Startseite Naturwissenschaften A response surface model of morphological changes in UO₂ and U₃O₈ following high temperature aging
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

A response surface model of morphological changes in UO₂ and U₃O₈ following high temperature aging

  • Adam M. Olsen , Ian Schwerdt , Alex Jolley , Nick Halverson , Bryony Richards und Luther W. McDonald IV EMAIL logo
Veröffentlicht/Copyright: 22. April 2019

Abstract

The morphological changes that take place during the processing and storage of uranium oxides can provide valuable information on the processing history and storage conditions of an interdicted sample. In this study microstructural changes in two uranium oxides (UO2 and U3O8) due to changes in the aging conditions at elevated temperatures were quantified and modeled using a response surface methodology approach. This allowed the morphological changes to be used as a signature for the aging conditions for nuclear forensic analysis. A Box-Behnken design of experiment was developed using the independent variables: temperature from 100 to 400 °C, aging times from 2 to 48 h, and partial pressure of O2(PO2) between ~0.0 kPa and 21.3 kPa. The design of experiment consisted of 54 samples per uranium oxide. Each aged sample was characterized using scanning electron microscopy (SEM) for image analysis. Utilizing the Morphological Analysis for Materials (MAMA) software package, particle size and shape were quantified using the acquired SEM images. Analysis of the particle attributes was completed using the Kolmogorov–Smirnov two sample test (K–S test) to determine if the particle size and shape distributions were statistically distinct. This data was then used to create response surfaces of the quantitative morphological changes based on the developed design of experiment. The U3O8 samples showed no statistically quantifiable differences due to the aging conditions. However, the UO2 samples had distinct morphological changes due to the experimental aging conditions. Specifically, the temperature factor had an increasing effect on the particle area, and a decreasing effect on particle circularity.

Award Identifier / Grant number: 2015-DN-077-ARI092

Award Identifier / Grant number: HDTRA1-16-1-0026

Funding statement: This work is supported by the U.S. Department of Homeland Security, Domestic Nuclear Detection Office, Funder Id: http://dx.doi.org/10.13039/100000180, under Grant Award Number 2015-DN-077-ARI092, Defense Threat Reduction Agency, Funder Id: http://dx.doi.org/10.13039/100000774, Grant Number: HDTRA1-16-1-0026. The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the U.S. Department of Homeland Security. This work made use of University of Utah Shared facilities of the Surface Analysis and Nanoscale Imaging Group sponsored by the College of Engineering, Health Sciences Center, Office of the Vice President for Research, and the Utah Science Technology and Research (USTAR) Initiative of the State of Utah.

References

1. Schwerdt, I. J., Olsen, A., Lusk, R., Heffernan, S., Klosterman, M., Collins, B., Martinson, S., Kirkham, T., McDonald IV, L. W.: Nuclear forensics investigation of morphological signatures in the thermal decomposition of uranyl peroxide. Talanta 176, 284 (2018).10.1016/j.talanta.2017.08.020Suche in Google Scholar PubMed

2. Moody, K. J., Grant, P. M., Hutcheon, I. D.: Nuclear Forensic Analysis (2014), CRC Press, Boca Raton.Suche in Google Scholar

3. Olsen, A. M., Richards, B., Schwerdt, I., Heffernan, S., Lusk, R., Smith, B., Jurrus, E., Ruggiero, C. E., McDonald, L. W.: Quantifying morphological features of α-U3O8 with image analysis for nuclear forensics. Anal. Chem. 89, 3177 (2017).10.1021/acs.analchem.6b05020Suche in Google Scholar PubMed

4. Schwerdt, I. J., Brenkmann, A., Martinson, S., Albrecht, B. D., Heffernan, S., Klosterman, M. R., Kirkham, T., Tasdizen, T., McDonald IV, L. W.: Nuclear proliferomics: a new field of study to identify signatures of nuclear materials as demonstrated on alpha-UO3. Talanta 186, 433 (2018).10.1016/j.talanta.2018.04.092Suche in Google Scholar PubMed

5. Tamasi, A. L., Cash, L. J., Tyler Mullen, W., Ross, A. R., Ruggiero, C. E., Scott, B. L., Wagner, G. L., Walensky, J. R., Zerkle, S. A., Wilkerson, M. P.: Comparison of morphologies of a uranyl peroxide precursor and calcination products. J. Radioanal. Nucl. Chem. 309, 827 (2016).10.1007/s10967-016-4692-xSuche in Google Scholar

6. Kim, K.-W., Hyun, J.-T., Lee, K.-Y., Lee, E.-H., Lee, K.-W., Song, K.-C., Moon, J.-K.: Effects of the different conditions of uranyl and hydrogen peroxide solutions on the behavior of the uranium peroxide precipitation. J. Haz. Mat. 193, 52 (2011).10.1016/j.jhazmat.2011.07.032Suche in Google Scholar

7. Keegan, E., Kristo, M. J., Colella, M., Robel, M., Williams, R., Lindvall, R., Eppich, G., Roberts, S., Borg, L., Gaffney, A.: Nuclear forensic analysis of an unknown uranium ore concentrate sample seized in a criminal investigation in Australia. Forensic Sci. Int. 240, 111 (2014).10.1016/j.forsciint.2014.04.004Suche in Google Scholar

8. Manna, S., Basak, C., Thakkar, U. R., Thakur, S., Roy, S. B., Joshi, J. B.: Study on effect of process parameters and mixing on morphology of ammonium diuranate. J. Radioanal. Nucl. Chem. 310, 287 (2016).10.1007/s10967-016-4883-5Suche in Google Scholar

