Home Influence of carbon dioxide and water concentration on terbium thin films produced by Molecular Plating
Article
Licensed
Unlicensed Requires Authentication

Influence of carbon dioxide and water concentration on terbium thin films produced by Molecular Plating

  • Ernst Artes ORCID logo EMAIL logo , Primiana Cavallo ORCID logo , Tobias Häger , Carl-Christian Meyer ORCID logo , Christoph Mokry , Dennis Renisch ORCID logo , Jörg Runke , Evgenia Schaffner , Alice Seibert , Christina Trautmann and Christoph E. Düllmann ORCID logo
Published/Copyright: July 16, 2025

Abstract

Terbium and thulium thin films were produced by Molecular Plating under controlled conditions to elucidate a possible influence of water and carbon dioxide present in the plating solution. Platings were made in a glovebox with variable concentration of residual water and CO2 in a controlled inert atmosphere to study the impact on the quality of the produced thin films and on deposition yields. The morphology of the thin films was analyzed by scanning electron microscopy. The deposition yield was determined by neutron activation analysis at the research reactor TRIGA Mainz. Chemical analysis of the deposited layers was conducted using a combination of infrared, Raman and X-ray photoelectron spectroscopy. The Raman and IR spectra reveal the formation of hydroxides, oxides and carbonates. Water in the plating solution affects the quality of the thin films when its concentration exceeds 1 vol%. The presence of CO2 leads to an increased carbonate content, which negatively influences the film quality.


Corresponding author: Ernst Artes, Department Chemie, Standort TRIGA – Johannes Gutenberg-Universität Mainz, 55128 Mainz, Germany; Helmholtz-Institut Mainz, 55128 Mainz, Germany; and GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany, E-mail:

Acknowledgments

Our sincere thanks go the staff of the mechanical workshop at the research reactor TRIGA Mainz for their local support. We would also like to thank Constantin Haese from the Max-Planck-Institut für Polymerforschung Mainz who carried out NMR measurements for us. We acknowledge funding from the German Federal Ministry for Research and Education (project 05P21UMFN2). The experimental data used in this research were generated through access to the ActUsLab/PAMEC under the Framework of access to the Joint Research Centre Physical Research Infrastructures of the European Commission (Project Targets-SHE2, Research Infrastructure Access Agreement No 36107/01).

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: During the preparation of this work the authors used [ChatGPT GPT-4o] to improve readability and language. After using this tool, the authors reviewed and edited the content as needed and take full responsibility for the content of the published article.

  5. Conflict of interest: The author statse no conflict of interest.

  6. Research funding: German Federal Ministry for Research and Education (project 05P21UMFN2).

  7. Data availability: The data that support the findings of this study are available from the corresponding author, E.A., upon reasonable request.

References

1. Tödt, F. Die elektrolytische Abscheidung unedler Radioelemente. Z. Phys. Chem. 1924, 113U, 329–335; https://doi.org/10.1515/zpch-1924-11328.Search in Google Scholar

2. Parker, W.; Falk, R. Molecular Plating: A Method for the Electrolytic Formation of Thin Inorganic Films. Nucl. Instrum. Methods 1962, 16, 355–357; https://doi.org/10.1016/0029-554x(62)90142-8.Search in Google Scholar

3. Parker, W.; Bildstein, H.; Getoff, N. Molecular Plating I, a Rapid and Quantitative Method for the Electrodeposition of Thorium and Uranium. Nucl. Instrum. Methods 1964, 26, 55–60; https://doi.org/10.1016/0029-554x(64)90049-7.Search in Google Scholar

4. Parker, W.; Bildstein, H.; Getoff, N.; Fischer-Colbrie, H.; Regal, H. Molecular Plating II a Rapid and Quantitative Method for the Electrodeposition of the Rare-Earth Elements. Nucl. Instrum. Methods 1964, 26, 61–65; https://doi.org/10.1016/0029-554x(64)90050-3.Search in Google Scholar

5. Getoff, N.; Bildstein, H.; Proksch, E.; Molecular plating, V. The Influence of Some Experimental Factors on the Deposition Yield. Nucl. Instrum. Methods 1967, 46, 305–308; https://doi.org/10.1016/0029-554x(67)90088-2.Search in Google Scholar

