Abstract
The properties and stability of ozone in aqueous solutions of various compositions in the рН range of 0–14 were considered. The effect of anions and cations, which are involved in the redox reactions of actinides, on the stability of ozone and its reactivity has been studied. The reactions of О3 with ions of d- and f-elements were analyzed. Depending on the solution composition and рН value, the reaction can occur directly with the O3 molecule (direct mechanism) and/or with short-lived ion-radical products (•OH,
Award Identifier / Grant number: AAAA-A16-116121410087-6
Funding source: Russian Foundation for Basic Research
Award Identifier / Grant number: 19-03-00501
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
Research funding: The study was supported by Ministry of Science and Higher Education of the Russian Federation (project no. AAAA-A16-116121410087-6) and partially by the Russian Foundation for Basic Research (project no. 19-03-00501).
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. von Sonntag, C., von Gunten, U. Chemistry of Ozone in Water and Wastewater Treatment. Science; IWA Publishing Alliance Hause: London, UK, 2012; pp. 1–302.10.2166/9781780400839Search in Google Scholar
2. Wei, C., Zhang, F., Hu, Y., Feng, C., Wu, H. Ozonation in water treatment: the generation, basic properties of ozone and its practical application. Rev. Chem. Eng. 2017, 33, 49; https://doi.org/10.1515/revce-2016-0008.Search in Google Scholar
3. Kim, J. G., Yousef, A. E., Khadre, M. A. Ozone and its current and future application in the food industry. Adv. Food Nutr. Res. 2003, 45, 168–218; https://10.1016/s1043-4526(03)45005-5. https://www.chemengonline.com/the-use-of-ozone-in-chemical-process-industries-cpi-applications/?pagenum=1.10.1016/S1043-4526(03)45005-5Search in Google Scholar
4. Griffith, W. P. Ozonolysis in coordination chemistry and catalysis: recent advances. Coord. Chem. Rev. 2001, 259, 219; https://doi.org/10.1016/S0010-8545(01)00328-9.Search in Google Scholar
5. Krot, N. N., Gel’man, A. D., Mefod’eva, M. P., Shilov, V. P., Peretrukhin, V. F., Spitsyn, V. I. Heptavalent State of Neptunium, Plutonium and Americium. UCRL-Trans-11798; Lawrence Livermore National Laboratory: Livermore, California, 1977.Search in Google Scholar
6. Spitsyn, V. I., Gelman, A. D., Krot, N. N., Mefodiyeva, M. P., Zakharova, F. A., Komkov, Y. A., Shilov, V. P., Smirnova, I. V. Heptavalent state of neptunium and plutonium. J. Inorg. Nucl. Chem. 1969, 31, 2733; https://doi.org/10.1016/0022-1902(69)80187-9.Search in Google Scholar
7. Krot, N. N., Shilov, V. P., Nikolaevskii, V. B., Pikaev, A. K., Gel’man, A. D., Spitsyn, V. I. Production of americium in septivalent state. Dokl. Akad. Nauk SSSR 1974, 217, 589.10.2172/4948233Search in Google Scholar
8. Ershov, B. G. Characteristics of ozone as an oxidant for actinides in alkaline solutions and the mechanism of possible reactions. J. Radioanal. Nucl. Chem. 2018, 317, 1059; https://doi.org/10.1007/s10967-018-5980-4.Search in Google Scholar
9. Bratsch, S. G. Standard electrode potentials and temperature coefficients in water at 298.15 K. J. Phys. Chem. Ref. Data 1989, 18, 1; https://doi.org/10.1063/1.555839.Search in Google Scholar
10. Ershov, B. G., Morozov, P. A. The kinetics of ozone decomposition in water, the influence of pH and temperature. Russ. J. Phys. Chem. A 2009, 83, 1295; https://doi.org/10.1134/S0036024409080093.Search in Google Scholar
11. Sehested, K., Corfitzen, H., Holcman, J., Fischer, C., Hart, E. The primary reaction in the decomposition of ozone in acidic aqueous solutions. Environ. Sci. Technol. 1991, 25, 1589; https://doi.org/10.1021/es00021a010.Search in Google Scholar
12. Sehested, K., Corfitzen, H., Holcman, J., Fischer, C., Hart, E. On the mechanism of the decomposition of acidic O3 solutions, thermally or H2O2 – initiated. J. Phys. Chem. A 1998, 102, 2667; https://doi.org/10.1021/jp9721053.Search in Google Scholar
