Home Physical Sciences Kinetic and equilibrium studies of Cs(I), Sr(II) and Eu(III) adsorption on a natural sandy soil
Article
Licensed
Unlicensed Requires Authentication

Kinetic and equilibrium studies of Cs(I), Sr(II) and Eu(III) adsorption on a natural sandy soil

  • Liyan Qiu EMAIL logo , Kristen Scott and Stephane Rousseau
Published/Copyright: August 31, 2018

Abstract

Radioactive cesium, strontium and europium can be released as fission products during nuclear incidents and pose a major concern to contamination control because of their biological activity and long decay half-lives. Experiments were performed to study the kinetics and equilibrium of the adsorption of inactive Cs(I), Sr(II) and Eu(III) ions on a natural sandy soil. It was found that the adsorption of Cs(I), Sr(II) and Eu(III) had a second order reaction kinetics and generally reached equilibrium within 7 days. The adsorption equilibria of Cs(I) follows a Freundlich isotherm, while those of Sr(II) and Eu(III) follows a Langmuir isotherm. Adsorption increases with increasing pH for these cations studied at temperatures from 25 to 50°C. In general, the temperature effect on cation adsorption is small under these test conditions suggesting that the enthalpy change for adsorption is not significant. Tests of mixed Cs(I) and Sr(II) adsorption suggested that these cations likely adsorb on different sites on the surface of sandy soil. The desorption tests in NaCl and CaCl2 solutions show that Eu(III) and Cs(I) are more tightly bound and less mobile in natural sandy soil than Sr(II) under the same test conditions. Tests of Cs(I), Sr(II) and Eu(III) in a column under a flowing condition revealed that these cations mainly adsorbed within the depth of 2 cm below the surface of sandy soil.

Acknowledgments

The authors acknowledge the financial support from Federal Science and Technology Programs at Canadian Nuclear Laboratories.

References

1. Ledin, A., Karlsson, S., Düker, A., Allard, B.: The adsorption of europium to colloidal iron oxyhydroxies and quartz-the impact of pH and aquatic fulvic acid. Radiochim. Acta 66, 213 (1994).10.1524/ract.1994.6667.s1.213Search in Google Scholar

2. Miecznik, M., Mietelski, J. W., Lokas, E., Budziak, A.: Study on the sorption process on geological materials of long-lived radioactive isotopes 90Sr and 137Cs in model systems with the use of short-lived isotopes of 85Sr, 134Cs. J. Radioanal. Nucl. Chem. 316, 81 (2018).10.1007/s10967-018-5742-3Search in Google Scholar

3. Terre, E., Berger, G., Simoni, E., Castet, S., Giffaut, E., Loubet, M., Catalette, H.: Europium retention onto clay minerals from 25 to 150 °C: experimental measurements, spectroscopic features and sorption modeling. Geochim. Cosmochim. Acta 70, 4563 (2006).10.1016/j.gca.2006.06.1568Search in Google Scholar

4. Khan, S. A., Reman, R. U., Khan, M. A.: Adsorption of Cs(I), Sr(II) and Co(II) onto Al2O3. J. Radioanal. Nucl. Chem. 190, 81 (1995).10.1007/BF02035639Search in Google Scholar

5. Wallace, S. H., Shaw, S., Morris, K., Small, J. S., Fuller, A. J., Burke, I. T.: Effect of groundwater pH and ionic strength on strontium adsorption in aquifer sediments: implications for 90Sr mobility at contaminated nuclear sites. Appl. Geochem. 27, 1482 (2012).10.1016/j.apgeochem.2012.04.007Search in Google Scholar

6. Wu, J., Li, B., Liao, J., Feng, Y., Zhang, D., Zhao, J., Wen, W., Yang, Y., Liu, N.: Behavior and analysis of cesium adsorption on montmorillionite mineral. J. Environ. Radioact. 100, 914 (2009).10.1016/j.jenvrad.2009.06.024Search in Google Scholar PubMed

