
the electrospun membranes have been applied in the cur-
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rent situation concerning COVID-19, one of the recent sug-
gestions is Ag or Cu nanoparticles impregnation [15, 118–
120].

4 Smart textiles in future
pandemics

Smart textile is a “functional textile material, which in-
teracts actively with its environment, i.e. it responds or
adapts to changes in the environment” [121, 122]. The fast
development of microelectronics and its implementation
in smart textiles led to remarkable improvements and new
potentials in the textile field [123–126]. Also, the changes
in our lifestyles and usage of smart electronic devices in
daily routines open the possibilities of acceptance of smart
textiles as comfortable and reliable devices. Smart textiles
find applications in all sectors from automotive [127, 128]
and sports [129, 130] to buildings and interior design [131,
132], but here our focus is on their use in the fight against
pandemics as part of the healthcare andmedicine systems
and personal protective equipment.

4.1 Smart textiles for protective clothing

Protective equipment has become an important subject
during the current COVID-19 pandemic, it’s even become
a symbol of the fight against this globally spread virus.
Nevertheless, dealing with this pandemic has also shown
deficiencies related to PPE, first of all, the shortages in
their supply and second the health problems they cause
in healthcare workers during prolonged use. To be pre-
pared for the next pandemic we need to apply what we
have learned from the current situation. We should pay
special attention to the protective equipment; develop ca-
pacities for rapid PPE production and no less importantly
develop novel PPE that is cost-effective, safe, comfortable
and “smart” at the same time. In terms of gowns and
drapes, there are more details provided in some previous
reviews [64] and studies related to environmental condi-
tions [133] and thermo-physiological discomfort [134] of
medical textiles [135].

The recent studies on the SARS-CoV-2 virus stability
in different environmental conditions and on various sur-
faces showed that the virus can survive on cloth or stan-
dard textiles for several days, but on smooth surfaces like
stainless steel or plastic even for up to a week [136, 137].
Thus, all textiles or medical equipment used in hospitals
by medical personnel or patients could easily be contam-

inated by infectious carriers [135]. That is why the fabri-
cation of inexpensive antimicrobial and antiviral materi-
als is of great interest. For this purpose, the use of met-
als is widespread due to their ability to deactivate bacte-
ria [138]. Here, in particular, silver stands out attributed to
its distinctive physiochemical properties, and its demon-
strated toxicity towards bacteria, fungi, virus, leishma-
nia, malaria, and neoplastic [139]. A recent in-vivo study
demonstrated that aqueous solution of colloidal Ag alone
enabled effective sterilization of biodegradable PU based
scaffolds [140]. The compressed-PU facial masks were
modified with the hydrophobic coating to obtain the self-
cleaning characteristic [141], to address the wetting and
blocking water spatter in protective textiles used during
COVID-19. In other study fibers with antimicrobial prop-
erties were obtained by electrospinning dispersed silver
in polyvinylpyrrolidone (PVP) solution [138]. Their toxi-
city against Escherichia coli and Staphylococcus aureus
was demonstrated. In a similar study [142], electrospun
nanocomposites based on polyacrylonitrile (PAN) modi-
fied with silver nanoparticles were obtained from solution
of dimethyl formamide (DMF). The obtained membranes
possessed good antimicrobial properties and a case for us-
ing these fibers as filters to protect the personnel from bac-
terial contamination was presented.

The importance of PPE repellency to viruses was
demonstrated in a very recent study of the level of con-
tamination on the surface of medical masks [143]. The
results showed that respiratory viruses were present on
the outer surface of about 1 in 10 medical masks worn
by healthcare personnel which could easily lead to self-
contamination of the wearer of the mask. To provide an-
timicrobial and antiviral properties of the medical textiles,
they have to be impermeable to body fluids like blood,
urine, saliva, and sweat which are the main carriers of in-
fectious vectors. Galante et al. [144], very recently, demon-
strated a simple, durable and scalable coating on non-
woven PP textile that was both superhemophobic and
anti-virofouling. The treatment consisted of polytetrafluo-
roethylene (PTFE) nanoparticles in a solvent thermally sin-
tered to PP microfibers which created a robust, low sur-
face energy, and multi-layer, multi-length scale rough sur-
face. The authors demonstrated that the obtainedmaterial
could effectively repel various liquids including water and
fetal bovine serum and that the treatment could signifi-
cantly reduce the attachment of serum protein and infec-
tious non-enveloped virions to the surface. Moreover, the
treated textiles exhibited unprecedentedmechanical dura-
bility, maintaining their liquid, protein, and viral repel-
lency even after extensive and harsh abrasion and wash-
ing. Besides washing, SARS-CoV can be inactivated by UV
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light (254 nm), at pH above 12 or below 3, and above the
temperature of 65∘C, similar conditions can be applied for
SARS-CoV-2 [145, 146]. Among metals Cu besides Ag, also
showed effectiveness in the inactivation of SARS-CoV, in-
dicating the possibility Cu ions to be used for destroying
viral proteins and lipids [119, 137].