13. Buhler, R. E., Staehelin, J., Hoigné, J. Ozone decomposition in water studied by pulse radiolysis. I. HO2/O2− and HO3/O3− as intermediates. J. Phys. Chem. 1984, 88, 2560; https://doi.org/10.1021/j150656a026.Search in Google Scholar
14. Staehelin, J., Buhler, R. E., Hoigné, J. Ozone decomposition in water studied by pulse radiolysis. II: OH and HO4 as Chain Intermediates. J. Phys. Chem. 1984, 88, 5999; https://doi.org/10.1021/j150668a051.Search in Google Scholar
15. Staehelin, J., Hoigné, J. Decomposition of ozone in water: rate of initiation by hydroxide ions and hydrogen peroxide. Environ. Sci. Technol. 1982, 16, 676; https://doi.org/10.1021/es00104a009.Search in Google Scholar
16. Staehelin, J., Hoigné, J. Decomposition of ozone in water in the presence of organic solutes acting as promoters and inhibitors of radical chain reaction. Environ. Sci. Technol. 1985, 19, 1206; https://doi.org/10.1021/es00142a012.Search in Google Scholar
17. Forni, L., Bahnemann, D., Hart, E. J. Mechanism of the hydroxide ion initiated decomposition of ozone in aqueous solution. J. Phys. Chem. 1982, 86, 255; https://doi.org/10.1021/j100391a025.Search in Google Scholar
18. Hoigné, J., Bader, H. Rate constants of reactions of ozone with organic and inorganic compounds in water. I: non-dissociating organic compounds. Water Res. 1983, 17, 173; https://doi.org/10.1016/0043-1354(83)90098-2.Search in Google Scholar
19. Sehested, K., Holcman, J., Hart, E. J. Rate constants and products of the reactions of e−aq, dioxide(-1)(O2) and proton with ozone in aqueous solutions. J. Phys. Chem. 1983, 87, 1951; https://doi.org/10.1021/j100234a024.Search in Google Scholar
20. Sehested, K., Holcman, J., Bjergbakke, E., Hart, E. J. A pulse radiolytic study of the reaction OH +O3 in aqueous medium. J. Phys. Chem. 1984, 88, 4144; https://doi.org/10.1021/j150662a058.Search in Google Scholar
21. Nemes, A., Fábián, I., Eldik, R. V. Kinetics and mechanisms of the carbonate ion inhibited aqueous ozone decomposition. J. Phys. Chem. A 2000, 104, 7995; https://doi.org/10.1021/jp000972t.Search in Google Scholar
22. Nemes, A., Fábián, I., Gordon, G. Experimental aspects of mechanistic studies on aqueous ozone decomposition in alkaline solution. Ozone Sci. Eng. 2008, 22, 287; https://doi.org/10.1080/01919510008547212.Search in Google Scholar
23. Tomiyasu, H., Fukutomi, H., Gordon, G. Kinetics and mechanism of ozone decomposition in basic aqueous solution. Inorg. Chem. 1985, 24, 2962; https://doi.org/10.1021/ic00213a018.Search in Google Scholar
24. Chelkowska, K., Grasso, D., Fábián, I., Gordon, G. Numerical simulations of aqueous ozone decomposition. Ozone Sci. Eng. 1992, 14, 33; https://doi.org/10.1080/01919519208552316.Search in Google Scholar
25. Bezbarua, B. K., Reckhow, D. A. Modification of the standard neutral ozone decomposition model. Ozone Sci. Eng. 2004, 26, 345; https://doi.org/10.1080/01919510490482179.Search in Google Scholar
26. Panich, N. M., Ershov, B. G. The solubility and kinetics of decomposition of ozone in aqueous solutions of nitrates. Russ. J. Phys. Chem. A 2008, 82, 1262; https://doi.org/10.1134/S0036024408080049.Search in Google Scholar
27. Morozov, P. A., Ershov, B. G. The influence of phosphates on the decomposition of ozone in water: chain process inhibition. Russ. J. Phys. Chem. A 2010, 84, 1136; https://doi.org/10.1134/S0036024410070101.Search in Google Scholar
28. Ignatiev, A. N., Pryakhin, A. N., Lunin, V. V. Mathematical simulation as a method to study the influence of oxygen, hydrogen peroxide, and phosphate and carbonate ions on the kinetics of ozone decomposition in aqueous solution. Russ. Chem. Bull. 2009, 58, 1097; https://doi.org/10.1007/s11172-009-0142-z.Search in Google Scholar
29. Maruthamuthu, P., Neta, P. Phosphate radicals. Spectra, acid-base equilibria, and reactions with inorganic compounds. J. Phys. Chem. 1978, 82, 710; https://doi.org/10.1021/j100495a019.Search in Google Scholar
30. Shilov, V. P., Fedoseev, A. M. Reaction of ozone with Np(V) and Np(IV) in carbonate solutions. Radiochemistry 2013, 55, 357; https://doi.org/10.1134/S1066362213040024.Search in Google Scholar
