Home Impact of gamma irradiation on phytochemical composition, and biological activities of Lepidium sativum seeds extract
Article
Licensed
Unlicensed Requires Authentication

Impact of gamma irradiation on phytochemical composition, and biological activities of Lepidium sativum seeds extract

  • Samia Hadj Rabia EMAIL logo , Aicha Debib , Atika Eddaikra , Lila Aberkane-Mchebbek , Ramy Nouri , Fatima Benmoussa , Amine Mokhtari , Sarah Medjber , Belkacem Mansouri and Mohammed Messaoudi ORCID logo EMAIL logo
Published/Copyright: March 29, 2024

Abstract

The main objective of this research is to assess how gamma radiation influences the chemical composition and activities such as antioxidant, antimicrobial and anticancer activities of Lepidium sativum (L. sativum) seeds. Methanolic extracts were obtained through a 24 h maceration process from L. sativum seeds exposed to various doses of gamma irradiation. Phytochemical screening involved precipitation and staining reactions, with the antioxidant potential assessed using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. Antimicrobial activity was evaluated through a diffusion test on agar medium, while the cytotoxic potential on the lung cancer line “A-549 cells” was examined using the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. Qualitative analysis of the extracts identified preserved bioactive constituents after irradiation. Additionally, quantitative analysis indicated a significant rise in the total content of polyphenols and flavonoids under radiation, accompanied by an enhanced reducing power compared to the control. The antimicrobial and cytotoxic capabilities also improved, evident in increased growth inhibition zones for certain microbial strains and reduced viability rates of A549 cells. These results show promise and warrant further investigation into the potential of gamma radiation to enhance additional biological effects of plants.


Corresponding authors: Samia Hadj Rabia, Department of Nuclear Applications, Nuclear Research Center of Draria, B.P.43 Sebala-Draria, Algeria, E-mail: ; and Mohammed Messaoudi, Nuclear Research Centre of Birine, P.O. Box 180, Ain Oussera, Djelfa 17200, Algeria, E-mail:

  1. Research ethics: Not applicable.

  2. Author contributions: SH contributed to designing, interpretation of data and drafting the manuscript. AD have been involved in performing experiments and revising the manuscript. LA, SH, RN, FB, AM, SM, MM contributed to the experiments and data collection, AE contributed to the statistical analysis, BM provided a technical contribution to the realization of irradiation. All authors have read and agreed to the published version of the manuscript.

  3. Conflicting interest: All authors declare no conflict of interest.

  4. Research funding: None declared.

  5. Data availability: Not applicable.

References

1. Alqahtani, F. Y., Aleanizy, F. S., Mahmoud, A. Z., Farshori, N. N., Alfaraj, R., Al-Sheddi, E. S., Alsarra, I. A. Chemical composition and antimicrobial, antioxidant, and anti-inflammatory activities of Lepidium sativum seed oil. Saudi. J. Biol. Sci. 2018, 26, 1089; https://doi.org/10.1016/j.sjbs.2018.05.007.Search in Google Scholar PubMed PubMed Central

2. Begaa, S., Messaoudi, M. Thermal neutron activation analysis of some toxic and trace chemical element contents in Mentha pulegium L. Radiochim. Acta 2018, 106, 769; https://doi.org/10.1515/ract-2018-2942.Search in Google Scholar

3. Messaoudi, M., Rebiai, A., Sawicka, B., Atanassova, M., Ouakouak, H., Larkem, I., Benchikha, N., Awuchi, C. G., Boubekeur, S., Ferhat, M. A., Begaa, S. Effect of extraction methods on polyphenols, flavonoids, mineral elements, and biological activities of essential oil and extracts of Mentha pulegium L. Molecules 2022, 27, 11; https://doi.org/10.3390/molecules27010011.Search in Google Scholar PubMed PubMed Central

4. Besufekad, Y., Beri, S., Adugnaw, T., Beyene, K. Antibacterial activity of Ethiopian Lepidium sativum L. against pathogenic bacteria. J. Med. Plants Res. 2018, 12, 64; https://doi.org/10.5897/jmpr2017.6321.Search in Google Scholar

5. Muhammad, Z., Shakeel, A., Luca, C., Teresa, M., Daniele, D., Nicoletta, P., De Feo, V. Compositional study and antioxidant potential of Ipomoea hederacea Jacq and Lepidium sativum L. seed. Molecules 2012, 17, 10306; https://doi.org/10.3390/molecules170910306.Search in Google Scholar PubMed PubMed Central

6. Doke, S., Guha, M. Garden cress (Lepidium sativum L.) seed‐an important medicinal source: A. Cellulose 2014, 9, 69.Search in Google Scholar