7. Giannakopoulou, F., Haidouti, C., Chronopoulou, A., Gasparatos, D.: Sorption behaviour of cesium on various soils under different pH levels. J. Hazard. Mater. 149, 553 (2007).10.1016/j.jhazmat.2007.06.109Search in Google Scholar PubMed

8. Macášek, F., Shaban, I. S., Mátel, L.: Cesium, strontium, europium(III) and plutonium (IV) complexes with humic acid in solution and on montmorillonite surface. J. Radianal. Nucl. Chem. 241, 627 (1999).10.1007/BF02347223Search in Google Scholar

9. Solovitch-Vella, N., Garnier, J. M.: Comparative kinetic desorption of 60Co, 85Sr and 134Cs from a contaminated natural silica and sand column: influence of varying physicochemical conditions and dissolved organic matter. Environ. Pollut. 141, 98 (2006).10.1016/j.envpol.2005.08.012Search in Google Scholar PubMed

10. Kornilovich, Y., Pshinko, G. N., Spasenova, L. N.: Effect of humics on sorption of 137Cs by mineral components of soils. Radiochemistry 42, 98 (2000).Search in Google Scholar

11. Nakamaru, Y., Ishikawa, N., Tagami, K., Uchida, S.: Role of soil organic matter in the mobility of radiocesium in agricultural soils common in Japan. Colloids Surf. A Physicochem. Eng. Asp. 306, 111 (2007).10.1016/j.colsurfa.2007.01.014Search in Google Scholar

12. Shaban, I. S., Macášek, F.: Influence of humic substance on fixation of fission products in silicate media. Proceedings of Third Radiation Physics Conference, Al-Minia, Egypt, November 13–17 (1996).Search in Google Scholar

13. Samadfam, M., Jintoku, T., Sato, S., Ohashi, H.: Effect of humic acid on the sorption of Sr(II) on kaolinite. J. Nucl. Sci. Technol. 37, 180 (2000).10.1080/18811248.2000.9714882Search in Google Scholar

14. Nagao, S., Rao, R. R., Killey, R. W. D., Young, J. L.: Migration behaviour of Eu(III) in sandy soil in the presence of dissolved organic materials. Radiochim. Acta 82, 205 (1998).10.1524/ract.1998.82.special-issue.205Search in Google Scholar

15. Flury, M., Czigány, S., Chen, G., Harsh, J. B.: Cesium migration in saturated silica sand and Hanford sediments as impacted by ionic strength. J. Contam. Hydrol. 71, 111 (2004).10.1016/j.jconhyd.2003.09.005Search in Google Scholar

16. Liu, C., Zachara, J. M., Smith, S. C.: A cation exchange model to describe Cs+ sorption at high ionic strength in subsurface sediments at Hanford site, USA. J. Contam. Hydrol. 68, 217 (2004).10.1016/S0169-7722(03)00143-8Search in Google Scholar PubMed

17. Sakuma, S. H., Ahmad, S.: Competitive adsorption of 90Sr on soil sediments, pure clay phases and feldspar minerals. Appl. Radiat. Isot. 46, 287 (1995).10.1016/0969-8043(95)00001-TSearch in Google Scholar

18. Cornell, R. M.: Adsorption of caesium on minerals: a review. J. Radiochem. Nucl. Chem. 171, 483 (1993).10.1007/BF02219872Search in Google Scholar

19. Yoshida, T., Suzuki, M.: Migration of strontium and europium in quartz sand column in the presence of humic acid: effect of ionic strength. J. Radioanal. Nucl. Chem. 270, 363 (2006).10.1007/s10967-006-0358-4Search in Google Scholar

20. Wang, Y. Q., Fan, Q. H., Li, P., Zheng, X. B., Xu, J. Z., Jin, Y. R., Wu, W. S.: The sorption of Eu(III) on calcareous soil: effect of pH, ionic strength, temperature, foreign ions and humic acid. J. Radioanal. Nucl. Chem. 287, 231 (2011).10.1007/s10967-010-0809-9Search in Google Scholar