31. Levanov, A. V., Kuskov, I. V., Zosimov, A. V., Antipenko, E. E., Lunin, V. V. Solubility and kinetics of ozone destruction in aqueous solutions of sulfuric and phosphoric acids. Vestn. Mosk. Univ. Seriya 2 Khimiya 2002, 43, 286.Search in Google Scholar
32. Ershov, B. G., Panich, N. M. The solubility and decomposition of ozone in solutions of sulfuric and perchloric acids in the temperature range from 25 to −70 °C. Dokl. Phys. Chem. 2015, 465, 279; https://doi.org/10.1134/S0012501615110068.Search in Google Scholar
33. Nikitina, G. P., Ivanov, Yu. E., Shumkov, V. G., Egorova, V. P. Oxidation of cations of variable valence by ozone. 1. Behaviour of ozone in nitric acid solutions. Radiokhimiya 1999, 41, 323.Search in Google Scholar
34. Shilov, V. P., Fedoseev, A. M. Role of peroxynitrite in oxidation of f-element ions in HNO3 solutions. Radiochemistry 2013, 55, 366; https://doi.org/10.1134/S1066362213040048.Search in Google Scholar
35. Sotelo, J. L., Beltrán, F. J., González, M., Domínguez, J. Effect of high salt concentrations on ozone decomposition in water. J. Environ. Sci. Health, Part A: Environ. Sci. Eng. 1989, 24, 823; https://doi.org/10.1080/10934528909375518.Search in Google Scholar
36. Levanov, A. V., Kuskov, I. V., Zosimov, A. V., Antipenko, E. E., Lunin, V. V. Acid catalysis in reaction of ozone with chloride ions. Kinet. Catal. 2003, 44, 740; https://doi.org/10.1023/B:KICA.0000009047.90252.2d.10.1023/B:KICA.0000009047.90252.2dSearch in Google Scholar
37. Panich, N. M., Ershov, B. G., Seliverstov, A. F., Basiev, A. G. Ozone solubility in concentrated aqueous solutions of salts. Russ. J. Appl. Chem. 2007, 80, 1812; https://doi.org/10.1134/S1070427207110067.Search in Google Scholar
38. Ershov, B. G., Panich, N. M., Seliverstov, A. F., Belyaeva, M. P. Ozone decomposition in concentrated aqueous solutions of salts. Russ. J. Appl. Chem. 2008, 81, 723; https://doi.org/10.1134/S1070427208040319.Search in Google Scholar
39. Levanov, A. V., Kuskov, I. V., Antipenko, E. E., Lunin, V. V. The solubility of ozone and kinetics of its chemical reactions in aqueous solutions of sodium chloride. Russ. J. Phys. Chem. A 2008, 82, 2045; https://doi.org/10.1134/S0036024408120133.Search in Google Scholar
40. Ershov, B. G., Gordeev, A. V., Seliverstov, A. F. Ozone solubility in aqueous solutions of NaCl, Na2SO4, and K2SO4: application of the weisenberger-schumpe model for description of regularities and calculation of the ozone molar absorption coefficient. Ozone Sci. Eng. 2017, 39, 69; https://doi.org/10.1080/01919512.2016.1262239.Search in Google Scholar
41. Levanov, A. V., Isaikina, O. Ya., Gasanova, R. B., Lunin, V. V. Solubility of ozone and kinetics of its decomposition in aqueous chloride solutions. Ind. Eng. Chem. Res. 2018, 57, 14355; https://doi.org/10.1021/acs.iecr.8b03371.Search in Google Scholar
42. Rischbieter, E., Stein, H., Schumpe, A. Ozone solubilities in water and aqueous salt solutions. J. Chem. Eng. Data 2000, 45, 338; https://doi.org/10.1021/je990263c.Search in Google Scholar
43. Schumpe, A. The estimation of gas solubilities in salt solutions. Chem. Eng. Sci. 1993, 48, 153; https://doi.org/10.1016/0009-2509(93)80291-W.Search in Google Scholar
44. Wardman, P. Reduction potentials of one-electron couples involving free radicals in aqueous solution. J. Phys. Chem. Ref. Data 1989, 18, 1637; https://doi.org/10.1063/1.555843.Search in Google Scholar
45. Ershov, B. G., Morozov, P. A., Gordeeev, A. V. Effect of silver and copper ions on the decomposition of ozone in water. Russ. J. Phys. Chem. A 2012, 86, 1795; https://doi.org/10.1134/S0036024412120072.Search in Google Scholar
46. Buxton, G. V., Greenstock, C. L., Helman, W. Ph., Ross, A. B. Critical Review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (OH/O− in aqueous solution. J. Phys. Chem. Ref. Data 1988, 17, 513; https://doi.org/10.1063/10555805.Search in Google Scholar
47. Gordon, G., Taube, H. Oxygen tracer experiments on the oxidation of aqueous uranium (IV) with oxygen-containing agents. Inorg. Chem. 1962, 1, 69; https://doi.org/10.1021/ic50001a013.Search in Google Scholar