7. Al-Sheddi, E. S., Farshori, N. N., Al-Oqail, M. M., Musarrat, J., Al-Khedhairy, A. A., Siddiqui, M. A. Protective effect of Lepidium sativum seed extract against hydrogen peroxide-induced cytotoxicity and oxidative stress in human liver cells (HepG2). Pharm. Biol. 2016, 54, 314; https://doi.org/10.3109/13880209.2015.1035795.Search in Google Scholar PubMed

8. Raish, M., Ahmad, A., Alkharfy, K. M., Ahamad, S. R., Mohsin, K., Al-Jenoobi, F. I., Ansari, M. A. Hepatoprotective activity of Lepidium sativum seeds against D-galactosamine/lipopolysaccharide induced hepatotoxicity in animal model. BMC Complement. Altern. Med. 2016, 16, 501; https://doi.org/10.1186/s12906-016-1483-4.Search in Google Scholar PubMed PubMed Central

9. Baregama, C., Goyal, A. Phytoconstituents, pharmacological activity, and medicinal use of Lepidium sativum linn, a review. Asian J. Pharm. Clin. Res. 2019, 12, 45; https://doi.org/10.22159/ajpcr.2019.v12i4.31292.Search in Google Scholar

10. Omer, A. B., Nour, A. H., Ali, M. M., Ishag, O. A. O., Erwa, I. Y., Ali, M. A. Phytochemical screening, antimicrobial and antioxidant activity of Lepidium sativum seeds extract. S. Asian Res. J. Nat. Prod. 2020, 3, 10.Search in Google Scholar

11. Al-dbass, A., Amina, M., Al Musayeib, N. M., El-anssary, A., Bhat, R., Fahmy, R., Alhamdan, M. M., El-Ansary, A. Lepidium sativum as candidate against excitotoxicity in retinal ganglion cells. Transl. Neurosci 2021, 12, 247; https://doi.org/10.1515/tnsci-2020-0174.Search in Google Scholar PubMed PubMed Central

12. Hekmatshoar, Y., Özkan, T., Saadat, Y. R. Evidence for health-promoting properties of Lepidium sativum L.: an updated comprehensive review. Turk J. Pharm. Sci. 2022, 19, 714; https://doi.org/10.4274/tjps.galenos.2021.07504.Search in Google Scholar PubMed PubMed Central

13. Jimenez-Garcia, S. N., Vazquez-Cruz, M. A., Guevara-Gonzalez, R. G., Torres-Pacheco, I., Cruz-Hernandez, A., Feregrino-Perez, A. A. Current approaches for enhanced expression of secondary metabolites as bioactive compounds in plants for agronomic and human health purposes – a review. Polish J. Food Nutr. Sci. 2013, 63, 67; https://doi.org/10.2478/v10222-012-0072-6.Search in Google Scholar

14. Gomez-Galera, S., Pelacho, A. M., Gene, A., Capell, T., Christou, P. The genetic manipulation of medicinal and aromatic plants. Plant Cell Rep. 2007, 26, 1689; https://doi.org/10.1007/s00299-007-0384-x.Search in Google Scholar PubMed

15. Goyal, A., Siddiqui, S., Upadhyay, N., Soni, J. Effects of ultraviolet irradiation, pulsed electric field, hot water and ethanol vapours treatment on functional properties of mung bean sprouts. J. Food Sci. Technol. 2014, 51, 708; https://doi.org/10.1007/s13197-011-0538-2.Search in Google Scholar PubMed PubMed Central

16. Pallavi, J., Kanika, V. Effect of germination and dehulling on the nutritive value of soybean. Nutr. Food Sci. 2016, 46, 595; https://doi.org/10.1108/nfs-10-2015-0123.Search in Google Scholar

17. Directive 1999/3/EC of the European Parliament and of the council. The establishment of a Community list of food and food ingredients treated with ionizing radiation. Off. J. Eur. Communities: Legis. 1999, 66, 24–25.Search in Google Scholar

18. Food and Drug Administration, HHS Irradiation in the production, processing, and handling of food. Final rule. Fed. Regist. 2012, 77, 34212–34215.Search in Google Scholar

19. Ernawati, E., Suryadi, H., Mun’im, A. Effect of gamma irradiation on the caffeoylquinic acid derivatives content, antioxidant activity, and microbial contamination of Plucheaindica leaves. Heliyon 2021, 7, 07825; https://doi.org/10.1016/j.heliyon.2021.e07825.Search in Google Scholar PubMed PubMed Central

20. Krishnan, V., Singh, A., Thimmegowda, V., Singh, B., Dahuja, A., Rai, R. D., Sachdev, A. Low gamma irradiation effects on protein profile, solubility, oxidation, scavenger ability and bioavailability of essential minerals in black and yellow Indian soybean (Glycine max L.) varieties. J. Radioanal. Nucl. Chem. 2016, 307, 49; https://doi.org/10.1007/s10967-015-4193-3.Search in Google Scholar

