Home Reactions of ozone and intermediate products of its decomposition with actinides, lanthanides and transition metals in aqueous solutions
Article
Licensed
Unlicensed Requires Authentication

Reactions of ozone and intermediate products of its decomposition with actinides, lanthanides and transition metals in aqueous solutions

  • Boris G. Ershov EMAIL logo and Bladimir P. Shilov
Published/Copyright: June 8, 2021

Abstract

The properties and stability of ozone in aqueous solutions of various compositions in the рН range of 0–14 were considered. The effect of anions and cations, which are involved in the redox reactions of actinides, on the stability of ozone and its reactivity has been studied. The reactions of О3 with ions of d- and f-elements were analyzed. Depending on the solution composition and рН value, the reaction can occur directly with the O3 molecule (direct mechanism) and/or with short-lived ion-radical products (OH, HO2/O2, H2O2/HO2, O3) formed upon ozone decomposition in water (indirect mechanism). Ions with inert coordination sphere react with О3 in the outer-sphere fashion with electron transfer. Polyvalent ions with labile coordination spheres are oxidized in acidic medium via О atom transfer, possibly, with intermediate peroxy addition (H2O2, HNO4, H2SO5, etc.). In alkaline medium, О3 is converted to the O3radical ion, which is the key oxidant for actinides. The results of studies and the mechanisms of reactions of ozone and its intermediates decomposition products with U, Np, Pu, and Am in various oxidation states and with some transition metals (Fe, Mn, Ag, Co, etc.) in aqueous solutions are presented and discussed.


Corresponding author: Boris G. Ershov, Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky Pr. 31 – 4, 119071, Moscow, Russia, E-mail:

Award Identifier / Grant number: AAAA-A16-116121410087-6

Funding source: Russian Foundation for Basic Research

Award Identifier / Grant number: 19-03-00501

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The study was supported by Ministry of Science and Higher Education of the Russian Federation (project no. AAAA-A16-116121410087-6) and partially by the Russian Foundation for Basic Research (project no. 19-03-00501).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. von Sonntag, C., von Gunten, U. Chemistry of Ozone in Water and Wastewater Treatment. Science; IWA Publishing Alliance Hause: London, UK, 2012; pp. 1–302.10.2166/9781780400839Search in Google Scholar

2. Wei, C., Zhang, F., Hu, Y., Feng, C., Wu, H. Ozonation in water treatment: the generation, basic properties of ozone and its practical application. Rev. Chem. Eng. 2017, 33, 49; https://doi.org/10.1515/revce-2016-0008.Search in Google Scholar

3. Kim, J. G., Yousef, A. E., Khadre, M. A. Ozone and its current and future application in the food industry. Adv. Food Nutr. Res. 2003, 45, 168–218; https://10.1016/s1043-4526(03)45005-5. https://www.chemengonline.com/the-use-of-ozone-in-chemical-process-industries-cpi-applications/?pagenum=1.10.1016/S1043-4526(03)45005-5Search in Google Scholar

4. Griffith, W. P. Ozonolysis in coordination chemistry and catalysis: recent advances. Coord. Chem. Rev. 2001, 259, 219; https://doi.org/10.1016/S0010-8545(01)00328-9.Search in Google Scholar

5. Krot, N. N., Gel’man, A. D., Mefod’eva, M. P., Shilov, V. P., Peretrukhin, V. F., Spitsyn, V. I. Heptavalent State of Neptunium, Plutonium and Americium. UCRL-Trans-11798; Lawrence Livermore National Laboratory: Livermore, California, 1977.Search in Google Scholar

6. Spitsyn, V. I., Gelman, A. D., Krot, N. N., Mefodiyeva, M. P., Zakharova, F. A., Komkov, Y. A., Shilov, V. P., Smirnova, I. V. Heptavalent state of neptunium and plutonium. J. Inorg. Nucl. Chem. 1969, 31, 2733; https://doi.org/10.1016/0022-1902(69)80187-9.Search in Google Scholar

7. Krot, N. N., Shilov, V. P., Nikolaevskii, V. B., Pikaev, A. K., Gel’man, A. D., Spitsyn, V. I. Production of americium in septivalent state. Dokl. Akad. Nauk SSSR 1974, 217, 589.10.2172/4948233Search in Google Scholar

8. Ershov, B. G. Characteristics of ozone as an oxidant for actinides in alkaline solutions and the mechanism of possible reactions. J. Radioanal. Nucl. Chem. 2018, 317, 1059; https://doi.org/10.1007/s10967-018-5980-4.Search in Google Scholar

9. Bratsch, S. G. Standard electrode potentials and temperature coefficients in water at 298.15 K. J. Phys. Chem. Ref. Data 1989, 18, 1; https://doi.org/10.1063/1.555839.Search in Google Scholar

10. Ershov, B. G., Morozov, P. A. The kinetics of ozone decomposition in water, the influence of pH and temperature. Russ. J. Phys. Chem. A 2009, 83, 1295; https://doi.org/10.1134/S0036024409080093.Search in Google Scholar