48. Katz, J. J., Seaborg, G. T., Morss, L. R. The Chemistry of the Actinide Elements, 2nd ed.; Chapman & Hall: New York, London, Vol. l and 2, 1986.10.1007/978-94-009-4077-2Search in Google Scholar
49. Bagnall, K. W., Laidler, J. B. Neptunium and plutonium trioxide hydrates. J. Chem. Soc. 1964, 2693; https://doi.org/10.1039/JR9640002693.Search in Google Scholar
50. Rabideau, S. W., Masters, B. J. Oxygen exchange reactions of plutonium ions in solution. J. Phys. Chem. 1963, 67, 318; https://doi.org/10.1021/j100796a025.Search in Google Scholar
51. Shilov, V. P., Fedoseev, A. M., Ershov, B. G. Mechanism of Np(VI) oxidation with ozone in alkaline solutions. Radiochemistry 2012, 54, 324; https://doi.org/10.1134/S1066362212040029.Search in Google Scholar
52. Nikitina, G. P., Ivanov, Yu. E., Shumkov, V. G., Egorova, V. P. Redox reactions in nitric acid solutions. Oxidation of tetravalent neptunium and plutonium ions. Radiokhimiya 1975, 17, 957.Search in Google Scholar
53. Nikitina, G. P., Iokhin, B. S., Zharkova, I. N., Ivanov, Yu. E. Oxidation of variable valence cations. II. The origin of oxygen in the products of oxidation of plutonium (IV) by ozone. Radiokhimiya 1987, 29, 584.Search in Google Scholar
54. Gelis, V. M., Shumkova, Yu. V., Ershov, B. G., Maslennikov, A. G., Milyutin, V. V., Ckaritonov, O. V., Logunov, M. V., Voroshilov, Yu. A., Bobritskii, A. V. Use of ozone for dissolving high-level plutonium dioxide in nitric acid in the presence of Am (V, VI) ions. Radiochemistry 2011, 53, 612; https://doi.org/10.1134/S1066362211060087.Search in Google Scholar
55. Shilov, V. P., Ershov, B. G. Interaction of ozone with actinides and lanthanides in aqueous solutions. Radiochemistry 2020, 62, 433; https://doi.org/10.1134/S1066362220040013.Search in Google Scholar
56. Huie, R. E., Cliffton, C. L., Neta, P. Electron transfer reaction rates and equilibria of the carbonate and sulfate radical anions. Int. J. Radiat. Appl. Instrum. C Radiat. Phys. Chem. 1991, 38, 477; https://doi.org/10.1016/1359-0197(91)90065-A.Search in Google Scholar
57. Ermakov, V. S., Peretrukhin, V. F., Krot, N. N. On the behavior of hepta and hexavalent neptunium in lithium hydroxide solutions. Radiokhimiya 1977, 19, 324.Search in Google Scholar
58. Peretrukhin, V. F., Krot, N. N., Gelman, A. D. Formal potentials of the couple Np(VII)/Np(VI) and Pu(VII)/Pu(VI) in aqueous solutions with a high concentration of alkali. Radiokhimiya 1972, 14, 72.Search in Google Scholar
59. Nikolaevskii, V. B., Shilov, V. P., Krot, N. N., Peretrukhin, V. F. Relationship of the electronic absorption spectra of hexa- and heptavalent actinide elements in an alkaline solution to their redox potentials. Radiokhimiya 1975, 17, 426.Search in Google Scholar
60. Shilov, V. P., Gogolev, A. V., Fedoseev, A. M. Estimation of the rate constants of the Pu(VI)+O3− reaction in alkaline solutions. Radiochemistry 2015, 57, 395; https://doi.org/10.1134/S1066362215040098.Search in Google Scholar
61. Shilov, V. P., Gogolev, A. V., Fedosseev, A. M., Ershov, B. G. The mechanism of Pu(VI) oxidation with ozone and other reagents in alkaline solutions. Russ. Chem. Bull. 2016, 65, 2351; https://doi.org/10.1007/s11172-016-1587-5.Search in Google Scholar
62. Shilov, V. P., Nikolaevskii, V. B., Krot, N. N. Reduction of americium (VI) in high concentrated alkaline medium with ozone. Radiokhimiya 1995, 37, 32.Search in Google Scholar
63. Shashukov, E. A., Vyatkin, V. E., Kozlov, A. A. Redox processes in ozonation of aqueous solutions. I. Interaction of cerium with ozone in aqueous nitric acid solutions. Radiokhimiya 1973, 15, 772.Search in Google Scholar
64. Chepovoy, V. I., Lebedev, I. A., Myasoedov, B. F. Investigation of the oxidation of cerium by ozone in nitric acid solutions. Radiokhimiya 1975, 1, 206.Search in Google Scholar
65. Shilov, V. P., Gogolev, A. V., Fedoseev, A. M., Perminov, V. P. Mechanism of cerium(III) oxidation with ozone in sulfuric acid solutions. Radiochemistry 2014, 56, 400; https://doi.org/10.1134/S1066362214040079.Search in Google Scholar