4.2 Smart textiles for monitoring and
sensing as part of the telemedicine

The healthcare systems worldwide are facing a current
problem – how to maintain the capacity and provide qual-
ity health care not only to those suffering from COVID-
19 but also to patients with chronic and acute diseases.
The health systems globally, to cope with the unique
challenges imposed by COVID-19 are seeking help in
telemedicine so they can provide care for the patients
while keeping them in their homes [147]. One of the key
features of telemedicine is that it relies extensively on re-
mote sensing and monitoring. These sensors should en-
able continuous accurate monitoring of the user’s physi-
ological states in the long-term. Textiles and clothing are
omnipresent in our daily life and are the layers closest to
our body providing an ideal platform for the integration
of electronics to monitor physiological processes through
the skin. There are already wearable non-textile products
on the commercialmarket, for instance, smartwatches and
wrist bands, which are used to monitor activity and the
wearer’s health parameters. But, electronic devices inte-
grated into textiles can offer several advantages, such as
enhanced mobility and comfort for the user [148]. Reliabil-
ity, performance, consistency over time, and comfort are
the most important features that smart textiles should ful-
fill to enable their applications in the commercial market.

Smart textiles used for monitoring body parameters
could be divided into two basic groups. One that is focused
on physical sensors that react to physical changes in their
environment, for example, electric fields, pressure, tem-
perature, andmovement. These can be used to detect body
movements, changes in thoracic volume during breathing,
but also electric signals from the body, such as electro-
cardiography (ECG) from the heart and electromyography
(EMG) from skeletal muscles [149]. The second group is fo-
cused on biosensors that incorporate a biological recog-
nition element into their operation (for example, enzyme,
antibody, cell receptor, or organelle) and are an emerging
field in the area of wearable sensors. They can monitor
the composition of biofluids, such as sweat, tears, saliva,
urine, or interstitial fluid (ISF) [150]. Here, we focus on
smart textile sensors of body parameters that are relevant

formonitoring in a home-cared patient during a pandemic
similar to COVID-19. Another challenge for telemedicine is
drug delivery, which in the aerosol therapy is using neb-
ulizers containing special meshes or filter to improve the
treatment efficiency and reducing the contamination [151].

4.2.1 Perspectives of smart textiles as part of the
telemedicine

The stages of treatment for most medical conditions in-
clude prevention, immediate care, rehabilitation, and
long-term support. Smart textiles have a role to play in
each of these stages. Integrating smart garments into our
lives is a natural step. One of the probable future scenar-
ios is that as the field of fibertronics becomesmoremature,
the hybrid structures will include more electronic func-
tionality at the fiber level until we eventually end up with
electronic textiles where all advanced electronic function,
such as batteries, lightning, communication and comput-
ing is embedded in the textile fibers [152, 153]. Smart tex-
tiles are expected to become more streamlined and move
into a wearer’s daily life. They will noninvasively moni-
tor a wide range of body parameters ultimately enabling
a comprehensivemedical diagnostics and performance as-
sessment. But their acceptance by the medical commu-
nity will require extensive and successful validation in
human testing and improved understanding of the clini-
cal relevancy of the provided information. Besides chal-
lenges connected to smart textiles and their fabrication,
design, device operation, relevance, stability, implemen-
tation, data interpretation, etc., there are other challenges
that telemedicine is facing mainly connected to encryp-
tion and security. To ensure the safety of the information
gathered by a portable telemedicine system access rights
and encryption algorithms have to be implemented and a
stringent data protection policy developed. The data and
communication have to be protected from tampering and
communication have to be secured from all potential er-
rors [154]. Having all the challenges in the head of us the
optimal outcome is to emerge from the current crisis with
a clearer vision of how to deploy telemedicine to achieve
its benefits while avoiding or minimizing potential abuse
and exploitation [147].