21. Marathe, S. A., Deshpande, R., Khamesra, A., Ibrahim, G., Jamdar, S. N. Effect of radiation processing on nutritional, functional, sensory and antioxidant properties of red kidney beans. Radiat. Phys. Chem. 2016, 25, 1; https://doi.org/10.1016/j.radphyschem.2016.03.002.Search in Google Scholar

22. Pereira, E., Barros, L., Antonio, A. L., Verde, S. C., Santos-Buelga, C., Ferreira, I. C. F. R., Rodrigues, P. Is gamma radiation suitable to preserve phenolic compounds and to decontaminate mycotoxins in aromatic plants? A case-study with aloysia citrodora Paláu. Molecules 2017a, 22, 347; https://doi.org/10.3390/molecules22030347.Search in Google Scholar PubMed PubMed Central

23. Lee, J. H., Woo, K. S., Kim, J. K., Kim, M., Lee, B. W., Sim, E., Jeon, Y. H., Lee, C. K., Kim, H. J. Effects of gamma-irradiated soybean pod extract on oxidative stress, cancer cell viability, and tyrosinase inhibition. J. Food Biochem. 2018, 42, 12459; https://doi.org/10.1111/jfbc.12459.Search in Google Scholar

24. Khawory, M. H., AmatSain, A., Rosli, M. A. A., Ishak, M. S., Noordin, M. I., Wahab, H. A. Effects of gamma radiation treatment on three different medicinal plants: microbial limit test, total phenolic content, in vitro cytotoxicity effect and antioxidant assay. Appl. Radiat. Isot. 2020, 157, 109013; https://doi.org/10.1016/j.apradiso.2019.109013.Search in Google Scholar PubMed

25. Lim, Y. J., Kwon, S. J., Qu, S., Kim, D. G., Eom, S. H. Antioxidant contributors in seed, seed coat, and cotyledon of γ-ray-Induced soybean mutant lines with different seed coat colors. Antioxidants 2021, 10, 353; https://doi.org/10.3390/antiox10030353.Search in Google Scholar PubMed PubMed Central

26. Chatoui, K., Harhar, H., El Kamli, T., Tabyaoui, M. Chemical composition and antioxidant capacity of Lepidium sativum seeds from four regions of Morocco. Evid. Based Complement. Alternat. Med. 2020, 4, 1; https://doi.org/10.1155/2020/7302727.Search in Google Scholar PubMed PubMed Central

27. Zahnit, W., Smara, O., Bechki, L., Bensouici, C., Messaoudi, M., Benchikha, N., Larkem, I., Awuchi, C. G., Sawicka, B., Simal-Gandara, J. Phytochemical profiling, mineral elements, and biological activities of Artemisia campestris L. grown in Algeria. Horticulturae 2022, 8, 914; https://doi.org/10.3390/horticulturae8100914.Search in Google Scholar

28. El-Guourrami, O., Salhi, N., Benkhouili, F. Z., Zengin, G., Yilmaz, M. A., Ameggouz, M., Zahidi, A., Rouas, L., Bouyahya, A., Goh, K. W., Sam, T. H., Ming, L. C., Doukkali, A., Benzeid, H. Phytochemical composition and toxicity assessment of Ammimajus L. Asian Pac. J. Trop. Biomed. 2023, 13, 165; https://doi.org/10.4103/2221-1691.374233.Search in Google Scholar

29. Karumi, Y., Onyeyili, P. A., Ogugbuaja, V. O. Identification of active principles of M. Balsamina (Balsam Apple) leaf extract. J. Med. Sci. 2004, 4, 179; https://doi.org/10.3923/jms.2004.179.182.Search in Google Scholar

30. Nair, P. R., Sreeja, S., Sailaja, G. S. In vitro biomineralization and osteogenesis of Cissus quadrangularis stem extracts: an osteogenic regulator for bone tissue engineering. J. Biosci. 2021, 46, 1; https://doi.org/10.1007/s12038-021-00206-x.Search in Google Scholar

31. Malik, S. K., Ahmad, M., Khan, F. Qualitative and quantitative estimation of terpenoid contents in some important plants of Punjab, Pakistan. Pak. J. Sci. 2017, 69, 150.10.57041/pjs.v69i2.364Search in Google Scholar

32. Bidie, A. P., N’Guessan, B. B., Yapo, A. F., N’Guessan, J. D., Djaman, A. J. Activités antioxydantes de dix plantes medicinales de la pharmacopée ivoirienne. Sci. Nat. 2011, 8, 1.Search in Google Scholar