66. Yusov, A. B., Shilov, V. P., Fedoseev, A. M. Stability actinide (III, IV) and lanthanide(III, IV) complexes with P2W17O6110− heteropolyanions. Radiochemistry 2007, 49, 135; https://doi.org/10.1134/S1066362207020075.Search in Google Scholar
67. Shilov, V. P., Yusov, A. B., Sokolova, M, N., Fedoseev, A. M. Redox equilibrium U(VI) + 2 Ce(III) = U(IV) + 2 Ce(IV) in the presence of unsaturated anions P2W17O6110− and SiW11O398−. Radiochemistry 2008, 50, 236; https://doi.org/10.1134/S106636220803003X.Search in Google Scholar
68. Runde, W. H., Shulz, W. W. Americium. In The Chemistry of the Actinide and Transactinide Elements; Morss, L. R., Edelstein, N. M., Fuger, J., Eds., 3rd ed.; Springer Netherlands: Dordrecht, 2020; pp. 699–812.Search in Google Scholar
69. Bennett, L. E., Warlop, Ph. Electron transfer to ozone: outer sphere reactivities of the ozone/ozonide and related non-metal redox couples. Inorg. Chem. 1990, 29, 1975; https://doi.org/10.1021/ic00335a040.Search in Google Scholar
70. Shilov, V. P., Gogolev, A. V., Fedoseev, A. V. The oxidation of UIV with ozone to non-oxygenated UV in K10P2W17O61 solution. Russ. Chem. Bull. 2019, 68, 874; https://doi.org/10.1007/s11172-019-2500-9.Search in Google Scholar
71. Fedoseev, A. M., Shilov, V. P. Oxidation of Am(III) tо Am(IV) with оzone in solutions of heteropolyanions. Radiochemistry 2010, 52, 40; https://doi.org/10.1134/S1066362210010091.Search in Google Scholar
72. Fedoseev, A. M., Shilov, V. P. Mechanism of Am(III) oxidation with ozone in carbonate solutions. Radiochemistry 2009, 51, 598; https://doi.org/10.1134/S1066362209060071.Search in Google Scholar
73. Pikaev, A. K., Shilov, V. P., Gogolev, A. V. Radiation chemistry of aqueous solutions of actinides. Russ. Chem. Rev. 1997, 66, 845; https://doi.org/10.1070/RC1997v066n09ABEH000284.Search in Google Scholar
74. Pikaev, A. K., Shilov, V. P., Fedoseev, A. M. On the mechanism of radiolysis of acidic aqueous solutions of tetravalent uranium ions. Dokl. Akad. Nauk SSSR 1981, 260, 1407.Search in Google Scholar
75. Shilov, V. P., Pikaev, A. K., Fedoseev, A. M. Study of the kinetics of the reaction of OH radicals with uranium (IV) ions in perchloric acid solutions by the method of pulsed radiolysis. High Energy Chem. 1982, 16, 89.Search in Google Scholar
76. Shilov, V. P., Ershov, B. G. Role of U(VI) complexes in the chemiluminescent reaction U(IV) + O3 in H2SO4 solution. Radiochemistry 2014, 56, 235; https://doi.org/10.1134/S1066362214030023.Search in Google Scholar
77. Bhattacharyya, P. K., Saini, R. D. On the radiolytic oxidation of U(IV) to U(VI) in H2SO4 and HCl media. Radiat. Phys. Chem. 1979, 13, 57; https://doi.org/10.1016/0146-5724(79)90035-9.Search in Google Scholar
78. Elliot, A. J., Radamshi, S., Pika, J. Free-radical redox reactions of uranium ions in sulphuric acid solutions. Can. J. Chem. 1986, 64, 314; https://doi.org/10.1139/v86-053.Search in Google Scholar
79. Shilov, V. P., Fedoseev, A. M., Ershov, B. G. Mechanism of Np(VI) oxidation with ozone in alkaline solutions. Radiochemistry 2012, 54, 324; https://doi.org/10.1134/S1066362212040029.Search in Google Scholar
80. Shilov, V. P., Fedoseev, A. M., Pikaev, A. K. Study of the reactivity of neptunium ions with respect to OH radicals in perchloric acid solutions by pulse radiolysis method. Russ. Chem. Bull. 1982, 31, 832; https://doi.org/10.1007/BF00950034.Search in Google Scholar
81. Koltunov, V. S., Kulikov, I. A., Marchenko, V. I., Milovanova, A. S. Kinetics of Np (IV) oxidation by hydrogen peroxide in nitric acid solution. Radiokhimiya 1980, 22, 833.Search in Google Scholar
82. Krot, N. N., Shuyskaya, L. G. Interaction of neptunium with hydrogen peroxide in concentrated solutions of nitric acid. Radiokhimiya 1971, 13, 79.Search in Google Scholar
83. Zielen, A. J., Sullivan, J. C., Cohen, D., Hindman, J. C. A kinetic study of the reduction of neptunium(VI) by hydrogen peroxide. J. Am. Chem. Soc. 1958, 80, 5632; https://doi.org/10.1021/ja01554a012.Search in Google Scholar