Smart or e-textiles start to include natural fabrics
and become sensors of human body temperature, sweat,
or breathing [155] or bending able to monitor human
touch [156]. As the strain sensors can be incorporated in
smart garment parts, it can be a part of face masks too,
together with other biosensing capabilities for detecting
viruses. The data collection from patients throughout the
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wearable devices in the current COVID-19pandemics could
give a new look into public health surveillance and also
new possibility of tacking and reacting to the patient’s re-
sponses [157–160]. The skin-integrated sensors capable of
reporting fever, cough, breath, hypoxemia, or loss of smell
are being developed including the machine learning tech-
niques [161]. The diagnosis together with the treatment
is a crucial part of development in many integrated tech-
nologies seeking the adaptation in clinical practices dur-
ing COVID-19 pandemic and vaccine development [162].

It is clear from the above that in the future, one should
think of smart and intelligent PPE that not only protects
but also detects, is capable of self-decontamination along
with being comfortable, durable, and possibly biodegrad-
able [163]. During the COVID-19 the waste products in-
crease [164–166] rising many new challenges for the pulp
and paper industry [167]. Biodegradable nonwovens are of-
ten based onpolylactic acids (PLA) or anynatural fibers be-
ing extensively developed in recent years [168–172]. Many
new fabrics anddesignshavebeen testedagainst theblock-
ing droplets in face masks built of a few covering multi-
layers [173]. Personal protection and healthcare purposes
are facing now many challenges related to the solid waste
management sector during the pandemic, as the single-
use plastic usage is set to bounce back due to its growth.
Themain concern is associated with hygiene and personal
protection [174–178].

4.2.2 Monitoring breathing

Since the COVID-19 is an acute respiratory syndrome mon-
itoring breathing is of the crucial importance of patient
treatment. Respiratory rate values are used to support the
assignment of patients to different categories and to make
decisions on the use of supplemental oxygen [179]. The
treatment of patients affected by acute respiratory insuffi-
ciency from COVID-19 is also tailored considering respira-
tory rate values [180].

Breathing canbemonitoredbymeasuring the changes
in the thoracic volume caused by lung displacement in
the process of breathing. Several technological solutions
have been developed to register breathing induced tho-
racic strain. Textile-based strain sensors can be fabricated
by using stretchable fabrics modified with inherently con-
ductive polymers or by using polymers loaded with con-
ductive particles like carbon-based nanofillers [52]. Knit-
ting with conductive yarns is another approach to creat-
ing textile piezoresistive sensors [54]. Using multiple sen-
sors gives a possibility besides breathing rate the capac-
ity and type of breathing to be indicated. For instance,

deep breathing would cause a large change in signal am-
plitude. Another promising approach of respiratory mon-
itoring is by using smart textiles based on fiber optic sen-
sors integrated into the textile for monitoring different vi-
tal body parameters [181, 182]. For respiratory monitoring,
the fibers were stitched onto a textile in a sinusoidal shape.
The fibers were illuminated with a laser and light was de-
tected with photodiodes. The curvature of the bends af-
fected the light attenuation through the fiber. Analysis of
the bending of these fibers was used to indicate the move-
ments caused by the changes in the thoracic volume. This
technology has the advantage of being compatible with
MRI scanners [183]. In a more recent study, highly flexible
polymeric optical fibers (POFs) that react to applied pres-
sure were integrated into a fabric-carrier to form a wear-
able sensing system [184]. Thewearable systemenables de-
tailed monitoring of the breathing rate and type. The sen-
sor is usually placed at different positions of the torso. The
authors confirmed the utility of such a monitoring device
by a comparison of the results with the output of commer-
cial respiratory measurements devices.