11. Sehested, K., Corfitzen, H., Holcman, J., Fischer, C., Hart, E. The primary reaction in the decomposition of ozone in acidic aqueous solutions. Environ. Sci. Technol. 1991, 25, 1589; https://doi.org/10.1021/es00021a010.Search in Google Scholar

12. Sehested, K., Corfitzen, H., Holcman, J., Fischer, C., Hart, E. On the mechanism of the decomposition of acidic O3 solutions, thermally or H2O2 – initiated. J. Phys. Chem. A 1998, 102, 2667; https://doi.org/10.1021/jp9721053.Search in Google Scholar

13. Buhler, R. E., Staehelin, J., Hoigné, J. Ozone decomposition in water studied by pulse radiolysis. I. HO2/O2− and HO3/O3− as intermediates. J. Phys. Chem. 1984, 88, 2560; https://doi.org/10.1021/j150656a026.Search in Google Scholar

14. Staehelin, J., Buhler, R. E., Hoigné, J. Ozone decomposition in water studied by pulse radiolysis. II: OH and HO4 as Chain Intermediates. J. Phys. Chem. 1984, 88, 5999; https://doi.org/10.1021/j150668a051.Search in Google Scholar

15. Staehelin, J., Hoigné, J. Decomposition of ozone in water: rate of initiation by hydroxide ions and hydrogen peroxide. Environ. Sci. Technol. 1982, 16, 676; https://doi.org/10.1021/es00104a009.Search in Google Scholar

16. Staehelin, J., Hoigné, J. Decomposition of ozone in water in the presence of organic solutes acting as promoters and inhibitors of radical chain reaction. Environ. Sci. Technol. 1985, 19, 1206; https://doi.org/10.1021/es00142a012.Search in Google Scholar

17. Forni, L., Bahnemann, D., Hart, E. J. Mechanism of the hydroxide ion initiated decomposition of ozone in aqueous solution. J. Phys. Chem. 1982, 86, 255; https://doi.org/10.1021/j100391a025.Search in Google Scholar

18. Hoigné, J., Bader, H. Rate constants of reactions of ozone with organic and inorganic compounds in water. I: non-dissociating organic compounds. Water Res. 1983, 17, 173; https://doi.org/10.1016/0043-1354(83)90098-2.Search in Google Scholar

19. Sehested, K., Holcman, J., Hart, E. J. Rate constants and products of the reactions of e−aq, dioxide(-1)(O2) and proton with ozone in aqueous solutions. J. Phys. Chem. 1983, 87, 1951; https://doi.org/10.1021/j100234a024.Search in Google Scholar

20. Sehested, K., Holcman, J., Bjergbakke, E., Hart, E. J. A pulse radiolytic study of the reaction OH +O3 in aqueous medium. J. Phys. Chem. 1984, 88, 4144; https://doi.org/10.1021/j150662a058.Search in Google Scholar

21. Nemes, A., Fábián, I., Eldik, R. V. Kinetics and mechanisms of the carbonate ion inhibited aqueous ozone decomposition. J. Phys. Chem. A 2000, 104, 7995; https://doi.org/10.1021/jp000972t.Search in Google Scholar

22. Nemes, A., Fábián, I., Gordon, G. Experimental aspects of mechanistic studies on aqueous ozone decomposition in alkaline solution. Ozone Sci. Eng. 2008, 22, 287; https://doi.org/10.1080/01919510008547212.Search in Google Scholar

23. Tomiyasu, H., Fukutomi, H., Gordon, G. Kinetics and mechanism of ozone decomposition in basic aqueous solution. Inorg. Chem. 1985, 24, 2962; https://doi.org/10.1021/ic00213a018.Search in Google Scholar

24. Chelkowska, K., Grasso, D., Fábián, I., Gordon, G. Numerical simulations of aqueous ozone decomposition. Ozone Sci. Eng. 1992, 14, 33; https://doi.org/10.1080/01919519208552316.Search in Google Scholar

25. Bezbarua, B. K., Reckhow, D. A. Modification of the standard neutral ozone decomposition model. Ozone Sci. Eng. 2004, 26, 345; https://doi.org/10.1080/01919510490482179.Search in Google Scholar

26. Panich, N. M., Ershov, B. G. The solubility and kinetics of decomposition of ozone in aqueous solutions of nitrates. Russ. J. Phys. Chem. A 2008, 82, 1262; https://doi.org/10.1134/S0036024408080049.Search in Google Scholar

27. Morozov, P. A., Ershov, B. G. The influence of phosphates on the decomposition of ozone in water: chain process inhibition. Russ. J. Phys. Chem. A 2010, 84, 1136; https://doi.org/10.1134/S0036024410070101.Search in Google Scholar