84. Gogolev, A. V., Shilov, V. P., Pikaev, A. K. Investigation of ozonide ion reaction with neptunium(VI) ions in alkali aqueous solutions by the method of pulse radiolysis. Radiokhimiya 1989, 31, 124.Search in Google Scholar
85. Gogolev, A. V., Shilov, V. P., Pikaev, A. K. Study of the kinetics of О2- and reactions with Np(VI) and Np(VII) in alkaline solutions by the method of pulsed radiolysis. High Energy Chem. 1996, 30, 255.Search in Google Scholar
86. Shilov, V. P., Fedoseev, A. M., Pikaev, A. K. Reactivity of neptunium, plutonium and uranium ions relative to primary products of water radiolysis. Radiokhimiya 1985, 27, 127.Search in Google Scholar
87. Gogolev, A. V., Shilov, V. P., Fedoseev, A. M., Makarov, I. E., Pikaev, A. K. Reactivity of neptunium and plutonium in relation to inorganic free radicals in aqueous solutions. Radiokhimiya 1988, 30, 761.Search in Google Scholar
88. Ghosh-Mazumdar, A. S., Vaidyanathan, S. On the oxidation of plutonium (III) by hydrogen peroxide – probable formation of an unstable plutonium(III) peroxy complex. Radiochim. Acta 1973, 19, 165; https://doi.org/10.1524/ract.1973.19.4.165.Search in Google Scholar
89. Lesigne, B. Etude cinétique de la réduction par le péroxyde d’hydrogene du plutonium hexavalent en solution acide. Rapp. - CEA N 1967, 3168, 34.Search in Google Scholar
90. Koltunov, V. S., Kulikov, I. A., Karmanova, N. V., Nikishova, L. K. Kinetics of Pu (IV) reduction with hydrogen peroxide in nitric acid solutions. Radiokhimiya 1981, 23, 462.Search in Google Scholar
91. Pikaev, A. K., Shilov, V. P., Spitsyn, V. I. Application of the method of pulsed radiolysis to study the properties of americium (IV) in aqueous solutions. Dokl. Akad. Nauk SSSR 1977, 232, 387.Search in Google Scholar
92. Woods, Sr. M., Cain, A., Sullivan, J. C. A kinetic study of the reduction of americium(VI) by hydrogen peroxide in aqueous perchlorate media. J. Inorg. Nucl. Chem. 1974, 36, 2605; https://doi.org/10.1016/0022-1902(74)80480-X.Search in Google Scholar
93. Pikaev, A. K., Shilov, V. P., Spitsyn, V. I. Radiolysis of Aqueous Solutions of Lanthanides and Actinides in Aqueous Solutions; Science: Moscow, 1983; pp. 1–240.Search in Google Scholar
94. Ivanov, Yu. E., Nikitina, G. P., Shumkov, V. G. Ozone in aqueous solutions. II. Kinetics and mechanism of oxidation of cerium (III) and silver (I) by ozone. Russ. J. Phys. Chem. A 1972, 46, 2149.Search in Google Scholar
95. Katsumura, Y., Jiang, P. Y., Nagaishi, R., Oishi, T., Ishigure, K., Yoshida, Y. Pulse radiolysis study of aqueous nitric acid solutions: formation mechanism, yield, and reactivity of NO3 radical. J. Phys. Chem. 1991, 95, 4435; https://doi.org/10.1021/j100164a050.Search in Google Scholar
96. Lobachev, V. L., Rudakov, E. S. The chemistry of peroxynitrite, reaction mechanisms and kinetics. Russ. Chem. Rev. 2006, 75, 375; https://doi.org/10.1070/RC2006v075n05ABEH001212.Search in Google Scholar
97. Myasoedov, B. F., Chepovoy, V. I., Lebedev, I. A. Oxidation of microamounts of Bk(III) and Ce(III) by ozone in nitrate solutions. Radiochem. Radioanal. Lett. 1975, 22, 233.Search in Google Scholar
98. Chepovoy, V. I., Lebedev, I. A., Myasoedov, B. F. Study of the oxidation of berkelium (III) and cerium (III) by ozone in aqueous solutions. Radiokhimiya 1977, 19, 476.Search in Google Scholar
99. Nikitina, G. P., Egorova, V. P., Miftakhutdinova, I. Kh. On the kinetics of cerium (III) oxidation by ozone in nitric acid solutions. Radiokhimiya 1980, 22, 692.Search in Google Scholar
100. Chepovoy, V. I., Lebedev, I. A., Myasoedov, B. F. Study of the oxidation of cerium (III) by ozone in a sulfuric acid solution. Radiokhimiya 1977, 19, 256.Search in Google Scholar
101. Gogolev, A. V., Shilov, V. P., Perminov, V. P. Oxidation of Ce(III) with ozone in concentrated hydrochloric acid. Radiochemistry 2014, 56, 237; https://doi.org/10.1134/S1066362214030035.Search in Google Scholar
102. Myasoedov, B. F., Chepovoy, V. I., Lebedev, I. A. Oxidation of Bk(III) with ozone in a carbonate medium. Radiochem. Radioanal. Lett. 1973, 15, 39.Search in Google Scholar
