Neutron capture cross section measurement for the 139La(n,γ)140La reaction at 0.0372 eV
-
Naima Belouadah
, Nadjet Osmani
, Fatiha Kadem
and Mohamed Trari
Abstract
The thermal neutron capture cross section of the 139La(n,γ)140La nuclear reaction at 0.0372 eV energy was measured by the Neutron Diffraction Facility (NDF) in the Es-Salam Nuclear Research Reactor (Algeria). The 197Au(n,γ)198Au reaction was adopted as reference for the Neutron Activation Analysis (NAA). The induced activities in sample and control foils were measured non-destructively by a high-resolution HPGe γ-ray detector. The capture cross section of σ(∼7.5 ± 0.37) b was measured for the first time at this energy after correction for the γ attenuation effect. Our measured value at an energy of 0.0372 eV energy was compared with the evaluated cross sections reported in two different neutron databases, namely ENDF/B-VIII.0 and JENDL-5. The data measured at this energy was extrapolated to the energy 0.0253 eV, assuming 1/ν dependence in the thermal energy region, and the result was compared with the fully measured and evaluated values reported in the literature.
Acknowledgments
The authors would like to express their gratitude to the staff of the Es-Salam Nuclear Research Reactor of Birine (Algeria) for their help in performing irradiations and their cordial help in carrying out experiment.
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: NB: Methodology, Formal analysis, Investigation, Data curation, writing and original draft; NO: Software, Formal analysis, Validation; KB: Formal analysis, Validation; FK: Software, Validation; LY: Software, Validation; MB: Conceptualization, Supervision, NT: Software, Validation; MT: Conceptualization, Supervision.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: All authors declare no conflict of interest.
-
Research funding: None declared.
-
Data availability: Not applicable.
References
1. Crouch, E. A. C. Fission-product Yields from Neutron-Induced Fission. Atomic Data Nucl. Data Tables 1977, 19, 417; https://doi.org/10.1016/0092-640x(77)90023-7.Search in Google Scholar
2. Belouadah, N.; Belgaid, M.; Zidi, T. Neutron Capture Cross Section Measurement for the 174Yb (n,γ)175Yb Reaction at 0.0372 eV Energy. Ann. Nucl. Eng. 2014, 64, 264; https://doi.org/10.1016/j.anucene.2013.10.011.Search in Google Scholar
3. Mughabghab, S. F.; Obložinský, P. Neutron Cross Section Uncertainties in the Thermal and Resonance Regions. Nuclear Data Sheets 2008, 109, 2863; https://doi.org/10.1016/j.nds.2008.11.024.Search in Google Scholar
4. Karadag, M.; Yucel, H. Thermal Neutron Cross-Section and Resonance Integral for 164Dy(n,γ) 165Dy Reaction. Nucl. Instrum. Methods Phys. Res. A 2005, 550, 626; https://doi.org/10.1016/j.nima.2005.04.091.Search in Google Scholar
5. Islam, M. A.; Hossain, S. M.; Akter, F.; Uddin, M. S.; Naher, K.; Tamim, U. Measurement of Cross Section for the 139La(n,γ)140La Reaction Using Reflected Neutron Beam at 0.0334 eV Energy. Nucl. Technol. Radiat. Protect. 2015, 30 (4), 267; https://doi.org/10.2298/ntrp1504267i.Search in Google Scholar
6. Chowdhury, M. H.; Uddin, M. S.; Hossain, S. M.; Latif, S. K. A.; Hafiz, M. A.; Islam, M. A.; Zakaria, A. K. M.; Azharu, I. S. M. Experimental Cross Section for the 139La(n,γ)140La Reaction at 0.0536 eV. Radiochim. Acta 2010, 98, 1; https://doi.org/10.1524/ract.2010.1686.Search in Google Scholar