21. Brady, V. P.: Silica surface chemistry at elevated temperatures. Geochim. Cosmochim. Acta 56, 2942 (1992).10.1016/0016-7037(92)90371-OSearch in Google Scholar

22. Tewari, P. H., Mclean, A. W.: Temperature dependence of point zero charge of alumina and magnetite. J. Colloid Interface Sci. 40, 269 (1972).10.1016/0021-9797(72)90016-1Search in Google Scholar

23. Akar, D., Shahwan, T., Eroglu, A. E.: Kinetic and thermodynamic investigations of strontium ions retention by natural kaolinite and clinoptilolite minerals. Radiochim. Acta 93, 477 (2005).10.1524/ract.2005.93.8.477Search in Google Scholar

24. Zhao, Y., Shao, Z., Chen, C., Hu, J., Chen, H.: Effect of environmental conditions on the adsorption behaviour of Sr(II) by Na-rectorite. Appl. Clay Sci. 87, 1 (2014).10.1016/j.clay.2013.11.021Search in Google Scholar

25. El-Sofany, E. A., Zaki, A. A., Mekhamer, H. S.: Kinetics and thermodynamics studies for the removal of Co2+ and Cs+ from aqueous solution by sandy and clay soils. Radiochim. Acta 97, 23 (2009).10.1524/ract.2009.1573Search in Google Scholar

26. Tsai, S. C., Wang, T. H., Li, M. H., Wei, Y. Y., Teng, S. P.: Cesium adsorption and distribution onto crushed granite under different physicochemical conditions. J. Hazard. Mater. 161, 854 (2009).10.1016/j.jhazmat.2008.04.044Search in Google Scholar PubMed

27. Bascetin, E., Atun, G.: Adsorption behaviour of strontium on binary mineral mixtures of montmorillonite and kaolinite. Appl. Radiat. Isot. 64, 957 (2006).10.1016/j.apradiso.2006.03.008Search in Google Scholar PubMed

28. Bauer, A., Rabung, T., Claret, F., Schäfer, T., Buckau, G., Fanghänel, T.: Influence of temperature on sorption of europium onto smectite: the role of organic contaminants. Appl. Clay Sci. 30, 1 (2005).10.1016/j.clay.2005.02.001Search in Google Scholar

29. Fan, Q. H., Tan, X. L., Li, J. X., Wang, X. K., Wu, W. S., Montavon, G.: Sorption of Eu (III) on attapulgite studied by batch, XPS and EXAFS techniques. Environ. Sci. Technol. 43, 5776 (2009).10.1021/es901241fSearch in Google Scholar PubMed

30. Pathak, P. N., Choppin, G. R.: Kinetic and thermodynamic studies of cesium (I) sorption on hydrous silica. J. Radioanal. Nucl. Chem. 270, 299 (2006).10.1007/s10967-006-0348-6Search in Google Scholar

31. Hakem, N., Apps, J. A., Moridis, G. J., Mahamid, I. A.: Sorption of fission products radionuclides 137Cs and 90Sr by Savannah River site sediments impregnated with colloidal silica. Radiochim. Acta 92, 419 (2004).10.1524/ract.92.7.419.35754Search in Google Scholar

32. Yu, S., Mei, H., Chen, X., Tan, X., Ahmad, B., Alsaedi, A., Hayat, T., Wang, X.: Impact of environmental conditions on the sorption behavior of radionuclide 90Sr(II) on Na-montmorillonite. J. Mol. Liq. 203, 39 (2015).10.1016/j.molliq.2014.12.041Search in Google Scholar

33. Fuerstenau, M. C., Jameson, G., Yoon, R. H.: Froth Flotation: A Century of Innovation (2007). Society for Mining, Metallurgy and Exploration, Inc., Englewood, CO, USA.Search in Google Scholar