9. Erdmann, N., Betti, M., Stetzer, O., Tamborini, G., Kratz, J., Trautmann, N., Van Geel, J.: Production of monodisperse uranium oxide particles and their characterization by scanning electron microscopy and secondary ion mass spectrometry. Spectrochim. Acta B 55, 1565 (2000).10.1016/S0584-8547(00)00262-7Suche in Google Scholar

10. Plaue, J.: Forensic signatures of chemical process history in uranium oxides (doctoral dissertation) [dissertation]; 2013.Suche in Google Scholar

11. Harada, Y.: UO2 sintering in controlled oxygen atmospheres of three-stage process. J. Nucl. Mater. 245, 217 (1997).10.1016/S0022-3115(96)00755-6Suche in Google Scholar

12. Gao, J.-C., Li, R., Zhong, F.-W., Yang, X.-D., Wang, Y.: Progress in processes of uranium dioxides pellets. J. Funct. Mater. 37, 849 (2006).Suche in Google Scholar

13. Yang, X.-D., Gao, J.-C., Yong, W., Chang, X.: Low-temperature sintering process for UO2 pellets in partially-oxidative atmosphere. T. Nonferr. Metal. Soc. 18, 171 (2008).10.1016/S1003-6326(08)60031-XSuche in Google Scholar

14. Lee, Y., Yang, M.: Characterization of HWR fuel pellets fabricated using UO2 powders from different conversion processes. J. Nucl. Mater. 178, 217 (1991).10.1016/0022-3115(91)90389-OSuche in Google Scholar

15. Martinez, J., Clavier, N., Ducasse, T., Mesbah, A., Audubert, F., Corso, B., Vigier, N., Dacheux, N.: From uranium (IV) oxalate to sintered UO2: consequences of the powders’ thermal history on the microstructure – U3O8. J. Eur. Ceram. Soc. 35, 4535 (2015).10.1016/j.jeurceramsoc.2015.07.010Suche in Google Scholar

16. Song, K. W., Kim, K. S., Kim, Y. M., Jung, Y. H.: Sintering of mixed UO2 and U3O8 powder compacts. J. Nucl. Mater. 277, 123 (1999).10.1016/S0022-3115(99)00212-3Suche in Google Scholar

17. McEachern, R.: A review of kinetic data on the rate of U3O7 formation on UO2. J. Nucl. Mater. 245, 238 (1997).10.1016/S0022-3115(96)00733-7Suche in Google Scholar

18. Alberman, K., Anderson, J.: The oxides of uranium. J. Chem. Soc. S303 (1949).10.1039/jr949000s303Suche in Google Scholar

19. Aronson, S., Roof Jr, R., Belle, J.: Kinetic study of the oxidation of uranium dioxide. J. Chem. Phys. 27, 137 (1957).10.1063/1.1743653Suche in Google Scholar

20. Olsen, A., Schwerdt, I., Richards, B., McDonald, L. W.: Quantification of high temperature oxidation of U3O8 and UO2. J. Nucl. Mater. (2018).10.1016/j.jnucmat.2018.06.025Suche in Google Scholar

21. IAEA: Uranium Extraction Technology. Vienna (1993),Suche in Google Scholar

22. Pijolat, M., Brun, C., Valdivieso, F., Soustelle, M.: Reduction of uranium oxide U3O8 to UO2 by hydrogen. Solid State Ionics 101, 931 (1997).10.1016/S0167-2738(97)00385-8Suche in Google Scholar

23. Box, G. E., Behnken, D. W.: Some new three level designs for the study of quantitative variables. Technometrics 2, 455 (1960).10.1080/00401706.1960.10489912Suche in Google Scholar

24. Weather Underground: Weather History for KSLC – January, 2017 to December, 2017. 2018 (2017).Suche in Google Scholar

25. Ruggiero, C., Porter, R.: MAMA Morphological Analysis of Materials User Guide. 2.1 (2016).Suche in Google Scholar

26. The MathWorks, I.: MATLAB Release 2016a. (2016).Suche in Google Scholar

27. Tamasi, A. L., Cash, L. J., Eley, C., Porter, R. B., Pugmire, D. L., Ross, A. R., Ruggiero, C. E., Tandon, L., Wagner, G. L., Walensky, J. R.: A lexicon for consistent description of material images for nuclear forensics. J. Radioanal. Nucl. Chem. 307, 1611 (2015).10.1007/s10967-015-4455-0Suche in Google Scholar

28. Katz, J., Gruen, D.: Higher Oxides of the Actinide Elements. The Preparation of Np3O8. J. Am. Chem. Soc. 71, 2106 (1949).10.1021/ja01174a056Suche in Google Scholar

29. Ruggiero, C. E., Porter, R. B.: MAMA Software Features: Attribute Summary (2016).Suche in Google Scholar

30. Kolmogoroff, A.: Confidence limits for an unknown distribution function. Ann. Math. Stat. 12, 461 (1941).10.1214/aoms/1177731684Suche in Google Scholar

31. Young, I. T.: Proof without prejudice: use of the Kolmogorov- Smirnov test for the analysis of histograms from flow systems and other sources. J. Histochem. Cytochem. 25, 935 (1977).10.1177/25.7.894009Suche in Google Scholar PubMed

32. Vigneau, E., Loisel, C., Devaux, M., Cantoni, P.: Number of particles for the determination of size distribution from microscopic images. Powder Technol. 107, 243 (2000).10.1016/S0032-5910(99)00192-8Suche in Google Scholar

33. Morgan, E. D.: Chemometrics: Experemental Design, Vol. 14. Wiley India Pvt. Limited, Noida, India (1995).Suche in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/ract-2018-3040).


Received: 2018-08-03
Accepted: 2019-01-14
Published Online: 2019-04-22
Published in Print: 2019-06-26

©2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 16.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ract-2018-3040/pdf
Button zum nach oben scrollen