Many textile-based wearable systems are being devel-
oped for getting recordings of cardiorespiratory and mo-
tion signals by combing textile sensors for ECG and breath-
ing frequency detection with portable electronic and sig-
nal preprocessing technologies [185].Wearable technology
during Covid-19 – combine the trackers and apps that can
measure vital signs related to developing symptoms [186],
but also monitoring with the assessments [187]. The avail-
ability of a large number of accurate data collected from
breathing monitoring could contribute to improving the
development of predictive models for the risk of hospital
admission, and the development of diagnostic and prog-
nosticmodels. Effective breathingmonitoringwould be an
important contribution to managing similar scenarios like
current COVID-19 that may occur in the next months or
years [188].

4.2.3 Monitoring heart activity

Acute myocardial injury and chronic damage to the car-
diovascular system are possible complications associated
with COVID-19 [189, 190]. Cardiac involvement has been re-
ported in patients with COVID-19, which may be reflected
by electrocardiographic (ECG) changes [191] Therefore,
particular attention should be given to cardiovascular pro-
tectionduring treatment for COVID-19 andheremonitoring
of heart activity plays a crucial role.

ECG records the electrical activity of the heart from
the skin’s surface and ECG monitoring traditionally relies
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upon adhesive electrodes coupled to the skin with gel.
Many challenges arise with potential in-home use of this
type of electrode but the major issue is the use of the gel.
In recent years, much effort has been focused on the de-
velopment of “dry” electrodes that are directly integrated
into clothing [147]. An et al. [192] developed a new hybrid
textile electrode suitable for long-term ECGmonitoring. In
this study, four different conductive fabrics for electrode
materials and also the electrode size were investigated.
The results showed that the optimal hybrid textile elec-
trode could perform equally well as commercial wet elec-
trodes in electrocardiograph machines. Recently, Weder
et al. [193] reported the development of a portable ECG
measuring device (ECG-belt), contemplated to pass the
disadvantages of current wearable systems. The ECG-belt
employed embroidered, self-humidifying electrodes with
Ag/Ti coating for long-term ECG-monitoring which met all
the requirements concerning cytotoxicity and signal stabil-
ity. Fontana et al. [194] assessed the clinical applicability
for overnightmonitoring of this ECG-belt to screenpatients
for breathing-related disorders during sleep. When com-
pared to reference gel electrodes, ECG-belt data showed ac-
ceptable quality and accuracy. Therefore, they concluded
that the ECG belt is an applicable tool for continuous ECG
patient monitoring. In a very recent study Arquilla et al.
[195], developed and designed sewn electrodes that can
be integrated into wearable garments for ECG monitor-
ing. They showed that the sewn textile electrodes reliably
recorded the ECG signal and did not exhibit changes in
resistance during the stretch, bend, or wash testing and
that they are a promising option for implementation into a
garment-integrated ECG monitoring system.

4.2.4 Monitoring of blood oxygen saturation

Monitoring of blood oxygen saturation is crucial in COVID-
19 patients because COVID pneumonia initially causes a
form of the oxygen deprivation that is called “silent hy-
poxia”. This means that COVID patients do not feel chest
discomfort or shortness of breath, even as their oxygen lev-
els fall. And by the time they do, they have noticeable trou-
ble breathing and alarmingly low oxygen levels, justify-
ing using urgently a ventilator. Silent hypoxia progressing
rapidly to respiratory failure explains cases of COVID-19pa-
tients dying suddenly after not feeling short of breath [196–
198]. This hypoxia can be detected, thus healthcare work-
ers are advised to use pulse oximetry [199], a simple, fast,
easy to use, noninvasive method for real-time monitoring
of hypoxemia. It can provide an early warning system for
the breathing problems and low oxygen saturation levels