7. Uddin, M. S.; Chowdhury, M. H.; Hossain, S. M.; Latif, Sk.A.; Islam, M. A.; Hafiz, M. A.; Mubin, S. H.; Zakaria, A. K. M.; Yunus, S. M.; Azharul Islam, S. M. Thermal Neutron Capture Cross Sections for the 152Sm(n,γ)153Sm and154Sm(n,γ)155Sm Reactions at 0.0536 eV Energy. Nucl. Instrum. Methods Phys. Res. B 2008, 266, 4855; https://doi.org/10.1016/j.nimb.2008.07.032.Search in Google Scholar
8. Uddin, M. S.; Chowdhury, M. H.; Hossain, S. M.; Latif, Sk.A.; Islam, M. A.; Hafiz, M. A.; Mubin, S. H.; Zakaria, A. K. M.; Yunus, S. M.; Azharul Islam, S. M. Neutron Capture Cross-Section Measurement for the 186W(n,γ)187W Reaction at 0.0536 eV Energy. Appl. Radiat. Isot. 2008, 66, 1235; https://doi.org/10.1016/j.apradiso.2008.01.013.Search in Google Scholar PubMed
9. ENDF/B-VIII.0 Library. Evaluated Nuclear Data File (ENDF) Version of 2021.Search in Google Scholar
10. JENDL-5 Library. Japanese Evaluated Nuclear Data Library Version of 2021.Search in Google Scholar
11. Belouadah, N.; Kadem, F.; Slamene, H.; Osmani, N.; Belgaid, M.; Yettou, L.; Trari, M. Experimental Cross Section of the 164Dy(n,γ)165Dy Reaction at the Neutron Energy of 0.0372 eV Using Neutron Diffraction Facility. Radiochim. Acta 2022, 110, 947; https://doi.org/10.1515/ract-2022-0052.Search in Google Scholar
12. Hachouf, M.; Abbaci, M.; Bensemma, N.; Hachouf, N.; Touiza, M.; Moughari, M.; Salhi, M.; Laouar, S. New Determination Method of the Neutron Diffraction System Resolution at the Algerian Es-Salam Research Reactor. J. Radioanal. Nucl.Chem 2012, 291, 665; https://doi.org/10.1007/s10967-011-1419-x.Search in Google Scholar
13. Genie 2000 Spectroscopy Software V3.2; Canberra Industries Inc: Meriden, USA, 2008.Search in Google Scholar
14. Orvini, E.; Gaggero, G.; Lesca, L.; Bresesti, A. M.; Bresesti, M. Determination of the Neutron Capture Resonance Integrals of 55Mn, 115In, 121Sb, 123Sb and 139La. J. Inorg. Nucl. Chem. 1986, 30, 1353; https://doi.org/10.1016/0022-1902(68)80273-8.Search in Google Scholar
15. Ryves, T. B.; Zieba, K. J. The Resonance Integrals of 63Cu, 65Cu, 107Ag, 159Tb, 164Dy and 165Ho. J. Phys. A. 1974, 7 (18), 2318; https://doi.org/10.1088/0305-4470/7/18/012.Search in Google Scholar
16. Erdtmann, G. Neutron Activation Tables; Verlag Chemie: Weinheim. Esch, L.J. 145, 1976.Search in Google Scholar
17. Steinnes, E. Resonance Activation Integrals of Some Nuclides of Interest in Neutron Activation Analysis. J. Inorg. Nucl. Chem. 1972, 34, 2699; https://doi.org/10.1016/0022-1902(72)80572-4.Search in Google Scholar
18. Hayodom, V.; Boonkong, W.; Mahapanyawong, S.; Chaimonkon, C. Thai-AEC 23 Progress Report, Thailand, 1969.Search in Google Scholar
19. Yamamoto, S.; Kobayashi, K.; Fujita, Y. Absolute Measurement of Neutron Capture Cross Sections with BGO Scintillators. Japanese report to NEA-NDC-142. 155, 59, 1990.Search in Google Scholar
20. Friesenahn, S. J.; Gibbs, D. A.; Haddad, E.; Frohner, F. H.; Lopez, W. M. Neutron Capture Cross Sections and Resonance Parameters of Rhenium from 0.01 ev to 30 keV. J. Nucl. Energy 1968, 22, 191.10.1016/0022-3107(68)90008-7Search in Google Scholar