28. Ignatiev, A. N., Pryakhin, A. N., Lunin, V. V. Mathematical simulation as a method to study the influence of oxygen, hydrogen peroxide, and phosphate and carbonate ions on the kinetics of ozone decomposition in aqueous solution. Russ. Chem. Bull. 2009, 58, 1097; https://doi.org/10.1007/s11172-009-0142-z.Search in Google Scholar

29. Maruthamuthu, P., Neta, P. Phosphate radicals. Spectra, acid-base equilibria, and reactions with inorganic compounds. J. Phys. Chem. 1978, 82, 710; https://doi.org/10.1021/j100495a019.Search in Google Scholar

30. Shilov, V. P., Fedoseev, A. M. Reaction of ozone with Np(V) and Np(IV) in carbonate solutions. Radiochemistry 2013, 55, 357; https://doi.org/10.1134/S1066362213040024.Search in Google Scholar

31. Levanov, A. V., Kuskov, I. V., Zosimov, A. V., Antipenko, E. E., Lunin, V. V. Solubility and kinetics of ozone destruction in aqueous solutions of sulfuric and phosphoric acids. Vestn. Mosk. Univ. Seriya 2 Khimiya 2002, 43, 286.Search in Google Scholar

32. Ershov, B. G., Panich, N. M. The solubility and decomposition of ozone in solutions of sulfuric and perchloric acids in the temperature range from 25 to −70 °C. Dokl. Phys. Chem. 2015, 465, 279; https://doi.org/10.1134/S0012501615110068.Search in Google Scholar

33. Nikitina, G. P., Ivanov, Yu. E., Shumkov, V. G., Egorova, V. P. Oxidation of cations of variable valence by ozone. 1. Behaviour of ozone in nitric acid solutions. Radiokhimiya 1999, 41, 323.Search in Google Scholar

34. Shilov, V. P., Fedoseev, A. M. Role of peroxynitrite in oxidation of f-element ions in HNO3 solutions. Radiochemistry 2013, 55, 366; https://doi.org/10.1134/S1066362213040048.Search in Google Scholar

35. Sotelo, J. L., Beltrán, F. J., González, M., Domínguez, J. Effect of high salt concentrations on ozone decomposition in water. J. Environ. Sci. Health, Part A: Environ. Sci. Eng. 1989, 24, 823; https://doi.org/10.1080/10934528909375518.Search in Google Scholar

36. Levanov, A. V., Kuskov, I. V., Zosimov, A. V., Antipenko, E. E., Lunin, V. V. Acid catalysis in reaction of ozone with chloride ions. Kinet. Catal. 2003, 44, 740; https://doi.org/10.1023/B:KICA.0000009047.90252.2d.10.1023/B:KICA.0000009047.90252.2dSearch in Google Scholar

37. Panich, N. M., Ershov, B. G., Seliverstov, A. F., Basiev, A. G. Ozone solubility in concentrated aqueous solutions of salts. Russ. J. Appl. Chem. 2007, 80, 1812; https://doi.org/10.1134/S1070427207110067.Search in Google Scholar

38. Ershov, B. G., Panich, N. M., Seliverstov, A. F., Belyaeva, M. P. Ozone decomposition in concentrated aqueous solutions of salts. Russ. J. Appl. Chem. 2008, 81, 723; https://doi.org/10.1134/S1070427208040319.Search in Google Scholar

39. Levanov, A. V., Kuskov, I. V., Antipenko, E. E., Lunin, V. V. The solubility of ozone and kinetics of its chemical reactions in aqueous solutions of sodium chloride. Russ. J. Phys. Chem. A 2008, 82, 2045; https://doi.org/10.1134/S0036024408120133.Search in Google Scholar

40. Ershov, B. G., Gordeev, A. V., Seliverstov, A. F. Ozone solubility in aqueous solutions of NaCl, Na2SO4, and K2SO4: application of the weisenberger-schumpe model for description of regularities and calculation of the ozone molar absorption coefficient. Ozone Sci. Eng. 2017, 39, 69; https://doi.org/10.1080/01919512.2016.1262239.Search in Google Scholar

41. Levanov, A. V., Isaikina, O. Ya., Gasanova, R. B., Lunin, V. V. Solubility of ozone and kinetics of its decomposition in aqueous chloride solutions. Ind. Eng. Chem. Res. 2018, 57, 14355; https://doi.org/10.1021/acs.iecr.8b03371.Search in Google Scholar

42. Rischbieter, E., Stein, H., Schumpe, A. Ozone solubilities in water and aqueous salt solutions. J. Chem. Eng. Data 2000, 45, 338; https://doi.org/10.1021/je990263c.Search in Google Scholar

43. Schumpe, A. The estimation of gas solubilities in salt solutions. Chem. Eng. Sci. 1993, 48, 153; https://doi.org/10.1016/0009-2509(93)80291-W.Search in Google Scholar

44. Wardman, P. Reduction potentials of one-electron couples involving free radicals in aqueous solution. J. Phys. Chem. Ref. Data 1989, 18, 1637; https://doi.org/10.1063/1.555843.Search in Google Scholar