associated with COVID-19 pneumonia. Pulse oximetry en-
ables monitoring of the percentage of Hb in blood, which
is saturated with oxygen. It works by measuring the ab-
sorption of light through body tissue with a high perfu-
sion rate of blood, usually at the finger or earlobe. Hb has
a different absorption spectrum depending on whether it
is oxygenated (oxy-Hb) or deoxygenated (deoxy-Hb). Oxy-
gen saturation is estimated by measuring the absorption
of two different wavelengths of light through the tissue.
Light-emitting diodes (LEDs) are typically used as the light
source and photodiodes as light detectors. These optical
components may be placed in a transmissionmode config-
uration, on either side of the tissue, or else in reflectance
mode on the same side of the tissue. Photonic textiles us-
ing organic LEDs (OLEDs) or woven polymer optical fibers
(POFs) offer analternative to conventional LEDs, to create a
textile-based pulse oximetry system. Rothmaier et al. [200]
have demonstrated such a system, using a cotton glove
with woven POFs positioned at a fingertip of the glove.
To improve the reliability of reflectance oximeters Liu et
al. [201] demonstrated a novel optical fiber sensor probe
for simultaneously monitoring the photoplethysmogram
and contact pressure to provide reliable blood oxygen sat-
uration monitoring. This probe combined a reflectance
pulse oximeter with a fiber Bragg grating contact pressure
sensor and enables more comfort of the user because it
can be used in loosely fitting garments and the measure-
ments can only be recorded when appropriate pressure is
applied.

4.2.5 Monitoring the composition of body fluids

Wearable biosensors are garnering substantial interest
due to their potential to provide continuous, real-time
physiological information via dynamic, noninvasive mea-
surements of biochemical markers in biofluids, such as
sweat, tears, saliva, and interstitial fluid (ISF) [150]. Blood
is the most reliable diagnostic medium; however, as it re-
quires invasive techniques for sampling, it is typically sam-
pled at specified time intervals. Therefore, other body flu-
ids, which can be accessed more easily through non- or
minimally- invasive means, must be considered for con-
tinuous analysis. Possible samples include urine, saliva,
sweat, interstitial fluid (ISF), and wound exudate. Of all
these body fluids, sweat is themost accessiblewithin a gar-
ment structure.

In a recent study, a flexible poly(3,4-ethylenedioxythio
phene):poly(styrenesulfonate) (PEDOT:PSS) fiber-based
sensor was proposed, which could accuratelymeasure the
amount of salt (i.e., sodium chloride) ions in sweat re-
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leased from the human body. The authors performed this
using one single strand of hair-like conducting polymer
fiber. The fabrication process involved the introduction of
an aqueous PEDOT:PSS solution into a sulfuric acid co-
agulation bath, in which monolithic fibers, with simple
geometry and tunable electrical characteristics, were pro-
duced. The authors demonstrated that the conductivity of
a PEDOT:PSS fiber changed linearly according to the con-
centration of sodium chloride in liquid. The obtained re-
sults suggested the possibility of PEDOT:PSS fiber-based
wearable sensors to be developed in skin-attachable next-
generation healthcare devices, which could reproducibly
determine the physiological condition of a human sub-
ject by measuring the sodium chloride concentration in
sweat [130], which is important for health condition moni-
toring of any patient.

More related to COVID-19 is the remote monitoring of
the glucose level in sweat. Type 2 diabetes (T2D) is major
comorbidity of COVID-19 and although the impact of glu-
cose control on the degree of required medical interven-
tions and on mortality in patients with COVID-19 and T2D
remains uncertain there is clinical evidence correlating im-
proved glycemic control with better outcomes in patients
with COVID-19 and pre-existing T2D [202]. Development of
an enzyme-based non-invasive wearable electrochemical
sensor to monitor biochemical vital signs of health such
as the glucose level in sweat has attracted increasing atten-
tion recently, due to the unmet clinical needs for diabetic
patients. Very recently, Zhao et al. [203] demonstrated
an elastic gold fiber-based three-electrode electrochemical
platform for wearable textile glucose biosensing. The gold
fiber was functionalized with Prussian blue and glucose
oxidase to obtain the working electrode and modified by
Ag/AgCl to serve as the reference electrode; and the non-
modified gold fiber served as the counter electrode. The
as-fabricated textile glucose biosensors achieved a linear
range of 0–500 µM and a sensitivity of 11.7 µA mM−1 cm−2.
Importantly, such sensing performance was maintained
even under a large strain of 200%, indicating the potential
applications in real-world wearable biochemical diagnos-
tics from human sweat.