6. Getoff, N.; Bildstein, H. Molecular Plating. Nucl. Instrum. Methods 1969, 70, 352–354; https://doi.org/10.1016/0029-554x(69)90067-6.Search in Google Scholar

7. Eberhardt, K.; Brüchle, W.; Düllmann, C.; Gregorich, K.; Hartmann, W.; Hübner, A.; Jäger, E.; Kindler, B.; Kratz, J.; Liebe, D.; Lommel, B.; Maier, H. J.; Schädel, M.; Schausten, B.; Schimpf, E.; Semchenkov, A.; Steiner, J.; Szerypo, J.; Thörle, P.; Türler, A.; Yakushev, A. Preparation of Targets for the Gas-Filled Recoil Separator TASCA by Electrochemical Deposition and Design of the TASCA Target Wheel Assembly. Nucl. Instrum. Methods Phys. Res., Sect. A 2008, 590, 134–140; https://doi.org/10.1016/j.nima.2008.02.069.Search in Google Scholar

8. Runke, J.; Düllmann, C. E.; Eberhardt, K.; Ellison, P. A.; Gregorich, K. E.; Hofmann, S.; Jäger, E.; Kindler, B.; Kratz, J. V.; Krier, J.; Lommel, B.; Mokry, C.; Nitsche, H.; Roberto, J. B.; Rykaczewski, K. P.; Schädel, M.; Thörle-Pospiech, P.; Trautmann, N.; Yakushev, A. Preparation of Actinide Targets for the Synthesis of the Heaviest Elements. J. Radioanal. Nucl. Chem. 2013, 299, 1081–1084; https://doi.org/10.1007/s10967-013-2616-6.Search in Google Scholar

9. Loveland, W. High Quality Actinide Targets. J. Radioanal. Nucl. Chem. 2015, 307, 1591–1594; https://doi.org/10.1007/s10967-015-4337-5.Search in Google Scholar

10. Loveland, W.; Baker, J. D. Target Preparation for the Fission TPC. J. Radioanal. Nucl. Chem. 2009, 282, 361–363; https://doi.org/10.1007/s10967-009-0146-z.Search in Google Scholar

11. Greene, J. P.; Janssens, R. V.; Ahmad, I. Preparation of Actinide Targets by Molecular Plating for Coulomb Excitation Studies at ATLAS. Nucl. Instrum. Methods Phys. Res., Sect. A 1999, 438, 119–123.Search in Google Scholar

12. Haas, R.; Hufnagel, M.; Abrosimov, R.; Düllmann, Ch. E.; Krupp, D.; Mokry, C.; Renisch, D.; Runke, J.; Scherer, U. W. Alpha Spectrometric Characterization of Thin 233U Sources for 229(m)Th Production. Radiochim. Acta 2020, 108, 923–941; https://doi.org/10.1515/ract-2020-0032.Search in Google Scholar

13. Trautmann, N.; Folger, H. Preparation of Actinide Targets by Electrodeposition. Nucl. Instrum. Methods Phys. Res., Sect. A 1989, 282, 102–106; https://doi.org/10.1016/0168-9002(89)90117-4.Search in Google Scholar

14. Düllmann, C. E.; Artes, E.; Dragoun, A.; Haas, R.; Jäger, E.; Kindler, B.; Lommel, B.; Mangold, K. M.; Meyer, C. C.; Mokry, C.; Munnik, F.; Rapps, M.; Renisch, D.; Runke, J.; Seibert, A.; Stöckl, M.; Thörle-Pospiech, P.; Trautmann, C.; Trautmann, N.; Yakushev, A. Advancements in the Fabrication and Characterization of Actinide Targets for Superheavy Element Production. J. Radioanal. Nucl. Chem. 2022, 332, 1505–1514; https://doi.org/10.1007/s10967-022-08631-4.Search in Google Scholar

15. Düllmann, C. E.; Block, M.; Heßberger, F. P.; Khuyagbaatar, J.; Kindler, B.; Kratz, J. V.; Lommel, B.; Münzenberg, G.; Pershina, V.; Renisch, D.; Schädel, M.; Yakushev, A. Five Decades of GSI Superheavy Element Discoveries and Chemical Investigation. Radiochim. Acta 2022, 110, 417–439; https://doi.org/10.1515/ract-2022-0015.Search in Google Scholar