21. Haddad, E.; Walton, R. W.; Friesenahn, S. J.; Lopez, W. M. A High Efficiency Detector for Neutron Capture Cross-Section Measurements. Nucl. Instrum. Methods 1964, 31, 25.10.1016/0029-554X(64)90334-9Search in Google Scholar
22. Mughabghab, S. F. Thermal Neutron Capture Cross Sections, Resonance Integrals and g-Factor. International Nuclear Data Committee (INDC), Report No. 440, 2003.Search in Google Scholar
23. NuDat 3.0. National Nuclear Data Center, Brookhaven National Laboratory, 2011. http://www.nndc.bnl.gov/update.Search in Google Scholar
24. Experimental Nuclear Reaction Data. IAEA.NDS. https://www-nds.iaea.org/exfor/.Search in Google Scholar
25. Hurst, A. M.; Sweet, A.; Goldblum, B. L.; Firestone, R. B.; Basunia, M. S.; Bernstein, L. A.; Révay, S. Z.; Szentmiklósi, L.; Belgya, T.; Escher, J. E.; Harsányi, I.; Krtička, M.; Sleaford, B. W.; Vujic, J. Radiative-capture Cross Sections for the 139La(n,γ) Reaction Using Thermal Neutrons and Structural Properties of 140La. Phys. Rev. 2019, 99, 24310.Search in Google Scholar
26. Panikkath, P.; Mohanakrishnan, P. Thermal Neutron Capture Cross-Section and Resonance Integral Measurements of 139La(n,γ)140La and 140Ce(n,γ)141Ce Using a Am-Be Neutron Source. Eur. Phys. J. 2017, 53, 46; https://doi.org/10.1140/epja/i2017-12231-8.Search in Google Scholar
27. Nguyen, V. D.; Pham, D. K.; Kim, T. T.; Nguyen, T. H.; Kim, G. N.; Yang, S. C.; Cho, Y. S.; Song, T. Y.; Lee, Y. O.; Shin, S. G.; Cho, M. H.; Lee, M. W. Thermal Neutron Capture Cross Section and Resonance Integral of the 139La(n,γ)140La Reaction. Nucl. Instrum. Methods Phys. Res., Sect. B 2014, 335, 1; https://doi.org/10.1016/j.nimb.2014.05.018.Search in Google Scholar
28. Farina Arbocco, F.; Vermaercke, P.; Smits, K.; Sneyers, L.; Strijckmans, K. Experimental Determination of K0, Q0, Er Factors and Neutron Cross-Sections for 41 Isotopes of Interest in Neutron Activation Analysis. J. Radioanal. Nucl. Chem. 2013, 296, 931; https://doi.org/10.1007/s10967-012-2132-0.Search in Google Scholar
29. Mughabghab, S. F.; Divadeenam, M.; Holden, N. E. Neutron Cross Sections, Neutron Resonance Parameters and Thermal Cross Sections, Part B, Z = 61–100; Academic Press: New York, 1984.Search in Google Scholar
30. Holden, N. E. Neutron Scattering and Absorption Properties. In CRC Handbook of Chemistry and Physics; Lide, D. R., Ed.; CRC Press: New York, 1999, 80th ed.Search in Google Scholar
31. Kafala, S. I.; MacMahon, T. D.; Borzakov, S. Neutron Activation for Precise Nuclear Data. J. Radional. Nucl. Chem. 1997, 215, 193; https://doi.org/10.1007/bf02034464.Search in Google Scholar
32. De Corte, F.; Simonits, A. Intern. Conf. on Nucl.; Data for Science and Technology: Mito, Japan, 1988; p. 583.Search in Google Scholar
33. Gryntakis, E.; Cullen, D. E.; Mundy, G. Handbook on Nuclear Activation Data; IAEA Technical Reports Series: Vienna, 1987; p. 273.Search in Google Scholar
34. Heft, R. E. A Consistent Set of Nuclear Parameter Values for Absolute Instrumental Neutron Activation Analysis. In Conference on Computers in Activation Analysis and Gamma-Ray Spectroscopy, Mayaguez, Puerto Rico 495, 1978.Search in Google Scholar
35. Mannhart, W. Thermal Neutron Activation Cross Sections with High Accuracy. Z. Phys. A. 1975, 272, 273.10.1007/BF01438021Search in Google Scholar