The fundamental principles of biosensor systems, the
challenges in operating biosensors in specific noninvasive
biofluids and the physiological relevance of monitoring
key biomarkers in these fluids, and finally the prospects of
wearable biosensing devices for the biomedical field have
been highlighted in a recent review [150]. Regarding the
COVID-19 easier diagnostics recent research suggests that
saliva can be used as a viable biosample for the detection
of COVID-19. Experimental studies showed that the sali-
vary glands could be a potential target for SAR-CoV-2 in-

fection, and hence saliva could be a potential sample for
SARS-CoV-2 detection [204, 205]. Researchers from RUCDR
Infinite Biologics at Rutgers University have successfully
validated saliva as being a viable biosample source for
COVID-19 detection when compared to nasopharyngeal
or oropharyngeal swabs [206]. Very recently, Murugan et
al. [207] proposed to exploit a field-deployable/portable
plasmonic fiber-optic absorbance biosensor (P-FAB) plat-
form for one-step, wash-free detection of SARS-CoV-2 virus
particles directly in saliva sample with minimal sample
pre-processing. Further studies are required but salivary
diagnostics may play a crucial role in the detection of
COVID-19 and can offer amass screening of the population
and more importantly it can eliminate the requirement of
health care professionals to collect samples and risking in-
fections.

5 Conclusions and Perspectives
The COVID-19 outbreak caught us off guard and unpre-
pared, despite the numerous scientific indications that a
respiratory pandemic is possible and is going to happen
we were not ready for such a rapid spread through the hu-
man population. Many governments are still scrambling
to ‘flatten the curve’ as they attempt to maintain increas-
ingly overburdened healthcare systems andmitigate short-
ages in medical supplies. What can be deduced fromwhat
has been learned so far is that, despite the tremendous
advances in medicine and pharmacy, in the initial mo-
ments, which are crucial in the containment of the spread-
ing of any pandemic, the key role is played by the non-
pharmaceutical measures. By applying these measures,
we give the medical and pharmaceutical sciences time to
develop a cure or a vaccine, which could take anywhere
from several years to over a decade but is a permanent
solution in the fight against pandemics. In meantime, be-
tween pandemic outbreak and finding a cure or vaccine,
we should improve the non-pharmaceutical measures ap-
plied and here the smart textiles play an important role
mainly as part of the personal protective equipment (PPE)
and telemedicine. Despite the great progress made so far
in this field, several challenges need to be overcome. One
of them is including the chemical sensors able to detect
viruses from the breath, as at the moment some efforts are
already made in monitoring and analysis of biomarkers in
sweat [208].

Dealing with the COVID-19 pandemic has shown the
deficiencies related to PPE, first of all the shortages in
their supply and second the health problems they cause in
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healthcareworkers duringprolongeduse. It is necessary to
work on the development of capacities for rapid PPE pro-
duction and even more importantly on the development
of novel PPE that is cost-effective, safe, comfortable and
“smart” at the same time that not only protects, but also
detects, is capable of self-decontamination, is durable and
possibly biodegradable.

What we have experienced so far is that COVID-19 re-
quires unprecedented mobilization of healthcare systems.
There is only a narrow opportunity to slow transmission
and prepare healthcare systems to mitigate the impact of
the outbreak. In these terms, telemedicine is brought into
a new light. Telemedicine platforms can help to prevent
overcrowding in hospitals and decrease human exposures
(among healthcare workers and patients). One of the key
features of telemedicine is that it relays extensively on re-
mote sensing and monitoring. These sensors should en-
able continuous accurate monitoring of user’s physiolog-
ical states in the long-term while allowing enhanced mo-
bility and comfort and here smart textiles offer many ad-
vantages. As the field of fibertronics becomesmoremature
smart textiles are expected to become more streamlined
andmove into awearer’s daily life. Theywill noninvasively
monitor a wide range of body parameters ultimately en-
abling a comprehensive medical diagnostics and perfor-
mance assessment.

It is evident that to combat COVID-19 and build re-
silient healthcare systems to face future pandemics we
need lasting investments in research and response strate-
gies. But besides financing projects in the field of vaccine
development, diagnostic and treatment, which is undis-
putedly important, more time and money should also be
invested in the non-pharmaceutical measures, highlight-
ing the smart textiles as part of PPE and telemedicine.
These non-pharmaceutical measures are the ones that
bridge the time between pandemic outbreaks and the de-
velopment of drugs or vaccines and are crucial for the num-
ber of human lives spared.
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