45. Ershov, B. G., Morozov, P. A., Gordeeev, A. V. Effect of silver and copper ions on the decomposition of ozone in water. Russ. J. Phys. Chem. A 2012, 86, 1795; https://doi.org/10.1134/S0036024412120072.Search in Google Scholar

46. Buxton, G. V., Greenstock, C. L., Helman, W. Ph., Ross, A. B. Critical Review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (OH/O− in aqueous solution. J. Phys. Chem. Ref. Data 1988, 17, 513; https://doi.org/10.1063/10555805.Search in Google Scholar

47. Gordon, G., Taube, H. Oxygen tracer experiments on the oxidation of aqueous uranium (IV) with oxygen-containing agents. Inorg. Chem. 1962, 1, 69; https://doi.org/10.1021/ic50001a013.Search in Google Scholar

48. Katz, J. J., Seaborg, G. T., Morss, L. R. The Chemistry of the Actinide Elements, 2nd ed.; Chapman & Hall: New York, London, Vol. l and 2, 1986.10.1007/978-94-009-4077-2Search in Google Scholar

49. Bagnall, K. W., Laidler, J. B. Neptunium and plutonium trioxide hydrates. J. Chem. Soc. 1964, 2693; https://doi.org/10.1039/JR9640002693.Search in Google Scholar

50. Rabideau, S. W., Masters, B. J. Oxygen exchange reactions of plutonium ions in solution. J. Phys. Chem. 1963, 67, 318; https://doi.org/10.1021/j100796a025.Search in Google Scholar

51. Shilov, V. P., Fedoseev, A. M., Ershov, B. G. Mechanism of Np(VI) oxidation with ozone in alkaline solutions. Radiochemistry 2012, 54, 324; https://doi.org/10.1134/S1066362212040029.Search in Google Scholar

52. Nikitina, G. P., Ivanov, Yu. E., Shumkov, V. G., Egorova, V. P. Redox reactions in nitric acid solutions. Oxidation of tetravalent neptunium and plutonium ions. Radiokhimiya 1975, 17, 957.Search in Google Scholar

53. Nikitina, G. P., Iokhin, B. S., Zharkova, I. N., Ivanov, Yu. E. Oxidation of variable valence cations. II. The origin of oxygen in the products of oxidation of plutonium (IV) by ozone. Radiokhimiya 1987, 29, 584.Search in Google Scholar

54. Gelis, V. M., Shumkova, Yu. V., Ershov, B. G., Maslennikov, A. G., Milyutin, V. V., Ckaritonov, O. V., Logunov, M. V., Voroshilov, Yu. A., Bobritskii, A. V. Use of ozone for dissolving high-level plutonium dioxide in nitric acid in the presence of Am (V, VI) ions. Radiochemistry 2011, 53, 612; https://doi.org/10.1134/S1066362211060087.Search in Google Scholar

55. Shilov, V. P., Ershov, B. G. Interaction of ozone with actinides and lanthanides in aqueous solutions. Radiochemistry 2020, 62, 433; https://doi.org/10.1134/S1066362220040013.Search in Google Scholar

56. Huie, R. E., Cliffton, C. L., Neta, P. Electron transfer reaction rates and equilibria of the carbonate and sulfate radical anions. Int. J. Radiat. Appl. Instrum. C Radiat. Phys. Chem. 1991, 38, 477; https://doi.org/10.1016/1359-0197(91)90065-A.Search in Google Scholar

57. Ermakov, V. S., Peretrukhin, V. F., Krot, N. N. On the behavior of hepta and hexavalent neptunium in lithium hydroxide solutions. Radiokhimiya 1977, 19, 324.Search in Google Scholar

58. Peretrukhin, V. F., Krot, N. N., Gelman, A. D. Formal potentials of the couple Np(VII)/Np(VI) and Pu(VII)/Pu(VI) in aqueous solutions with a high concentration of alkali. Radiokhimiya 1972, 14, 72.Search in Google Scholar

59. Nikolaevskii, V. B., Shilov, V. P., Krot, N. N., Peretrukhin, V. F. Relationship of the electronic absorption spectra of hexa- and heptavalent actinide elements in an alkaline solution to their redox potentials. Radiokhimiya 1975, 17, 426.Search in Google Scholar

60. Shilov, V. P., Gogolev, A. V., Fedoseev, A. M. Estimation of the rate constants of the Pu(VI)+O3− reaction in alkaline solutions. Radiochemistry 2015, 57, 395; https://doi.org/10.1134/S1066362215040098.Search in Google Scholar

61. Shilov, V. P., Gogolev, A. V., Fedosseev, A. M., Ershov, B. G. The mechanism of Pu(VI) oxidation with ozone and other reagents in alkaline solutions. Russ. Chem. Bull. 2016, 65, 2351; https://doi.org/10.1007/s11172-016-1587-5.Search in Google Scholar

62. Shilov, V. P., Nikolaevskii, V. B., Krot, N. N. Reduction of americium (VI) in high concentrated alkaline medium with ozone. Radiokhimiya 1995, 37, 32.Search in Google Scholar

