Home Physical Sciences Thorium oxide dissolution in HNO3-HF mixture: kinetics and mechanism
Article
Licensed
Unlicensed Requires Authentication

Thorium oxide dissolution in HNO3-HF mixture: kinetics and mechanism

  • Marie Simonnet , Nicole Barré , Romuald Drot , Claire Le Naour , Vladimir Sladkov and Sylvie Delpech EMAIL logo
Published/Copyright: December 3, 2018

Abstract

This paper is an attempt to find out thorium oxide dissolution mechanism in HNO3-HF mixture. In a previous paper, several parameters effects on thorium oxide dissolution have been described, with specific focus on hydrofluoric acid effect, which can lead to an increase of the dissolution rate if present in small amount, but precipitates as ThF4 at higher content. Based on this previous study, experimental data were fitted using several dissolution models in order to find out the best one. Finally, a revisited model based on literature and considering the ThF4 formation was proposed. It describes the main steps of dissolution and is able to fit the experimental data for a wide range of solution compositions. This point is crucial since it allows considering an extrapolation of the established model to not-yet-studied conditions.

Acknowledgements

The authors would like to thank ORANO and CNRS for financial support.

References

1. Gresky, A.: Solvent extraction separation of U233 and Thorium from fission products by mean of TBP. Proceedings of the International Conference on the Peaceful Uses of Atomic Energy 9, 505 (1955).Search in Google Scholar

2. Shying, M. E., Florence, T. M., Carswell, D. J.: Oxide dissolution mechanisms I. J. Inorg. Chem. 32, 3493 (1970).10.1016/0022-1902(70)80158-0Search in Google Scholar

3. Takeuchi, T., Hanson, K. C., Wadsworth, M. E.: Kinetics and mechanism of the dissolution of thorium oxide in hydrofluoric acid and nitric acid mixtures. J. Inorg. Nucl. Chem. 33, 1089 (1971).10.1016/0022-1902(71)80178-1Search in Google Scholar

4. Barney, G. S.: The kinetics of plutonium oxide dissolution in nitric/hydrofluoric acid mixtures. J. Inorg. Nucl. Chem. 39(9), 1665 (1977).10.1016/0022-1902(77)80123-1Search in Google Scholar

5. Simonnet, M., Barré, N., Drot, R., Le Naour, C., Sladkov, V., Delpech, S.: Multiparametric study of thorium oxide dissolution in aqueous solution. Radiochim. Acta 104, 691 (2016).10.1515/ract-2016-2607Search in Google Scholar

6. Hingant, N., Clavier, N., Dacheux, N., Barre, N., Hubert, S., Obbade, S., Taborda, F., Abraham, F.: Preparation, sintering and leaching of optimized uranium thorium dioxides, J. Nucl. Mater. 385(2), 400 (2009).10.1016/j.jnucmat.2008.12.011Search in Google Scholar

7. Claparede, L., Tocino, F., Szenknect, S., Mesbah, A., Clavier, N., Moisy, P., Dacheux, N.: Dissolution of Th1−xUxO2: effects of chemical composition and microstructure. J. Nucl. Mater. 457, 304 (2015).10.1016/j.jnucmat.2014.11.094Search in Google Scholar

8. Crundwell, F. K.: The mechanism of dissolution of minerals in acidic and alkaline solutions: part I – a new theory of non-oxidation dissolution. Hydrometallurgy 149, 252 (2014).10.1016/j.hydromet.2014.06.009Search in Google Scholar

9. Lasaga, A. C.: Fundamental approaches in describing mineral dissolution and precipitation rates. Mineralogy and Geochemistry 31, 23 (1995)10.1515/9781501509650-004Search in Google Scholar

10. Davis, W., De Bruin, H. J.: New activity coefficients of 0–100 per cent aqueous nitric acid. J. Inorg. Chem. 26, 1069 (1964).10.1016/0022-1902(64)80268-2Search in Google Scholar

11. Hlushak, S., Simonin, J. P., De Sio, S., Bernard, O., Ruas, A., Pochon, P., Jan, S., Moisy, P.: Speciation in aqueous solutions of nitric acid. Dalton Trans. 42, 2853 (2013).10.1039/C2DT32256KSearch in Google Scholar PubMed

12. Ruas, A., Pochon, P., Simonin, J. P., Moisy, P.: Nitric acid: modeling osmotic coefficients and acid base dissociation using the BIMSA theory. Dalton Trans. 39, 10148 (2010).10.1039/c0dt00343cSearch in Google Scholar PubMed

13. Chemical Thermodynamics of Thorium, OECD publications, 2008. Available at: http://www.oecd.org/publications/chemical-thermodynamics-of-thorium-9789264056688-en.htm.Search in Google Scholar

14. Neck, V., Altmaier, M., Fanghänel, T.: on interaction (SIT) coefficients for the Th4+ ion and trace activity coefficients in NaClO4, NaNO3 and NaCl solution determined by solvent extraction with TBP. Radiochim. Acta 94, 501 (2006).10.1524/ract.2006.94.9-11.501Search in Google Scholar

15. Ordoñez-Regil, E., Drot, R., Simoni, E.: Surface Complexation Modeling of uranium(VI) sorbed onto lanthanum monophosphate. J. Colloid Interface Sci. 263, 391 (2003).10.1016/S0021-9797(03)00399-0Search in Google Scholar PubMed

16. Hayes, K. F., Redden, G., Ela, W., Leckie, J. O.: Surface complexation models: an evaluation of model parameter estimation using FITEQL and oxide mineral titration data. J. Colloid Interface Sci. 142(2), 448 (1991).10.1016/0021-9797(91)90075-JSearch in Google Scholar

17. Stumm, W.: Chemistry of the Solid–water Interface: Processes at the Mineral–water and Particle–water Interface in Natural Systems. Wiley, New York (1992).Search in Google Scholar

18. Almazan-Torres, M. G., Drot, R., Mercier-Bion, F., Catalette, H., Den Auwer, C., Simoni, E.: Surface complexation modelling of uranium (VI) sorbed onto zirconium oxophosphate versus temperature: thermodynamic and structural approaches. J. Colloid Interface Sci. 323, 42 (2008).10.1016/j.jcis.2008.03.041Search in Google Scholar PubMed

Received: 2018-08-29
Accepted: 2018-10-30
Published Online: 2018-12-03
Published in Print: 2019-03-26

©2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 16.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ract-2018-3052/pdf
Scroll to top button