16. Lommel, B.; Düllmann, C. E.; Kindler, B.; Renisch, D. Status and Developments of Target Production for Research on Heavy and Superheavy Nuclei and Elements. Eur. Phys. J. A 2023, 59; https://doi.org/10.1140/epja/s10050-023-00919-7.Search in Google Scholar

17. Vascon, A.; Santi, S.; Isse, A.; Reich, T.; Drebert, J.; Christ, H.; Düllmann, C. E.; Eberhardt, K. Elucidation of Constant Current Density Molecular Plating. Nucl. Instrum. Methods Phys. Res., Sect. A 2012, 696, 180–191; https://doi.org/10.1016/j.nima.2012.08.072.Search in Google Scholar

18. Hansen, P. The Conditions for Electrodeposition of Insoluble Hydroxides at a Cathode Surface: A Theoretical Investigation. J. Inorg. Nucl. Chem. 1959, 12, 30–37; https://doi.org/10.1016/0022-1902(59)80089-0.Search in Google Scholar

19. Artes, E.; Düllmann, C. E.; Meyer, C.-C.; Renisch, D. The Process of Molecular Plating and the Characteristics of the Produced Thin Films – what We Have Learned in 60 Years and what is Still Unknown. EPJ Web Conf. 2023, 285, 03001; https://doi.org/10.1051/epjconf/202328503001.Search in Google Scholar

20. Crespo, M. A Review of Electrodeposition Methods for the Preparation of Alpha-Radiation Sources. Appl. Radiat. Isot. 2012, 70, 210–215; https://doi.org/10.1016/j.apradiso.2011.09.010.Search in Google Scholar

21. Klemenčič, H.; Benedik, L. Alpha-Spectrometric Thin Source Preparation with Emphasis on Homogeneity. Appl. Radiat. Isot. 2010, 68, 1247–1251; https://doi.org/10.1016/j.apradiso.2009.12.013.Search in Google Scholar

22. Fogg, P. Pergamon Press Ltd. In Carbon Dioxide in Non-aqueous Solvents at Pressures Less than 200 KPa; Pergamon Press Ltd.: Oxford, 2017.Search in Google Scholar

23. Liebe, D.; Eberhardt, K.; Hartmann, W.; Häger, T.; Hübner, A.; Kratz, J.; Kindler, B.; Lommel, B.; Thörle, P.; Schädel, M.; Steiner, J. The Application of Neutron Activation Analysis, Scanning Electron Microscope, and Radiographic Imaging for the Characterization of Electrochemically Deposited Layers of Lanthanide and Actinide Elements. Nucl. Instrum. Methods Phys. Res., Sect. A 2008, 590, 145–150; https://doi.org/10.1016/j.nima.2008.02.075.Search in Google Scholar

24. Eberhardt, K.; Geppert, C. The Research Reactor TRIGA Mainz – a Strong and Versatile Neutron Source for Science and Education. Radiochim. Acta 2019, 107, 535–546; https://doi.org/10.1515/ract-2019-3127.Search in Google Scholar

25. Nica, N. Nuclear Data Sheets for A = 160. Nucl. Data Sheets 2021, 176, 1–428; https://doi.org/10.1016/j.nds.2021.08.001.Search in Google Scholar

26. Gouder, T.; Huber, F.; Eloirdi, R.; Caciuffo, R. U2O5 Film Preparation via UO2 Deposition by Direct Current Sputtering and Successive Oxidation and Reduction with Atomic Oxygen and Atomic Hydrogen. J. Visualized Exp. 2019, 144, e59017; https://doi.org/10.3791/59017.Search in Google Scholar

27. Frost, R. L.; Dickfos, M. J. Raman Spectroscopy of Halogen-Containing Carbonates. J. Raman Spectrosc. 2007, 38, 1516–1522; https://doi.org/10.1002/jrs.1806.Search in Google Scholar

28. Kartha, V.; Venkateswaran, S. Vibrational Spectra and Normal Vibrations of Rare Earth Formates. Spectrochim. Acta, Part A 1981, 37, 927–934; https://doi.org/10.1016/0584-8539(81)80017-7.Search in Google Scholar