63. Shashukov, E. A., Vyatkin, V. E., Kozlov, A. A. Redox processes in ozonation of aqueous solutions. I. Interaction of cerium with ozone in aqueous nitric acid solutions. Radiokhimiya 1973, 15, 772.Search in Google Scholar

64. Chepovoy, V. I., Lebedev, I. A., Myasoedov, B. F. Investigation of the oxidation of cerium by ozone in nitric acid solutions. Radiokhimiya 1975, 1, 206.Search in Google Scholar

65. Shilov, V. P., Gogolev, A. V., Fedoseev, A. M., Perminov, V. P. Mechanism of cerium(III) oxidation with ozone in sulfuric acid solutions. Radiochemistry 2014, 56, 400; https://doi.org/10.1134/S1066362214040079.Search in Google Scholar

66. Yusov, A. B., Shilov, V. P., Fedoseev, A. M. Stability actinide (III, IV) and lanthanide(III, IV) complexes with P2W17O6110− heteropolyanions. Radiochemistry 2007, 49, 135; https://doi.org/10.1134/S1066362207020075.Search in Google Scholar

67. Shilov, V. P., Yusov, A. B., Sokolova, M, N., Fedoseev, A. M. Redox equilibrium U(VI) + 2 Ce(III) = U(IV) + 2 Ce(IV) in the presence of unsaturated anions P2W17O6110− and SiW11O398−. Radiochemistry 2008, 50, 236; https://doi.org/10.1134/S106636220803003X.Search in Google Scholar

68. Runde, W. H., Shulz, W. W. Americium. In The Chemistry of the Actinide and Transactinide Elements; Morss, L. R., Edelstein, N. M., Fuger, J., Eds., 3rd ed.; Springer Netherlands: Dordrecht, 2020; pp. 699–812.Search in Google Scholar

69. Bennett, L. E., Warlop, Ph. Electron transfer to ozone: outer sphere reactivities of the ozone/ozonide and related non-metal redox couples. Inorg. Chem. 1990, 29, 1975; https://doi.org/10.1021/ic00335a040.Search in Google Scholar

70. Shilov, V. P., Gogolev, A. V., Fedoseev, A. V. The oxidation of UIV with ozone to non-oxygenated UV in K10P2W17O61 solution. Russ. Chem. Bull. 2019, 68, 874; https://doi.org/10.1007/s11172-019-2500-9.Search in Google Scholar

71. Fedoseev, A. M., Shilov, V. P. Oxidation of Am(III) tо Am(IV) with оzone in solutions of heteropolyanions. Radiochemistry 2010, 52, 40; https://doi.org/10.1134/S1066362210010091.Search in Google Scholar

72. Fedoseev, A. M., Shilov, V. P. Mechanism of Am(III) oxidation with ozone in carbonate solutions. Radiochemistry 2009, 51, 598; https://doi.org/10.1134/S1066362209060071.Search in Google Scholar

73. Pikaev, A. K., Shilov, V. P., Gogolev, A. V. Radiation chemistry of aqueous solutions of actinides. Russ. Chem. Rev. 1997, 66, 845; https://doi.org/10.1070/RC1997v066n09ABEH000284.Search in Google Scholar

74. Pikaev, A. K., Shilov, V. P., Fedoseev, A. M. On the mechanism of radiolysis of acidic aqueous solutions of tetravalent uranium ions. Dokl. Akad. Nauk SSSR 1981, 260, 1407.Search in Google Scholar

75. Shilov, V. P., Pikaev, A. K., Fedoseev, A. M. Study of the kinetics of the reaction of OH radicals with uranium (IV) ions in perchloric acid solutions by the method of pulsed radiolysis. High Energy Chem. 1982, 16, 89.Search in Google Scholar

76. Shilov, V. P., Ershov, B. G. Role of U(VI) complexes in the chemiluminescent reaction U(IV) + O3 in H2SO4 solution. Radiochemistry 2014, 56, 235; https://doi.org/10.1134/S1066362214030023.Search in Google Scholar

77. Bhattacharyya, P. K., Saini, R. D. On the radiolytic oxidation of U(IV) to U(VI) in H2SO4 and HCl media. Radiat. Phys. Chem. 1979, 13, 57; https://doi.org/10.1016/0146-5724(79)90035-9.Search in Google Scholar

78. Elliot, A. J., Radamshi, S., Pika, J. Free-radical redox reactions of uranium ions in sulphuric acid solutions. Can. J. Chem. 1986, 64, 314; https://doi.org/10.1139/v86-053.Search in Google Scholar

79. Shilov, V. P., Fedoseev, A. M., Ershov, B. G. Mechanism of Np(VI) oxidation with ozone in alkaline solutions. Radiochemistry 2012, 54, 324; https://doi.org/10.1134/S1066362212040029.Search in Google Scholar