34. Greenberg, S. A., Price, E. W.: The solubility of silica in solutions of electrolytes. J. Phys. Chem. 61, 1539 (1957).10.1021/j150557a019Search in Google Scholar

35. Benjamin, M. M., Leckie, J. O.: Multiple-site adsorption of Cd, Cu, Zn and Pb on amorphous iron oxyhydroxide. J. Colloid Interface Sci. 79, 209 (1981).10.1016/0021-9797(81)90063-1Search in Google Scholar

36. Stumm, W., Morgan, J. J.: Aquatic Chemistry: An Introduction Emphasizing Chemical Equilibria in Natural Waters (1970). Wiley-Interscience, New York, USA.Search in Google Scholar

37. Jackson, R. E., Inch, K. J.: Hydrogeochemical processes affecting the migration of radionuclides in a fluvial sand aquifer at the Chalk River Nuclear Laboratories. Environment Canada, NHRI Paper No. 7 (1980).Search in Google Scholar

38. Dishon, M., Zohar, O., Sivan, U.: Effect of cation and charge on the interaction between silica surfaces in 1:1, 2:1 and 3:1 aqueous electrolytes. Langmuir 27, 12977 (2011).10.1021/la202533sSearch in Google Scholar PubMed

39. Verma, P. K., Pathak, P., Mohapatra, P. K.: Sorption of metal cations on suspended bentonite: effects of pH, ionic strength and complexing anions. Radiochim. Acta 102, 401 (2014).10.1515/ract-2014-2160Search in Google Scholar

40. Sverjensky, D. A.: Prediction of the speciation of alkaline earths adsorbed on mineral surfaces in salt solutions. Geochim. Cosmochim. Acta 70, 2427 (2006).10.1016/j.gca.2006.01.006Search in Google Scholar

41. D’Angelo, P., Martelli, F., Spezia, R., Filipponi, A., Denecke, M. A.: Hydration properties and ionic radii of actinide (III) ions in aqueous solution. Inorg. Chem. 52, 10318 (2013).10.1021/ic400678uSearch in Google Scholar PubMed

42. Fairhurst, A. J., Warwick, P., Richardson, S.: The effect of pH on europium-mineral interfaces in the presence of humic acid. Radiochim. Acta 69, 103 (1995).10.1524/ract.1995.69.2.103Search in Google Scholar

43. Righetto, L., Bldogllo, G., Azlmontl, G., Bellobbono, I. R.: Competitive actinide interactions in colloidal humic acid-mineral oxide systems. Environ. Sci. Technol. 25, 1913 (1991).10.1021/es00023a012Search in Google Scholar

44. Palágyi, Š., Vodičková, H.: Sorption and desorption of 125I, 137Cs, 85Sr2+ and 152–154Eu3+ on disturbed soils under dynamic flow and static batch conditions. J. Radioanal. Nucl. Chem. 280, 3 (2009).10.1007/s10967-008-7436-8Search in Google Scholar

45. Wang, X., Rabung, T., Geckeis, H.: Effect of pH and humic acid on the adsorption of cesium onto γ-Al2O3. J. Radioanal. Nucl. Chem. 260, 437 (2004).10.1023/B:JRNC.0000027122.28071.9aSearch in Google Scholar

46. Samadfam, M., Jintoku, T., Sato, S., Ohashi, H.: Effect of pH on stability constants of Sr(II)-humate complexes. J. Nucl. Sci. Technol. 35, 579 (1998).10.1080/18811248.1998.9733911Search in Google Scholar

47. Rauret, G., Vallejo, V. R., Cancio, D., Real, J.: Transfer of radionuclides in soil-plant systems following aerosol simulation of accidental releases: design and first results. J. Environ. Radioact. 29, 163 (1995).10.1016/0265-931X(94)00059-6Search in Google Scholar

Received: 2018-04-30
Accepted: 2018-07-22
Published Online: 2018-08-31
Published in Print: 2018-12-19

©2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 16.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ract-2018-2976/pdf
Scroll to top button