36. Ryves, T. B. Further Activation Thermal Neutron Capture Cross Sections and Resonance Integrals. J. Nucl. Energy 1971, 25, 129; https://doi.org/10.1016/0022-3107(71)90018-9.Search in Google Scholar
37. O’Brien, H. A.; Eldridge, J. S.; Drusche, l. R. E.; Halperin, J. The Thermal Neutron Cross Sections and Resonance Integrals of 139La and 140La. J. Inorg. Nucl. Chem. 1967, 29, 584.10.1016/0022-1902(67)80066-6Search in Google Scholar
38. Lyon, W. S. Reactor Neutron Activation Cross Sections for a Number of Elements. Nucl. Sci. Eng. 1960, 8, 378; https://doi.org/10.13182/nse60-a25817.Search in Google Scholar
39. Cummins, J. D. Some Pile Oscillator Cross Section Measurements Made in the Dimple Thermal Pit. AERE-R/R-2333 1957.Search in Google Scholar
40. Pomerance, H. Thermal Neutron Capture Cross Sections. Phys. Rev. 1951, 83, 641; https://doi.org/10.1103/physrev.83.641.Search in Google Scholar
41. Benoist, P.; Kowarski, L.; Netter, F. Absorption Measurement of Thermal Neutrons by Modulation in a Pile. J. Phys. Radium 1951, 125, 584.10.1051/jphysrad:01951001205058401Search in Google Scholar
42. Harris, S. P.; Muehlhause, C. O.; Rasmussen, S.; Schroeder, H. P.; Thomas, G. E. Pile Neutron Absorption Cross Sections. Phys. Rev. 1950, 80, 342; https://doi.org/10.1103/physrev.80.342.Search in Google Scholar
43. Seren, L.; Friedlander, H. N.; Turkel, S. H. Thermal Neutron Capture Cross Sections. Phys. Rev. 1947, 72, 888; https://doi.org/10.1103/physrev.72.888.Search in Google Scholar
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Original Papers
- Neutron capture cross section measurement for the 139La(n,γ)140La reaction at 0.0372 eV
- Proton and alpha-particle activation studies of natFe, natCu, natTi and natW targets at low energies
- Conversion and characterizations of polypropylene fibers into adsorbent by irradiation, chemically grafting, and their uranium uptake
- Separation of no-carrier-added Bi and stable Bi from thallium
- In vivo evaluation of Cerenkov luminescence and SPECT imaging for nanoscale 177Lu-labeled metal-organic framework
- Radiological hazard assessment of the soil in Daquq district, Kirkuk, Iraq
- Computational study of γ-ray and fast neutron shielding efficacy of (70–x)B2O3 – 5TeO2 – 20SrO – 5ZnO – (x)Bi2O3 glass systems using Phy-X/PSD, XCOM and GEANT-4
- Effect of ZnO particle size on the radiation shielding efficiency of B2O3–BaO–ZnO glass system
Articles in the same Issue
- Frontmatter
- Original Papers
- Neutron capture cross section measurement for the 139La(n,γ)140La reaction at 0.0372 eV
- Proton and alpha-particle activation studies of natFe, natCu, natTi and natW targets at low energies
- Conversion and characterizations of polypropylene fibers into adsorbent by irradiation, chemically grafting, and their uranium uptake
- Separation of no-carrier-added Bi and stable Bi from thallium
- In vivo evaluation of Cerenkov luminescence and SPECT imaging for nanoscale 177Lu-labeled metal-organic framework
- Radiological hazard assessment of the soil in Daquq district, Kirkuk, Iraq
- Computational study of γ-ray and fast neutron shielding efficacy of (70–x)B2O3 – 5TeO2 – 20SrO – 5ZnO – (x)Bi2O3 glass systems using Phy-X/PSD, XCOM and GEANT-4
- Effect of ZnO particle size on the radiation shielding efficiency of B2O3–BaO–ZnO glass system