80. Shilov, V. P., Fedoseev, A. M., Pikaev, A. K. Study of the reactivity of neptunium ions with respect to OH radicals in perchloric acid solutions by pulse radiolysis method. Russ. Chem. Bull. 1982, 31, 832; https://doi.org/10.1007/BF00950034.Search in Google Scholar

81. Koltunov, V. S., Kulikov, I. A., Marchenko, V. I., Milovanova, A. S. Kinetics of Np (IV) oxidation by hydrogen peroxide in nitric acid solution. Radiokhimiya 1980, 22, 833.Search in Google Scholar

82. Krot, N. N., Shuyskaya, L. G. Interaction of neptunium with hydrogen peroxide in concentrated solutions of nitric acid. Radiokhimiya 1971, 13, 79.Search in Google Scholar

83. Zielen, A. J., Sullivan, J. C., Cohen, D., Hindman, J. C. A kinetic study of the reduction of neptunium(VI) by hydrogen peroxide. J. Am. Chem. Soc. 1958, 80, 5632; https://doi.org/10.1021/ja01554a012.Search in Google Scholar

84. Gogolev, A. V., Shilov, V. P., Pikaev, A. K. Investigation of ozonide ion reaction with neptunium(VI) ions in alkali aqueous solutions by the method of pulse radiolysis. Radiokhimiya 1989, 31, 124.Search in Google Scholar

85. Gogolev, A. V., Shilov, V. P., Pikaev, A. K. Study of the kinetics of О2- and reactions with Np(VI) and Np(VII) in alkaline solutions by the method of pulsed radiolysis. High Energy Chem. 1996, 30, 255.Search in Google Scholar

86. Shilov, V. P., Fedoseev, A. M., Pikaev, A. K. Reactivity of neptunium, plutonium and uranium ions relative to primary products of water radiolysis. Radiokhimiya 1985, 27, 127.Search in Google Scholar

87. Gogolev, A. V., Shilov, V. P., Fedoseev, A. M., Makarov, I. E., Pikaev, A. K. Reactivity of neptunium and plutonium in relation to inorganic free radicals in aqueous solutions. Radiokhimiya 1988, 30, 761.Search in Google Scholar

88. Ghosh-Mazumdar, A. S., Vaidyanathan, S. On the oxidation of plutonium (III) by hydrogen peroxide – probable formation of an unstable plutonium(III) peroxy complex. Radiochim. Acta 1973, 19, 165; https://doi.org/10.1524/ract.1973.19.4.165.Search in Google Scholar

89. Lesigne, B. Etude cinétique de la réduction par le péroxyde d’hydrogene du plutonium hexavalent en solution acide. Rapp. - CEA N 1967, 3168, 34.Search in Google Scholar

90. Koltunov, V. S., Kulikov, I. A., Karmanova, N. V., Nikishova, L. K. Kinetics of Pu (IV) reduction with hydrogen peroxide in nitric acid solutions. Radiokhimiya 1981, 23, 462.Search in Google Scholar

91. Pikaev, A. K., Shilov, V. P., Spitsyn, V. I. Application of the method of pulsed radiolysis to study the properties of americium (IV) in aqueous solutions. Dokl. Akad. Nauk SSSR 1977, 232, 387.Search in Google Scholar

92. Woods, Sr. M., Cain, A., Sullivan, J. C. A kinetic study of the reduction of americium(VI) by hydrogen peroxide in aqueous perchlorate media. J. Inorg. Nucl. Chem. 1974, 36, 2605; https://doi.org/10.1016/0022-1902(74)80480-X.Search in Google Scholar

93. Pikaev, A. K., Shilov, V. P., Spitsyn, V. I. Radiolysis of Aqueous Solutions of Lanthanides and Actinides in Aqueous Solutions; Science: Moscow, 1983; pp. 1–240.Search in Google Scholar

94. Ivanov, Yu. E., Nikitina, G. P., Shumkov, V. G. Ozone in aqueous solutions. II. Kinetics and mechanism of oxidation of cerium (III) and silver (I) by ozone. Russ. J. Phys. Chem. A 1972, 46, 2149.Search in Google Scholar

95. Katsumura, Y., Jiang, P. Y., Nagaishi, R., Oishi, T., Ishigure, K., Yoshida, Y. Pulse radiolysis study of aqueous nitric acid solutions: formation mechanism, yield, and reactivity of NO3 radical. J. Phys. Chem. 1991, 95, 4435; https://doi.org/10.1021/j100164a050.Search in Google Scholar

96. Lobachev, V. L., Rudakov, E. S. The chemistry of peroxynitrite, reaction mechanisms and kinetics. Russ. Chem. Rev. 2006, 75, 375; https://doi.org/10.1070/RC2006v075n05ABEH001212.Search in Google Scholar

97. Myasoedov, B. F., Chepovoy, V. I., Lebedev, I. A. Oxidation of microamounts of Bk(III) and Ce(III) by ozone in nitrate solutions. Radiochem. Radioanal. Lett. 1975, 22, 233.Search in Google Scholar

