Article
Publicly Available
Frontmatter
Published/Copyright:
November 12, 2018
Published Online: 2018-11-12
Published in Print: 2018-11-27
©2018 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Online chemical adsorption studies of Hg, Tl, and Pb on SiO2 and Au surfaces in preparation for chemical investigations on Cn, Nh, and Fl at TASCA
- Thermodynamic parameters for the complexation of technetium(IV) with EDTA
- Sorption of Eu(III) on Fe–montmorillonite relevant to geological disposal of HLW
- Study of the redistribution of U, Zr, Nb, Tc, Mo, Ru, Fe, Cr, and Ni between oxide and metallic phases in the matrix of a multiphase Chernobyl hot-particle extracted from a soil sample of the Western Plume
- 99Mo/99mTc radioisotope generator based on adsorption of 99Mo (VI) on cerium (IV) molybdate column matrix
- Radioiodination and biological evaluation of landiolol as a tracer for myocardial perfusion imaging: preclinical evaluation and diagnostic nuclear imaging
- Study on gamma ray shielding performance of concretes doped with natural sepiolite mineral
- Neural network prediction of K and L-shell X-ray production cross sections
Articles in the same Issue
- Frontmatter
- Online chemical adsorption studies of Hg, Tl, and Pb on SiO2 and Au surfaces in preparation for chemical investigations on Cn, Nh, and Fl at TASCA
- Thermodynamic parameters for the complexation of technetium(IV) with EDTA
- Sorption of Eu(III) on Fe–montmorillonite relevant to geological disposal of HLW
- Study of the redistribution of U, Zr, Nb, Tc, Mo, Ru, Fe, Cr, and Ni between oxide and metallic phases in the matrix of a multiphase Chernobyl hot-particle extracted from a soil sample of the Western Plume
- 99Mo/99mTc radioisotope generator based on adsorption of 99Mo (VI) on cerium (IV) molybdate column matrix
- Radioiodination and biological evaluation of landiolol as a tracer for myocardial perfusion imaging: preclinical evaluation and diagnostic nuclear imaging
- Study on gamma ray shielding performance of concretes doped with natural sepiolite mineral
- Neural network prediction of K and L-shell X-ray production cross sections