33. Dohou, N., Yamni, K., Tahrouch, S., Idrissi Hassani, L. M., Badoc, A., Gmira, N. Phytochemical screening of an Ibero-Moroccan endemic. Thymelaea Lythroides Bull. Soc. Pharm. Bordeaux. 2003, 142, 61.Search in Google Scholar

34. Woonnoi, W., Moolsap, F., Tanasawet, S., Khumpirapang, N., Aenglong, C., Sukketsiri, W. In vitro antioxidant and wound healing activity of Sargassum polycystum hydroethanolic extract in fibroblasts and keratinocytes. Asian Pac. J. Trop. Biomed. 2023, 13, 222; https://doi.org/10.4103/2221-1691.377409.Search in Google Scholar

35. El-Beltagi, H. S., Aly, A. A., El-Desouky, W. Effect of gamma irradiation on some biochemical properties, antioxidant and antimicrobial activities of Sakouti and Bondoky dry dates fruits genotypes. J. Radiat. Res. Appl. Sci. 2019, 12, 437; https://doi.org/10.1080/16878507.2019.1690799.Search in Google Scholar

36. Wistriech, G. A., Microbiology Laboratory, 3rd ed.; Prentice Hall, Macmillian: New York, 1997; p. 319.Search in Google Scholar

37. Wang, X., Sankarapandian, K., Cheng, Y., Woo, S. O., Kwon, H. W., Perumalsamy, H., Ahn, Y. J. Relationship between total phenolic contents and biological properties of propolis from 20 different regions in South Korea. BMC Complement. Med. Ther. 2016, 16, 1; https://doi.org/10.1186/s12906-016-1043-y.Search in Google Scholar PubMed PubMed Central

38. Chatoui, K., Talbaoui, A., Aneb, M., Bakri, Y., Harhar, H., Tabyaoui, M. Phytochemical screening, antioxidant and antibacterial activity of Lepidium sativum seeds from Morocco. J. Mater. Environ. Sci. 2016, 7, 2938.Search in Google Scholar

39. Al-Marzoqi, A. H., Al-Khafaji, N. M., Hussein, J. H. In vitro antibacterial activity assessment of the crude phenolic, alkaloid and terpenoid compounds extracts of Lepidium sativum L. on human pathogenic bacteria. Int. J. Chemtech Res. 2016, 9, 529.Search in Google Scholar

40. Kibiti, C. M., Afolayan, A. J. Preliminary phytochemical screening and biological activities of Bulbine abyssinica used in the folk medicine in the Eastern Cape Province, South Africa. Evid. Based Complement. Alternat. Med. 2015, 2015, 617607; https://doi.org/10.1155/2015/617607.Search in Google Scholar PubMed PubMed Central

41. Elouafy, Y., El Yadini, A., Mortada, S., Hnini, M., Harhar, H., Khalid, A., Abdalla, A., Bouyahya, A., Goh, K. W., Ming, L. C., my el abbes, F., Tabyaoui, M. Antioxidant, antimicrobial, and α-glucosidase inhibitory activities of saponin extracts from walnut (Juglans regia L.) leaves. Asian Pac. J. Trop. Biomed. 2023, 13, 60; https://doi.org/10.4103/2221-1691.369610.Search in Google Scholar

42. Mosa, R. A., Nhleko, M. L., Dladla, T. V., Opoku, A. R. Antibacterial activity of two triterpenes from stem bark of Protorhus longifolia. J. Med. Plant Res. 2014, 8, 686; https://doi.org/10.5897/jmpr2013.5259.Search in Google Scholar

43. Ouakouak, H., Benarfa, A., Messaoudi, M., Begaa, S., Sawicka, B., Benchikha, N., Simal-Gandara, J. Biological properties of essential oils from Thymus algeriensis Boiss. Plants 2021, 10, 786; https://doi.org/10.3390/plants10040786.Search in Google Scholar PubMed PubMed Central

44. Berehe, S. G., Boru, A. D. Phytochemical screening and antimicrobial activities of crude extract of Lepidium sativium seeds grown in Ethiopia. Int. J. Pharm. Sci. Res. 2014, 5, 4182.Search in Google Scholar

45. Ramalhete, C., Spengler, G., Martins, A., Martins, M., Viveiros, M., Mulhovo, S., Ferreira, M. J., Amaral, L. Inhibition of efflux pumps in methicillin-resistant Staphylococcus aureus and Enterococcus faecalis resistant strains by triterpenoids from Momordica balsamina. Int. J. Antimicrob. Agents 2011, 37, 70; https://doi.org/10.1016/j.ijantimicag.2010.09.011.Search in Google Scholar PubMed