98. Chepovoy, V. I., Lebedev, I. A., Myasoedov, B. F. Study of the oxidation of berkelium (III) and cerium (III) by ozone in aqueous solutions. Radiokhimiya 1977, 19, 476.Search in Google Scholar

99. Nikitina, G. P., Egorova, V. P., Miftakhutdinova, I. Kh. On the kinetics of cerium (III) oxidation by ozone in nitric acid solutions. Radiokhimiya 1980, 22, 692.Search in Google Scholar

100. Chepovoy, V. I., Lebedev, I. A., Myasoedov, B. F. Study of the oxidation of cerium (III) by ozone in a sulfuric acid solution. Radiokhimiya 1977, 19, 256.Search in Google Scholar

101. Gogolev, A. V., Shilov, V. P., Perminov, V. P. Oxidation of Ce(III) with ozone in concentrated hydrochloric acid. Radiochemistry 2014, 56, 237; https://doi.org/10.1134/S1066362214030035.Search in Google Scholar

102. Myasoedov, B. F., Chepovoy, V. I., Lebedev, I. A. Oxidation of Bk(III) with ozone in a carbonate medium. Radiochem. Radioanal. Lett. 1973, 15, 39.Search in Google Scholar

103. Myasoedov, B. F., Chepovoy, V. I., Lebedev, I. A. Oxidation of Bk(III) with ozone in a carbonate medium. Radiochem. Radioanal. Lett. 1975, 17, 233.Search in Google Scholar

104. Payne, G. F., Peterson, J. R. G.F. Oxidation studies of selected lanthanides in acetonitrile. J. Less Common. Met. 1986, 126, 371; https://doi.org/10.1016/0022-5088(86)90325-5.Search in Google Scholar

105. Li, X., Dong, W., Qi, V., Wang, D., Yang, P. Studies on the stabilization of terbium(IV) in aqueous tetrametaphosphate solution. Polyhedron 1991, 10, 1479; https://doi.org/10.1016/S0277-5387(00)86069-6.Search in Google Scholar

106. Li, X., Dong, W., Qi, Y., Wang, D., Yang, R. Lanthan. Actinide Res. 1991, 3, 267.Search in Google Scholar

107. Varlashkin, P. G., Begun, G. M., Peterson, J. R. On the nature of tetravalent terbium in carbonate-hydroxide solutions. J. Less Common. Met. 1985, 109, 123; https://doi.org/10.1016/0022-5088(85)90112-2.Search in Google Scholar

108. Gompa, T. P., Ramanathan, A., Rice, N. T., La Pierre, G. S. The chemical and physical properties of tetravalent lanthanides: Pr, Nd, Tb, and Dy. Dalton Trans. 2020, 49, 15945; https://doi.org/10.1039/D0DT01400A.Search in Google Scholar

109. Wei, C., Zhang, J., Hu, Y., Feng, F., Wu, H. Ozonation in water treatment: the generation, basic properties of ozone and its practical application. Rev. Chem. Eng. 2016, 33, 49; https://doi.org/10.1515/revce-2016-0008.Search in Google Scholar

110. Rice, G. Applications of ozone for industrial wastewater treatment. Ozone: Sci. Eng. 1996, 18, 477; https://doi.org/10.1080/01919512.1997.10382859.Search in Google Scholar

111. Yang, T. C., Neely, W. C. Relative stoichiometry of the oxidation of ferrous ion by ozone in aqueous solution. Anal. Chem. 1986, 58, 1551; https://doi.org/10.1021/ac00298a063.Search in Google Scholar

112. Neely, W. C., Shen, T. W., Yang, T. C. Indirect determination of aqueous ozone concentrations via oxidation of iron (II). Anal. Chim. Acta 1988, 215, 353; https://doi.org/10.1016/S0003-2670(00)85299-X.Search in Google Scholar

113. Hart, E. J., Sehested, K., Holcman, J. Molar absorptivities of ultraviolet and visible band of ozone in aqueous solutions. Anal. Chem. 1983, 55, 46; https://doi.org/10.1021/ac00252a015.Search in Google Scholar

114. Tyupalo, N. F., Dneprovsky, Yu. A. Study of the reaction of ozone with iron (II) ions in aqueous solutions. Russ. J. Inorg. Chem. 1981, 26, 664.Search in Google Scholar

115. Tyupalo, N. F. Study of Fe (II) oxidation by ozone. Dokl. Akad. Nauk SSSR 1981, 256, 894.Search in Google Scholar

116. Hoigné, J., Bader, H., Haag, W. R., Staehelin, J. Rate constants of reactions of ozone with organic and inorganic compounds in water. – III. Inorganic compounds and radicals. Water Res. 1985, 19, 993; https://doi.org/10.1016/0043-1354(85)90368-9.Search in Google Scholar

117. Nowell, L. H., Hoigné, J. Proceedings of 8th World Congress, International Ozone Association; Naef, H. R., Ed.; International Ozone Association: Zurich, 1987; pp. E80–E96.Search in Google Scholar