29. Silva, E. N.; Moura, M. R.; Ayala, A. P.; Guedes, I.; Polla, G.; Vega, D. R.; Tobia, D.; Saleta, M. E. Vibrational Modes of Rare-Earth Formates. J. Raman Spectrosc. 2009, 40, 954–957; https://doi.org/10.1002/jrs.2207.Search in Google Scholar

30. Spiridigliozzi, L.; Bortolotti, M.; Accardo, G.; Vergara, A.; Frattini, D.; Ferone, C.; Cioffi, R.; Dell’Agli, G. An In-Depth Multi-Technique Characterization of Rare Earth Carbonates – RE2(CO3)3·2H2O – Owning Tengerite-type Structure. J. Rare Earths 2022, 40, 1281–1290; https://doi.org/10.1016/j.jre.2021.09.020.Search in Google Scholar

31. Sohn, Y. Structural and Spectroscopic Characteristics of Terbium Hydroxide/Oxide Nanorods and Plates. Ceram. Int. 2014, 40, 13803–13811; https://doi.org/10.1016/j.ceramint.2014.05.096.Search in Google Scholar

32. Caro, P.; Sawyer, J.; Evning, L. The Infrared Spectra of Rare Earth Carbonates. Spectrochim. Acta, Part A 1972, 28, 1167–1173; https://doi.org/10.1016/0584-8539(72)80088-6.Search in Google Scholar

33. Klevtsov, P. V.; Klevtsova, R. F.; Sheina, L. P. Relationship between the Infrared Absorption Spectra and Crystal Structure of the Hydroxides of the Rare Earth Elements and Yttrium. J. Struct. Chem. 1967, 8, 229–233; https://doi.org/10.1007/bf00745638.Search in Google Scholar

34. White, W. B.; Keramidas, V. G. Vibrational Spectra of Oxides with the C-type Rare Earth Oxide Structure. Spectrochim. Acta, Part A 1972, 28, 501–509; https://doi.org/10.1016/0584-8539(72)80237-x.Search in Google Scholar

35. Frost, R. L.; Erickson, K. L.; Weier, M. L.; McKinnon, A. R.; Williams, P. A.; Leverett, P. Effect of the Lanthanide Ionic Radius on the Raman Spectroscopy of Lanthanide Agardite Minerals. J. Raman Spectrosc. 2004, 35, 961–966; https://doi.org/10.1002/jrs.1243.Search in Google Scholar

36. Frost, R. L.; López, A.; Scholz, R.; Xi, Y.; Belotti, F. M. Infrared and Raman Spectroscopic Characterization of the Carbonate Mineral Huanghoite – and in Comparison with Selected Rare Earth Carbonates. J. Mol. Struct. 2013, 1051, 221–225.Search in Google Scholar

37. Rahimi-Nasrabadi, M.; Pourmortazavi, S. M.; Ganjali, M. R.; Norouzi, P. Nanosized Terbium Carbonate and Oxide Particles: Optimized Synthesis, and Application as Photodegradation Catalyst. J. Mater. Sci.: Mater. Electron. 2017, 29, 2988–2998; https://doi.org/10.1007/s10854-017-8229-z.Search in Google Scholar

38. Saralidze, O. D.; Shklover, L. P.; Petrov, K. I.; Plyushchev, V. E. Infrared Absorption Spectra of Formates of the Rare Earth Elements. J. Struct. Chem. 1967, 8, 45–49; https://doi.org/10.1007/bf00741723.Search in Google Scholar

39. De Hosson, J. The Infrared Spectra of Several Rare-Earth Formates. J. Inorg. Nucl. Chem. 1975, 37, 2350–2351; https://doi.org/10.1016/0022-1902(75)80753-6.Search in Google Scholar

40. König, M.; Vaes, J.; Klemm, E.; Pant, D. Solvents and Supporting Electrolytes in the Electrocatalytic Reduction of CO2. iScience 2019, 19, 135–160; https://doi.org/10.1016/j.isci.2019.07.014.Search in Google Scholar

41. Barr, T. L.; Seal, S. Nature of the Use of Adventitious Carbon as a Binding Energy Standard. J. Vac. Sci. Technol., A 1995, 13, 1239–1246; https://doi.org/10.1116/1.579868.Search in Google Scholar

Received: 2025-02-18
Accepted: 2025-06-20
Published Online: 2025-07-16
Published in Print: 2025-10-27

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 11.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ract-2025-0021/html
Scroll to top button