46. Khattak, K. F., Simpson, T. J., Ihasnullah, I. Ihasnullah: effect of gamma irradiation on the extraction yield, total phenolic content and free radical-scavenging activity of Nigella sativa seed. Food Chem. 2008, 110, 967; https://doi.org/10.1016/j.foodchem.2008.03.003.Search in Google Scholar PubMed

47. Gumus, T., Albayrak, S., Sagdic, O., Arici, M. Effect of gamma irradiation on total phenolic contents and antioxidant activities of Satureja hortensis, Thymus vulgaris, and Thymbra spicata from Turkey. Int. J. Food Prop. 2011, 14, 830; https://doi.org/10.1080/10942910903453397.Search in Google Scholar

48. Abolhasani, A., Barzegar, M., Sahari, M. A. Effect of gamma irradiation on the extraction yield, antioxidant, and antityrosinase activities of pistachio green hull extract. Radiat. Phys. Chem. 2018, 144, 373; https://doi.org/10.1016/j.radphyschem.2017.09.025.Search in Google Scholar

49. Gaspar, E. M., Santana, J. C., Santos, P. M., Telo, J. P., Vieira, A. J. Gamma irradiation of clove: level of trapped radicals and effects on bioactive composition. J. Sci. Food Agric. 2019, 99, 1668; https://doi.org/10.1002/jsfa.9351.Search in Google Scholar PubMed

50. Radwan, H., El-Missiry, M., Al-Said, M., Ismail, W., Abdel, A., Seif-Elnasr, M. Investigation of the glucosinolate of Lepidium sativum growing in Egypt and their biological activity. Res. J. Med. Med. Sci. 2007, 2, 127.Search in Google Scholar

51. Senhaji, S., Lamchouri, F., Toufik, H. Phytochemical content, antibacterial and antioxidant potential of endemic plant Anabasis aretioïdes Coss. Moq. (Chenopodiaceae). Biomed. Res. Int. 2020, 2020, 6152932; https://doi.org/10.1155/2020/6152932.Search in Google Scholar PubMed PubMed Central

52. Hussein, H. M. Analysis of trace heavy metals and volatile chemical compounds of lepidium sativiumusing atomic absorption spectroscopy, gas chromatography – mass spectrometric and fourier transform infrared spectroscopy. Res. J. Pharm. Biol. Chem. Sci. 2016, 7, 25.Search in Google Scholar

53. Sunil, C., Kumar, V., Van Staden, J. In vitro alpha-glucosidase inhibitory, total phenolic composition, antiradical and antioxidant potential of Heteromorpha arborescens (Spreng.) Cham. & Schltdl. leaf and bark extracts. S. Afr. J. Bot. 2019, 124, 380; https://doi.org/10.1016/j.sajb.2019.05.017.Search in Google Scholar

54. Bouterfas, K., Mehdadi, Z., Elaoufi, M., Latreche, A., Benchiha, W. Antioxidant activity and total phenolic and flavonoids content variations of leaves extracts of white Horehound (Marrubium vulgare Linné) from three geographical origins. Ann. Pharm. Fr. 2016, 74, 453; https://doi.org/10.1016/j.pharma.2016.07.002.Search in Google Scholar PubMed

55. Ahamad, R., Mujeeb, M., Anwar, F., Ahmad, A. Phytochemical analysis and evaluation of anti-oxidant activity of methanolic extract of Lepidium sativum L. seeds. Der. Pharm. Lett. 2015, 7, 427.Search in Google Scholar

56. Dixit, A. K., Bhatnagar, D., Kumar, V., Rani, A., Manjaya, J. G., Bhatnagar, D. Gamma Irradiation induced enhancement in isoflavones, total phenol, anthocyanin and antioxidant properties of varying seed coat colored soybean. J. Agric. Food Chem. 2010, 58, 4298; https://doi.org/10.1021/jf904228e.Search in Google Scholar PubMed

57. Popović, B. M., Štajner, D., Mandić, A., Čanadanović-Brunet, J., Kevrešan, S. Enhancement of antioxidant and isoflavones concentration in gamma irradiated soybean. Sci. World J. 2013, 2013, 383574; https://doi.org/10.1155/2013/383574.Search in Google Scholar PubMed PubMed Central

58. Khattak, K. F., Rahman, T. U. Effect of gamma irradiation on the vitamins, phytochemicals, antimicrobial and antioxidant properties of Ziziphus mauritiana Lam. Leaves. Radiat. Phys. Chem. 2016, 127, 243; https://doi.org/10.1016/j.radphyschem.2016.07.001.Search in Google Scholar