103. Myasoedov, B. F., Chepovoy, V. I., Lebedev, I. A. Oxidation of Bk(III) with ozone in a carbonate medium. Radiochem. Radioanal. Lett. 1975, 17, 233.Search in Google Scholar
104. Payne, G. F., Peterson, J. R. G.F. Oxidation studies of selected lanthanides in acetonitrile. J. Less Common. Met. 1986, 126, 371; https://doi.org/10.1016/0022-5088(86)90325-5.Search in Google Scholar
105. Li, X., Dong, W., Qi, V., Wang, D., Yang, P. Studies on the stabilization of terbium(IV) in aqueous tetrametaphosphate solution. Polyhedron 1991, 10, 1479; https://doi.org/10.1016/S0277-5387(00)86069-6.Search in Google Scholar
106. Li, X., Dong, W., Qi, Y., Wang, D., Yang, R. Lanthan. Actinide Res. 1991, 3, 267.Search in Google Scholar
107. Varlashkin, P. G., Begun, G. M., Peterson, J. R. On the nature of tetravalent terbium in carbonate-hydroxide solutions. J. Less Common. Met. 1985, 109, 123; https://doi.org/10.1016/0022-5088(85)90112-2.Search in Google Scholar
108. Gompa, T. P., Ramanathan, A., Rice, N. T., La Pierre, G. S. The chemical and physical properties of tetravalent lanthanides: Pr, Nd, Tb, and Dy. Dalton Trans. 2020, 49, 15945; https://doi.org/10.1039/D0DT01400A.Search in Google Scholar
109. Wei, C., Zhang, J., Hu, Y., Feng, F., Wu, H. Ozonation in water treatment: the generation, basic properties of ozone and its practical application. Rev. Chem. Eng. 2016, 33, 49; https://doi.org/10.1515/revce-2016-0008.Search in Google Scholar
110. Rice, G. Applications of ozone for industrial wastewater treatment. Ozone: Sci. Eng. 1996, 18, 477; https://doi.org/10.1080/01919512.1997.10382859.Search in Google Scholar
111. Yang, T. C., Neely, W. C. Relative stoichiometry of the oxidation of ferrous ion by ozone in aqueous solution. Anal. Chem. 1986, 58, 1551; https://doi.org/10.1021/ac00298a063.Search in Google Scholar
112. Neely, W. C., Shen, T. W., Yang, T. C. Indirect determination of aqueous ozone concentrations via oxidation of iron (II). Anal. Chim. Acta 1988, 215, 353; https://doi.org/10.1016/S0003-2670(00)85299-X.Search in Google Scholar
113. Hart, E. J., Sehested, K., Holcman, J. Molar absorptivities of ultraviolet and visible band of ozone in aqueous solutions. Anal. Chem. 1983, 55, 46; https://doi.org/10.1021/ac00252a015.Search in Google Scholar
114. Tyupalo, N. F., Dneprovsky, Yu. A. Study of the reaction of ozone with iron (II) ions in aqueous solutions. Russ. J. Inorg. Chem. 1981, 26, 664.Search in Google Scholar
115. Tyupalo, N. F. Study of Fe (II) oxidation by ozone. Dokl. Akad. Nauk SSSR 1981, 256, 894.Search in Google Scholar
116. Hoigné, J., Bader, H., Haag, W. R., Staehelin, J. Rate constants of reactions of ozone with organic and inorganic compounds in water. – III. Inorganic compounds and radicals. Water Res. 1985, 19, 993; https://doi.org/10.1016/0043-1354(85)90368-9.Search in Google Scholar
117. Nowell, L. H., Hoigné, J. Proceedings of 8th World Congress, International Ozone Association; Naef, H. R., Ed.; International Ozone Association: Zurich, 1987; pp. E80–E96.Search in Google Scholar
118. Conocchioli, T. J., Hamilton, E. J., Sutin, N. The formation of iron(IV) in the oxidation of iron(lI). J. Am. Chem. Soc. 1965, 87, 926–927; https://doi.org/10.1021/ja01082a050.Search in Google Scholar
119. Loegager, T., Holcman, J., Sehested, K., Pedersen, T. Oxidation of ferrous ions by ozone in acidic solutions. Inorg. Chem. 1992, 31, 3523; https://doi.org/10.1021/ic00043a009.Search in Google Scholar
120. Grinberg, A. A., Shashukov, E. A., Popova, N. N., Vyatkin, V. E. Oxidation of Mn(II) with ozone in nitric acid solutions. Kinet. Catal. 1977, 12, 489.Search in Google Scholar
121. Tyuopalo, N. F., Yakobi, V. A. Russ. J. Inorg. Chem. 1980, 26, 6.Search in Google Scholar
122. Andreozzi, R., Insola, A., Caprio, V., D’Amore, M. G. The kinetics of Mn(II)-catalysed ozonation of oxalic acid in aqueous solution. Water Res. 1992, 26, 917; https://doi.org/10.1016/0043-1354(92)90197-c.Search in Google Scholar