118. Conocchioli, T. J., Hamilton, E. J., Sutin, N. The formation of iron(IV) in the oxidation of iron(lI). J. Am. Chem. Soc. 1965, 87, 926–927; https://doi.org/10.1021/ja01082a050.Search in Google Scholar

119. Loegager, T., Holcman, J., Sehested, K., Pedersen, T. Oxidation of ferrous ions by ozone in acidic solutions. Inorg. Chem. 1992, 31, 3523; https://doi.org/10.1021/ic00043a009.Search in Google Scholar

120. Grinberg, A. A., Shashukov, E. A., Popova, N. N., Vyatkin, V. E. Oxidation of Mn(II) with ozone in nitric acid solutions. Kinet. Catal. 1977, 12, 489.Search in Google Scholar

121. Tyuopalo, N. F., Yakobi, V. A. Russ. J. Inorg. Chem. 1980, 26, 6.Search in Google Scholar

122. Andreozzi, R., Insola, A., Caprio, V., D’Amore, M. G. The kinetics of Mn(II)-catalysed ozonation of oxalic acid in aqueous solution. Water Res. 1992, 26, 917; https://doi.org/10.1016/0043-1354(92)90197-c.Search in Google Scholar

123. Andreozzi, R., Caprio, V., D’Amore, M. G., Insola, A. Oxid. Commun. 1993, 16, 96.Search in Google Scholar

124. Jacobsen, F., Holcman, J., Sehested, K. Oxidation of manganese(II) by ozone and reduction of manganese(III) by hydrogen peroxide in acidic solution. Int. J. Chem. Kinet. 1998, 30, 207; https://doi.org/10.1002/(sici)1097-4601(1998)30:3<207::aid-kin6>3.0.co;2-w.10.1002/(SICI)1097-4601(1998)30:3<207::AID-KIN6>3.0.CO;2-WSearch in Google Scholar

125. Hill, G. R. The kinetics of the oxidation of cobaltous ion by ozone. J. Am. Chem. Soc. 1949, 71, 2434; https://doi.org/10.1021/ja01175a056.Search in Google Scholar

126. Appelman, E. H., Malm, J. G. Hydrolysis of xenon hexafluoride and the aqueous solution chemistry of xenon. J. Am. Chem. Soc. 1964, 86, 2141; https://doi.org/10.1021/ja01065a009.Search in Google Scholar

127. Gusev, Yu. K., Isupov, V. K., Kirin, I. S. Obtaining double perxenate of neodymium and potassium. Russ. J. Inorg. Chem. 1969, 14, 2758.Search in Google Scholar

128. Bailey, A. J., Griffith, W. P., Marsden, S. P., White, A. J. P., Williams, D. J. Ozonolysis for the preparation of high oxidation-state transition-metal complexes and the crystal structure of [PPh4]2[Ru2O(μ-OCOEt)2Cl6] . J. Chem. Soc., Dalton Trans. 1998, 21, 3673; https://doi.org/10.1039/a806086j.Search in Google Scholar

129. Floquet, S., Eysseric, C. Effect of ozone on ruthenium species in alkaline medium. Part II: oxidation of pentahydroxo nitrosyl ruthenate(II) ion RuNO(OH)52−. Radiochim. Acta 2006, 94, 15; https://doi.org/10.1524/ract.2006.94.1.15.Search in Google Scholar

130. Rotmanov, K. V., Radchenko, V. M., Peretrukhin, V. F., Shilov, V. P. Method of Dissolution of Alloy Tc–Ru. Patent RF 2380438 C 2.Search in Google Scholar

131. Shilov, V. P., Gogolev, A. V. Oxidation of Fe(III) to Fe(VI) by ozone in alkaline solutions. Russ. J. Gen. Chem. 2010, 80, 895; https://doi.org/10.1134/S107036321005004X.Search in Google Scholar

132. Perfiliev, Y. D., Benko, E. M., Pankratov, D. A., Sharma, V. K., Dedushenko, S. K. Formation of iron (VI) in ozonalysis of iron (III) in alkaline solution. Inorg. Chim. Acta 2007, 360, 2789; https://doi.org/10.1016/j.ica.2006.11.019.Search in Google Scholar

133. Shilov, V. P., Gogolev, A. V. Oxidation of Fe(III) to Fe(VI) by the Fe(CN)63− ion in strong solution of alkalis. Russ. J. Gen. Chem. 2009, 79, 1773; https://doi.org/10.1134/S1070363209090023.Search in Google Scholar

134. Gogolev, A. V., Shilov, V. P. Interaction of ozone with variable-valence metal ions in concentrated silicate solutions. Russ. J. Gen. Chem. 2014, 84, 1468; https://doi.org/10.1134/s1070363214080027.Search in Google Scholar

Received: 2021-01-19
Accepted: 2021-04-28
Published Online: 2021-06-08
Published in Print: 2021-08-26

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 15.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ract-2021-1007/html
Scroll to top button