59. Farkhad, S. A., Hosseini, A. Effect of gamma irradiation on antioxidant potential, isoflavone aglycone and phytochemical content of soybean (Glycine max L. Merrill) cultivar Williams. J. Radioanal. Nucl. Chem. 2020, 324, 497; https://doi.org/10.1007/s10967-020-07100-0.Search in Google Scholar

60. Hwang, K. E., Ham, Y. K., Song, D. H., Kim, H. W., Lee, M. A., Jeong, J. Y., Choi, Y. S. Effect of gamma-ray, electron-beam, and X-ray irradiation on antioxidant activity of mugwort extracts. Radiat. Phys. Chem. 2021, 186, 109476; https://doi.org/10.1016/j.radphyschem.2021.109476.Search in Google Scholar

61. Chiang, Y. C., Huang, G. J., Ho, Y. L., Hsieh, P. C., Chung, H. P., Chou, F. I., Chang, Y. S. Influence of gamma irradiation on microbial load and antioxidative characteristics of polygoni multiflori radix. Process Biochem. 2011, 46, 777; https://doi.org/10.1016/j.procbio.2010.12.004.Search in Google Scholar

62. Rahman, M., Moniruzzazan, M., Das, K. C., Islam, M. A., Kamal, M. M., Rahman, M. S., Khan, R. A. Effect of gamma radiation on fungal load decontamination of marketed spices. Arch. Agric. Environ. Sci. 2023, 8, 468; https://doi.org/10.26832/24566632.2023.080402.Search in Google Scholar

63. Ghadi, F. E., Ghara, A. R., Esmaeilipour, O., Kohannia, N. Evaluation of gamma ray effects on total phenolic contents, antioxidants and antibacterial activities of Cichorium intybus L. Biomacromolec. J. 2017, 3, 115.Search in Google Scholar

64. Ramabulana, T., Mavunda, R. D., Steenkamp, P. A., Piater, L. A., Dubery, I. A., Madala, N. E. Perturbation of pharmacologically relevant polyphenolic compounds in Moringa oleifera against photo-oxidative damages imposed by gamma radiation. J. Photochem. Photobiol. B. 2016, 156, 79; https://doi.org/10.1016/j.jphotobiol.2016.01.013.Search in Google Scholar PubMed

65. Syahdi, R. R., Sakti, A. S., Kristiyanto, A., Redmawati, R., Mun’im, A. Effect of gamma irradiation on some pharmacological properties and microbial activities of Melinjo (Gnetum gnemon Linn.) seeds. Pharmacogn. J. 2019, 11, 177; https://doi.org/10.5530/pj.2019.1.29.Search in Google Scholar

66. Alothman, M., Bhat, R., Karim, A. A. Effects of radiation processing on phytochemicals and antioxidants in plant produce. Trends Food Sci. Technol. 2009, 20, 201; https://doi.org/10.1016/j.tifs.2009.02.003.Search in Google Scholar

67. Vardhan, P. V., Shukla, L. I. Gamma irradiation of medicinally important plants and the enhancement of secondary metabolite production. Int. J. Radiat. Biol. 2017, 93, 967; https://doi.org/10.1080/09553002.2017.1344788.Search in Google Scholar PubMed

68. Madureira, J., Dias, M. I., Pinela, J., Calhelha, R., Barros, L., Santos-Buelga, C., Margaça, F. M. A., Ferreira, I. C. F. R., Cabo Verde, S. The use of gamma radiation for extractability improvement of bioactive compounds in olive oil wastes. Sci. Total Environ. 2020, 727, 138706; https://doi.org/10.1016/j.scitotenv.2020.138706.Search in Google Scholar PubMed

69. Ahmed, S. M., Hassan, A. B. Validation of γ‐radiation and their effect on phenolic compounds, antioxidant activity, and microbial load of fennel (Foeniculum vulgare) seeds and cinnamon (Cinnamomum verum) sticks. Food. Sci. Nutr. 2023, 11, 1994; https://doi.org/10.1002/fsn3.3233.Search in Google Scholar PubMed PubMed Central

70. Abdelaleem, M. A., Elbassiony, R. A. K. Evaluation of phytochemicals and antioxidant activity of gamma irradiated quinoa (Chenopodium quinoa). Braz. J. Biol. 2021, 81, 806; https://doi.org/10.1590/1519-6984.232270.Search in Google Scholar PubMed

71. Hojjati, M., Shahbazi, S., Askari, H., Makari, M. Use of X-irradiations in reducing the waste of aflatoxin-contaminated pistachios and evaluation of the physicochemical properties of the irradiated product. Foods 2023, 12, 3040; https://doi.org/10.3390/foods12163040.Search in Google Scholar PubMed PubMed Central

