Home Electromagnetic radiation shielding of NBR rubber composites loaded with magnetite and manganese dioxide
Article
Licensed
Unlicensed Requires Authentication

Electromagnetic radiation shielding of NBR rubber composites loaded with magnetite and manganese dioxide

  • Abdelhameed Sharaf ORCID logo EMAIL logo , Ahmed S. El-Bayoumi , Mohamed I. Ahmed ORCID logo , Ashraf Nasr ORCID logo , Magdy A. Ali and Khaled F. El-Nemr
Published/Copyright: June 30, 2025
Radiochimica Acta
From the journal Radiochimica Acta

Abstract

This study presents the preparation of acrylonitrile butadiene rubber (NBR) composites loaded with different concentrations of electromagnetic radiation shielding materials like magnetite and manganese dioxide. The composites were subjected to electron beam irradiation at 50 kGy and characterized using Fourier-transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) tools. The hybrid fillers showed a strong interaction with the NBR rubber matrix, improving mechanical properties like tear strength. Electrically conducting of these filler materials that loaded NBR rubber matrix find a lot of attentions for electromagnetic shielding materials. All prepared samples were measured using vector network analyzer (VNA) with aid of an X-band wave guide to evaluate its performance as an electromagnetic interference (EMI) shielding material. The results showed that all samples improved shielding properties and can be used as low-cost, lightweight, and good-performance shielding materials.


Corresponding author: Abdelhameed Sharaf, Radiation Engineering Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt, E-mail:

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: All other authors state no conflict of interest.

  6. Research funding: None declared.

  7. Data availability: The data that support the findings of this study are available from the corresponding author, A. S., upon reasonable request.

References

1. Chen, W.; Liu, L. X.; Zhang, H. B.; Yu, Z. Z. Flexible, Transparent, and Conductive Ti3C2Tx MXene-Silver Nanowire Films with Smart Acoustic Sensitivity for High-Performance Electromagnetic Interference Shielding. ACS Nano. 2020, 14, 16643–16653; https://doi.org/10.1021/acsnano.0c01635.Search in Google Scholar PubMed

2. Cheng, H. R.; Pan, Y. M.; Chen, Q.; Che, R. C.; Zheng, G. Q.; Liu, C. T.; Shen, C. Y.; Liu, X. H. Ultrathin Flexible Poly (Vinylidene fluoride)/MXene/silver Nanowire Film with Outstanding Specific EMI Shielding and High Heat Dissipation. Adv. Compos. Hybrid Mater. 2021, 4, 505–513; https://doi.org/10.1007/s42114-021-00224-1.Search in Google Scholar

3. Cheng, H. R.; Lu, Z. L.; Gao, Q. S.; Zuo, Y.; Liu, X. H.; Guo, Z. H.; Liu, C. T.; Shen, C. Y. PVDF-Ni/PE-CNTs Composite Foams with Co-continuous Structure for Electromagnetic Interference Shielding and Photo-Electro-Thermal Properties. Eng. Sci. 2021, 16, 331–340; https://doi.org/10.30919/es8d518.Search in Google Scholar

4. Cao, W. T.; Ma, C.; Tan, S.; Ma, M. G.; Wan, P. B.; Chen, F. Ultrathin and Flexible CNTs/MXene/cellulose Nanofibrils Composite Paper for Electromagnetic Interference Shielding. Nano-Micro Lett. 2019, 11, 72; https://doi.org/10.1007/s40820-019-0304-y.Search in Google Scholar PubMed PubMed Central

5. Deng, Z. M.; Tang, P. P.; Wu, X. Y.; Zhang, H. B.; Yu, Z. Z. Super Elastic, Ultralight, and Conductive Ti3C2Tx MXene/Acidified Carbon Nanotube Anisotropic Aerogels for Electromagnetic Interference Shielding. ACS Appl. Mater. Interfaces 2021, 13, 20539–20547; https://doi.org/10.1021/acsami.1c02059.Search in Google Scholar PubMed