123. Andreozzi, R., Caprio, V., D’Amore, M. G., Insola, A. Oxid. Commun. 1993, 16, 96.Search in Google Scholar
124. Jacobsen, F., Holcman, J., Sehested, K. Oxidation of manganese(II) by ozone and reduction of manganese(III) by hydrogen peroxide in acidic solution. Int. J. Chem. Kinet. 1998, 30, 207; https://doi.org/10.1002/(sici)1097-4601(1998)30:3<207::aid-kin6>3.0.co;2-w.10.1002/(SICI)1097-4601(1998)30:3<207::AID-KIN6>3.0.CO;2-WSearch in Google Scholar
125. Hill, G. R. The kinetics of the oxidation of cobaltous ion by ozone. J. Am. Chem. Soc. 1949, 71, 2434; https://doi.org/10.1021/ja01175a056.Search in Google Scholar
126. Appelman, E. H., Malm, J. G. Hydrolysis of xenon hexafluoride and the aqueous solution chemistry of xenon. J. Am. Chem. Soc. 1964, 86, 2141; https://doi.org/10.1021/ja01065a009.Search in Google Scholar
127. Gusev, Yu. K., Isupov, V. K., Kirin, I. S. Obtaining double perxenate of neodymium and potassium. Russ. J. Inorg. Chem. 1969, 14, 2758.Search in Google Scholar
128. Bailey, A. J., Griffith, W. P., Marsden, S. P., White, A. J. P., Williams, D. J. Ozonolysis for the preparation of high oxidation-state transition-metal complexes and the crystal structure of [PPh4]2[Ru2O(μ-OCOEt)2Cl6] . J. Chem. Soc., Dalton Trans. 1998, 21, 3673; https://doi.org/10.1039/a806086j.Search in Google Scholar
129. Floquet, S., Eysseric, C. Effect of ozone on ruthenium species in alkaline medium. Part II: oxidation of pentahydroxo nitrosyl ruthenate(II) ion RuNO(OH)52−. Radiochim. Acta 2006, 94, 15; https://doi.org/10.1524/ract.2006.94.1.15.Search in Google Scholar
130. Rotmanov, K. V., Radchenko, V. M., Peretrukhin, V. F., Shilov, V. P. Method of Dissolution of Alloy Tc–Ru. Patent RF 2380438 C 2.Search in Google Scholar
131. Shilov, V. P., Gogolev, A. V. Oxidation of Fe(III) to Fe(VI) by ozone in alkaline solutions. Russ. J. Gen. Chem. 2010, 80, 895; https://doi.org/10.1134/S107036321005004X.Search in Google Scholar
132. Perfiliev, Y. D., Benko, E. M., Pankratov, D. A., Sharma, V. K., Dedushenko, S. K. Formation of iron (VI) in ozonalysis of iron (III) in alkaline solution. Inorg. Chim. Acta 2007, 360, 2789; https://doi.org/10.1016/j.ica.2006.11.019.Search in Google Scholar
133. Shilov, V. P., Gogolev, A. V. Oxidation of Fe(III) to Fe(VI) by the Fe(CN)63− ion in strong solution of alkalis. Russ. J. Gen. Chem. 2009, 79, 1773; https://doi.org/10.1134/S1070363209090023.Search in Google Scholar
134. Gogolev, A. V., Shilov, V. P. Interaction of ozone with variable-valence metal ions in concentrated silicate solutions. Russ. J. Gen. Chem. 2014, 84, 1468; https://doi.org/10.1134/s1070363214080027.Search in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Original Paper
- Reactions of ozone and intermediate products of its decomposition with actinides, lanthanides and transition metals in aqueous solutions
- Review
- A review of the alpha radiolysis of extractants for actinide lanthanide separation in spent nuclear fuel reprocessing
- Original Papers
- Third phase formation behaviour of tris(2-methylbutyl) phosphate and tri-n-alkyl phosphates in the extraction of mineral acids and tetravalent metal ions
- Effect of gamma irradiation processing on total phenol and antioxidant capacities of the Iranian extract of propolis
- Radiometric analysis of micas used in many industries and evaluation of radiological hazards
Articles in the same Issue
- Frontmatter
- Original Paper
- Reactions of ozone and intermediate products of its decomposition with actinides, lanthanides and transition metals in aqueous solutions
- Review
- A review of the alpha radiolysis of extractants for actinide lanthanide separation in spent nuclear fuel reprocessing
- Original Papers
- Third phase formation behaviour of tris(2-methylbutyl) phosphate and tri-n-alkyl phosphates in the extraction of mineral acids and tetravalent metal ions
- Effect of gamma irradiation processing on total phenol and antioxidant capacities of the Iranian extract of propolis
- Radiometric analysis of micas used in many industries and evaluation of radiological hazards