72. Manimurugan, C., Sujatha, M., Rathnakumar, A. L., Sandhanalakshmi, M., Zanwar, A. A. Role of flaxseed (Linum usitatissimum L.) in disease prevention and treatment. Asian Pac. J. Trop. Biomed. 2023, 13, 277; https://doi.org/10.4103/2221-1691.380559.Search in Google Scholar

73. Ouedraogo, R. A., Koala, M., Dabire, C., Hema, A., Bazie, V. B. E. J. T., Ouattara, L. P., Gnoula, C., Pale, E., Nebie, R. Total phenolic content and antioxidant activity of extracts of the three main varieties of onions (Allium cepa L.) grown in the Central-North region of Burkina Faso. Int. J. Biol. Chem. Sci. 2015, 9, 281; https://doi.org/10.4314/ijbcs.v9i1.25.Search in Google Scholar

74. Alinezhad, M., Hojjati, M., Barzegar, H., Shahbazi, S., Askari, H. Effect of gamma irradiation on the physicochemical properties of pistachio (Pistaciavera L.) nuts. J. Food Meas. Charact. 2021, 15, 199; https://doi.org/10.1007/s11694-020-00620-z.Search in Google Scholar

75. Jovanovic, S. V., Steenken, S., Tosic, M., Marjanovic, B., Simic, M. G. Flavonoids as antioxidants. J. Am. Chem. Soc. 1994, 116, 4846; https://doi.org/10.1021/ja00090a032.Search in Google Scholar

76. Adeleke, O., Adefegha, S., Oboh, G. Mechanisms of medicinal plants in the treatment of diabetic wound. Asian Pac. J. Trop. Biomed. 2023, 13, 233; https://doi.org/10.4103/2221-1691.378597.Search in Google Scholar

77. Al-Hadhrami, R. M. S., Al Muniri, R. M. S., Hossain, M. A. Evaluation of antimicrobial and cytotoxic activities of polar solvent extracts from leaves of Ammi majus used by the Omanis. Pac. Sci. Rev. A Nat. Sci. Eng. 2016, 18, 62; https://doi.org/10.1016/j.psra.2016.08.002.Search in Google Scholar

78. Adam, S., Salih, S., Abdelgadir, W. In vitro antimicrobial assessment of Lepidium sativum L. seeds extracts. Asian J. Med. Sci. 2011, 3, 261.Search in Google Scholar

79. Akrayi, H. F., Tawfeeq, J. D. Antibacterial activity of Lepidium sativum and Allium porrum extracts and juices against some Gram positive and Gram negative bacteria. Med. J. Islamic World Acad. Sci. 2012, 20, 10.Search in Google Scholar

80. Saddiq, A. A., Alkinani, M. H. Fungicidal impact of Salvadora Persica L. (Miswak) extract on growth of foodborne pathogens, Aspergillus species. Dose Response 2019, 17, 1559325819876218; https://doi.org/10.1177/1559325819876218.Search in Google Scholar PubMed PubMed Central

81. Abdellatif, F., Begaa, S., Messaoudi, M., Benarfa, A., Ouakouak, H., Hassani, A., Simal Gandara, J. HPLC-DAD analysis, antimicrobial and antioxidant properties of aromatic herb Melissa officinalis L., aerial parts extracts. Food Anal. Methods 2023, 16, 45; https://doi.org/10.1007/s12161-022-02385-1.Search in Google Scholar PubMed PubMed Central

82. Santos, G. H. F., Silva, E. B., Silva, B. L., Sena, K. X. F. R., Lima, C. S. A. Influence of gamma radiation on the antimicrobial activity of crude extracts of Anacardium occidentale L., Anacardiaceae, rich in tannins. Rev. Bras. Farmacogn. 2011, 21, 444; https://doi.org/10.1590/s0102-695x2011005000045.Search in Google Scholar

83. Brudzynski, K., Lannigan, R. Mechanism of honey bacteriostatic action against MRSA and VRE involves hydroxyl radicals generated from honey’s hydrogen peroxide. Front. Microbiol. 2012, 3, 36; https://doi.org/10.3389/fmicb.2012.00036.Search in Google Scholar PubMed PubMed Central

84. Essaoui, T., Srour, M. Screening of some Palestinian medicinal plants for antibacterial activity. J. Ethnopharmacol. 2000, 70, 343; https://doi.org/10.1016/s0378-8741(99)00187-7.Search in Google Scholar PubMed

85. Castellanos, L. M., Olivas, N. A., Ayala-Soto, J., De La O Contreras, C. M., Ortega, M. Z., Salas, F. S., Hernández-Ochoa, L. In vitro and in vivo antifungal activity of clove (Eugenia caryophyllata) and pepper (Piper nigrum L.) essential oils and functional extracts against Fusarium oxysporum and Aspergillus niger in tomato (Solanum lycopersicum L.). Int. J. Microbiol. 2020, 30, 1702037.10.1155/2020/1702037Search in Google Scholar PubMed PubMed Central