6. Driessen, S.; Napp, A.; Schmiedchen, K.; Kraus, T.; Stunder, D. Electromagnetic Interference in Cardiac Electronic Implants Caused by Novel Electrical Appliances Emitting Electromagnetic Fields in the Intermediate Frequency Range: A Systematic Review. Eurospace 2019, 21, 219–229; https://doi.org/10.1093/europace/euy155.Search in Google Scholar PubMed PubMed Central

7. Okechukwu, C. E. Effects of Radiofrequency Electromagnetic Field Exposure on Neurophysiology. Adv. Hum. Biol. 2020, 10, 6–10; https://doi.org/10.4103/aihb.aihb_96_19.Search in Google Scholar

8. Chung, D. D. L. Materials for Electromagnetic Interference Shielding. J. Mater. Eng. Perform. 2000, 9 (3), 350–354; https://doi.org/10.1361/105994900770346042.Search in Google Scholar

9. Liu, C.; Yu, C.; Sang, G.; Xu, P.; Ding, Y. Improvement in EMI Shielding Properties of Silicone Rubber/POE Blends Containing ILs Modified with Carbon Black and MWCNTs. Appl. Sci. 2019, 9, 1774; https://doi.org/10.3390/app9091774.Search in Google Scholar

10. Kruželák, J.; Kvasnicáková, A.; Hložeková, K.; Plavec, R.; Dosoudil, R.; Goralík, M.; Vilˇcáková, J.; Hudec, I. Mechanical, Thermal, Electrical Characteristics and EMI Absorption Shielding Effectiveness of Rubber Composites Based on Ferrite and Carbon Fillers. Polymers 2021, 13, 2937; https://doi.org/10.3390/polym13172937.Search in Google Scholar PubMed PubMed Central

11. Kruželák, J.; Kvasnicáková, A.; Džuganová, M.; Hašková, L.; Dosoudil, R.; Hudec, I. Properties and EMI Absorption Shielding of Rubber Composites Based on Ferrites and Carbon Fibers. Polymers 2023, 15, 857; https://doi.org/10.3390/polym15040857.CuringSearch in Google Scholar PubMed PubMed Central

12. Kvasnicáková, A.; Kruželák, J.; Hložeková, K.; Dosoudil, R.; Hudec, I. Rubber Composites Able to Efficiently Shield the Electromagnetic Radiation. Macromol. Symp. 2021, 396, 2000274; https://doi.org/10.1002/masy.202000274.Search in Google Scholar

13. Sykora, R.; Babayan, V.; Mariana, U. A.; Zelak, J. K.; Hudec, I. Rubber Composite Materials with the Effects of Electromagnetic Shielding. Polymer Composites 2016, 37, 2933–2939. VC 2015 Society of Plastics Engineer; https://doi.org/10.1002/pc.23490.Search in Google Scholar

14. Araby, S.; Zhang, L.; Kuan, H. C.; Dai, J. B.; Majewski, P.; Ma, J. A Novel Approach to Electrically and Thermally Conductive Elastomers Using Graphene. Polymer 2013, 54 (14), 3663–3670; https://doi.org/10.1016/j.polymer.2013.05.014.Search in Google Scholar

15. Fathy, E. S.; Hassan, M. M.; Elnaggar, M. Y. Short Nylon Tire Cord and Gamma Irradiation Impact on SBR/Ultrasonic and Mechanochemical Devulcanized Rubber Blends. Radiochim. Acta 2023, 111 (4), 317–332. https://doi.org/10.1515/ract-2022-0077.Search in Google Scholar

16. Saleh, N. M.; Aly, H. F.; Ahmed, M.; Eman, A.; Mahfouz, R. M. Dehydration of Un-irradiated and Gamma and Electron-Beam Irradiated Europium Acetate Hydrate Under Non-Isothermal Conditions: Kinetics of the Dehydration Process of Un-Irradiated Material. Radiochim. Acta 2025, 113 (3), 229–243. https://doi.org/10.1515/ract-2024-0317.Search in Google Scholar