86. Rodriguez, R. J., Low, C., Bottema, C. D. K., Parks, L. W. Multiple functions for sterols in Saccharomyces cerevisiae. Biochim. Biophys. Acta 1985, 837, 336; https://doi.org/10.1016/0005-2760(85)90057-8.Search in Google Scholar PubMed

87. Pereira, E., Pimenta, A. I., Calhelha, R. C., Antonio, A. L., Barros, L., Santos-Buelga, C., Verde, S. C., Ferreira, I. C. F. R. Infusions of gamma irradiated Aloysia citrodora L. and Mentha x piperita L: effects on phenolic composition, cytotoxicity, antibacterial and virucidal activities. Ind. Crops Prod. 2017, 97, 582; https://doi.org/10.1016/j.indcrop.2017.01.007.Search in Google Scholar

88. Eamsiri, J., Chookaew, S., Pewlong, W., Sajjabut, S., Orpong, P. Effects of irradiation on antioxidant and antimicrobial activities of Coscinium fenestratum (Goetgh.) Colebr. J. Phys. Conf. Ser. 2019, 1285, 012006; https://doi.org/10.1088/1742-6596/1285/1/012006.Search in Google Scholar

89. Pei, R. S., Zhou, F., Ji, B. P., Xu, J. Evaluation of combined antibacterial effects of eugenol, cinnamaldehyde, thymol, and carvacrol against E. coli with an improved method. J. Food Sci. 2009, 74, 379; https://doi.org/10.1111/j.1750-3841.2009.01287.x.Search in Google Scholar PubMed

90. Patidar, K., Ambade, B., Mohammad, F., Soleiman, A. A. Microplastics as heavy metal vectors in the freshwater environment: distribution, variations, sources and health risk. Phys. Chem. Earth. Part. A/B/C. 2023, 131, 103448; https://doi.org/10.1016/j.pce.2023.103448.Search in Google Scholar

91. Ambade, B., Sankar, T. K., Kumar, A., Sethi, S. S. Characterization of PAHs and n-alkanes in atmospheric aerosol of Jamshedpur City, India. J. Hazard. Toxic Radioact. Waste 2020, 24, 24; https://doi.org/10.1061/(asce)hz.2153-5515.0000490.Search in Google Scholar

92. Maharjan, L., Tripathee, L., Kang, S., Ambade, B., Chen, P., Zheng, H., Sharma, C. M., Shrestha, K. L. Characteristics of atmospheric particle-bound polycyclic aromatic compounds over the himalayan middle hills: implications for sources and health risk assessment. Asian J. Atmos. Environ. 2021, 15, 1; https://doi.org/10.5572/ajae.2021.101.Search in Google Scholar

93. Ambade, B. Characterization of PM 10 over urban and rural sites of Rajnandgaon, central India. Nat. Hazards 2016, 80, 589; https://doi.org/10.1007/s11069-015-1985-2.Search in Google Scholar

94. Ambade, B., Sankar, T. K., Sahu, L. K., Dumka, U. C. Understanding sources and composition of black carbon and PM2. 5 in urban environments in East India. Urban Sci. 2022, 6, 60; https://doi.org/10.3390/urbansci6030060.Search in Google Scholar

95. Ibrahim, M. M., Mounier, M. M., Bekheet, S. A. Targeting apoptotic anticancer response with natural glucosinolates from cell suspension culture of Lepidium sativum. J. Genet. Eng. Biotechnol. 2023, 21, 53; https://doi.org/10.1186/s43141-023-00511-y.Search in Google Scholar PubMed PubMed Central

96. Indumathy, R., Aruna, A. Cytotoxic potential of various extracts of Lepidium sativum (Linn.) an in vitro evaluation. Int. J. Pharm. Pharm Sci. 2015, 2, 1.Search in Google Scholar

97. Niedzwiecki, A., Roomi, M. W., Kalinovsky, T., Rath, M. Anticancer efficacy of polyphenols and their combinations. Nutrients 2016, 8, 552; https://doi.org/10.3390/nu8090552.Search in Google Scholar PubMed PubMed Central

98. Sioud, F., Maatouk, M., Bzeouich, I. M., Ghedira, L. C., Kilani-Jaziri, S. In vitro anti-melanoma effect of polyphenolic compounds. Asian Pac. J. Trop. Biomed. 2022, 12, 446; https://doi.org/10.4103/2221-1691.357744.Search in Google Scholar

Received: 2023-11-27
Accepted: 2024-03-13
Published Online: 2024-03-29
Published in Print: 2024-05-27

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 15.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ract-2023-0260/html
Scroll to top button