17. Mohamed, M. M.; Ibrahim, S.; Lotfy, S. Gamma Irradiation Synthesis and Characterization of Poly(N-Vinyl-2-Pyrrolidone/acrylic Acid) Superabsorbent Hydrogels for Treatment of Ink Waste. Radiochim. Acta 2025, 113 (5), 385–398. https://doi.org/10.1515/ract-2024-0337.Search in Google Scholar

18. Feizi, S. Fabrication of a Flexible Polycarbonate/Porphyrin Film Dosimeter for High Dose Dosimetry. Radiochim. Acta 2017, 105 (8), 657–663. https://doi.org/10.1515/ract-2016-2754.Search in Google Scholar

19. Noorin, E. S.; Feizi, S.; Dehaghi, S. M. Novel Radiochromic Porphyrin-Based Film Dosimeters for γ Ray Dosimetry: Investigation on Metal and Ligand Effects. Radiochim. Acta 2019, 107 (3), 271–278. https://doi.org/10.1515/ract-2018-3055.Search in Google Scholar

20. Feizi, S.; Malekie, S.; Rahighi, R.; Tayyebi, A.; Ziaie, F. Evaluation of Dosimetric Characteristics of Graphene Oxide/PVC Nanocomposite for Gamma Radiation Applications. Radiochim. Acta 2017, 105 (2), 161–170. https://doi.org/10.1515/ract-2016-2648.Search in Google Scholar

21. El-Nemr, K. F.; Balboul, M. R.; Ali, M. A. Electrical and Mechanical Properties of Manganese Dioxide–Magnetite-Filled Acrylonitrile Butadiene Rubber Blends. J. Thermoplast. Compos. Mater., 29 (5), 704–716; https://doi.org/10.1177/0892705714533372.Search in Google Scholar

22. Fathy, E. S.; Elnaggar, M. Y.; Amdeha, E. Comparative Impact of Gamma Radiation on Reinforced Nitrile Rubber with Graphite and Agro Waste Activated Carbons. Radiochim. Acta 2021, 109 (10), 781–791; https://doi.org/10.1515/ract-2020-0117.Search in Google Scholar

23. Sriatun, A.; Darmawan, S.; Cahyani, W. Microstructure Characterization of Natural Magnetite from Sand Marina Beach by High Energy Milling. Orient J Chem 2018, 34 (2), 868–874; https://doi.org/10.13005/ojc/340234.Search in Google Scholar

24. Lu, L.; Xu, S.; An, J.; Yan, S. Electrochemical Performance of CNTs/RGO/MnO2 Composite Material for Supercapacitor. Nanomat. Nanotechnol. 2016, 6, 1–7; https://doi.org/10.1177/1847980416663687.Search in Google Scholar

25. Smith, B. C. The Infrared Spectroscopy of Alkenes. Spectroscopy 2016, 31 (11), 28–34.Search in Google Scholar

26. Bovey, F.; Winslow, F. Macromolecules: An Introduction to Polymer Science; Academic Press: New York, NY, 1979.Search in Google Scholar

27. B. C. Smith, “More Theory and Practice: The Thorny Problem of Mixtures and More on Straight Chain Alkanes,” Spectroscopy 2015, 30(7), 26–31, 48.Search in Google Scholar

28. B. C. Smith, “Organic Nitrogen Compounds IV: Nitriles,” Spectroscopy 2019, 34(7), 18–21, 44; https://doi.org/10.56530/spectroscopy.rp3780c4.Search in Google Scholar

Received: 2025-02-17
Accepted: 2025-06-16
Published Online: 2025-06-30

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 6.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ract-2025-0018/html?srsltid=AfmBOopkBGl61uvh0Nk72cGangNwJZDJVsHULW_6FfHYe3gHIq5ZPyUT
Scroll to top button