Home Physical Sciences Speciation of technetium in carbonate media under helium ions and γ radiation
Article
Licensed
Unlicensed Requires Authentication

Speciation of technetium in carbonate media under helium ions and γ radiation

  • Mohammad Ghalei , Johan Vandenborre EMAIL logo , Frederic Poineau , Guillaume Blain , Pier-Lorenzo Solari , Jerome Rôques , Ferid Haddad and Massoud Fattahi
Published/Copyright: October 2, 2018

Abstract

Technetium carbonates complexes produced by chemical, electrochemical and radiolytic methods have been studied by UV-Visible, X-ray Absorption Fine Structure (XAFS) and Density Functional Theory methods. The (NH4)2TcCl6 salt was dissolved in 2 M KHCO3. The resulting purple solution was analyzed by XAFS and UV-Visible spectroscopy. The UV-Visible spectra exhibits a band centered at 515 nm. The XAFS results were consistent with the presence of polymeric species containing the [Tc2(μ−O)2]4+ core coordinated to carbonate ligand. Concerning the electrochemical methods, the pertechnetate anion was electrochemically reduced in concentrated carbonate solution [(CO32−)=5 M and (HCO3)=0.5 M]. For the radiolytic reduction, the speciation of Tc under Helium ions particle beam and γ radiation was examined by UV-Visible and XAFS spectroscopy in high concentrated carbonate media. In concentrated carbonate solutions, pertechnetate as Tc(VII), was not reduced under irradiation due to the formation of carbonate radical which is a strong oxidant. Then, the solution proposed was the addition of formate to the solution which can scavenge hydroxyl radical 10 times faster than carbonate and prevent re-oxidation of reduced technetium. The XANES and EXAFS spectroscopies, approved by theoretical methods, revealed that the final product of the radiolytic reduction of pertechnetate is in the +IV oxidation state. The final structure of the reduced product by He2+ radiolysis was the same as electrochemical reduction. From this complex determination and evolution vs. the dose, this study is reporting the solubility of the Tc(IV) complex.

Acknowledgment

The authors would like to thank the ARRONAX staff for the efficient performing of irradiation runs in the cyclotron facility. This work has been supported in part by a grant from the French National Agency for Research called “Investissements d’Avenir”, Equipex ArronaxPlus n°ANR-11-EQPX-0004. The authors would like to thank SOLEIL synchrotron for provision of beam time using MARS beamline. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.

References

1. Kessler, K. G., Trees, R. E.: The nuclear moments of technetium-99. Phys. Rev. 92, 303 (1953).10.1103/PhysRev.92.303Search in Google Scholar

2. Nystrom, A., Thoennessen, M.: Discovery of yttrium, zirconium, niobium, technetium, and ruthenium isotopes. At. Data Nucl. Data Tables 98, 95 (2012).10.1016/j.adt.2011.12.002Search in Google Scholar

3. Bergquist, B. A., Marchetti, A. A., Martinelli, R. E., McAninch, J. E., Nimz, G. J., Proctor, I. D., Southon, J. R., Vogel, J. S.: Technetium measurements by accelerator mass spectrometry at LLNL. Nucl. Instrum. Methods Phys. Res. Section B: Beam Interactions with Materials and Atoms 172, 328 (2000).10.1016/S0168-583X(00)00084-7Search in Google Scholar

4. Alliot, I., Alliot, C., Vitorge, P., Fattahi, M.: Speciation of technetium(IV) in bicarbonate media. Environ. Sci. Technol. 43, 9174 (2009).10.1021/es9021443Search in Google Scholar PubMed

5. Ben Said, K., Seimbille, Y., Fattahi, M., Houee-Lévin, C., Abbé, J. C.: γ Radiation effects on potassium pertechnetate in carbonate media. Appl. Radiat. Isot. 54, 45 (2001).10.1016/S0969-8043(00)00162-7Search in Google Scholar PubMed

6. Lukens, W. W., Bucher, J. J., Edelstein, N. M., Shuh, D. K.: Radiolysis of TcO4 in alkaline, nitrate solutions:reduction by NO32. J. Phys. Chem. A 105, 9611 (2001).10.1021/jp004534ySearch in Google Scholar

7. Lukens, W. W., Bucher, J. J., Edelstein, N. M., Shuh, D. K.: Products of pertechnetate radiolysis in highly alkaline solution:structure of TcO2·xH2O. Environ. Sci. Technol. 36, 1124 (2002).10.1021/es015653+Search in Google Scholar PubMed

8. Sekine, T., Narushima, H., Kino, Y., Kudo, H., Lin, M., Katsumura, Y., Radiolytic formation of Tc(IV) oxide colloids. Radiochim. Acta 90, 611 (2002).10.1524/ract.2002.90.9-11_2002.611Search in Google Scholar

9. Sekine, T., Narushima, H., Suzuki, T., Takayama, T., Kudo, H., Lin, M., Katsumura, Y.: Technetium(IV) oxide colloids produced by radiolytic reactions in aqueous pertechnetate solution. Colloids Surf. A Physicochem. Eng. Asp. 249, 105 (2004).10.1016/j.colsurfa.2004.08.074Search in Google Scholar

10. Fricke, H., Hart, E. J.: Chemical Dosimetry, Radiation Dosimetry. In: F. H. Attix, W. C. Roesch (Eds.), Academic Press, NY, USA (1966).Search in Google Scholar

11. Costa, C., Vandenborre, J., Crumière, F., Blain, G., Essehli, R., Fattahi, M.: Chemical dosimetry during alpha irradiation: a specific system for UV-Vis in situ measurement. Am. J. Analyt. Chem. 3, 6 (2012).10.4236/ajac.2012.31002Search in Google Scholar

12. Sitaud, B., Solari, P. L., Schlutig, S., Llorens, I., Hermange, H.: Characterization of radioactive materials using the MARS beamline at the synchrotron SOLEIL. J. Nucl. Mater. 425, 238 (2012).10.1016/j.jnucmat.2011.08.017Search in Google Scholar

13. Ravel, B., Newville, M.: ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron. Radiat. 12, 537 (2005).10.1107/S0909049505012719Search in Google Scholar PubMed

14. Rehr, J. J., Albers, R. C.: Theoretical approaches to x-ray absorption fine structure. Rev. Mod. Phys. 72, 621 (2000).10.1103/RevModPhys.72.621Search in Google Scholar

15. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A. V., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V., Izmaylov, A. F., Sonnenberg, J. L., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V. G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery Jr., J. A., Peralta, J. E., Ogliaro, F., Bearpark, M. J., Heyd, J. J., Brothers, E. N., Kudin, K. N., Staroverov, V. N., Keith, T. A., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A. P., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Millam, J. M., Klene, M., Adamo, C., Cammi, R., Ochterski, J. W., Martin, R. L., Morokuma, K., Farkas, O., Foresman, J. B., Fox, D. J.: Gaussian 09. 2009: Wallingford, CT.Search in Google Scholar

16. Becke, A. D.: Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648 (1993).10.1063/1.464913Search in Google Scholar

17. Andrae, D., Häußermann, U., Dolg, M., Stoll, H., Preuß, H.: Energy-adjustedab initio pseudopotentials for the second and third row transition elements. Theor. Chem. Acc. 77, 123 (1990).10.1007/BF01114537Search in Google Scholar

18. Barone, V., Cossi, M.: Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. J. Phys. Chem. A 102, 1995 (1998).10.1021/jp9716997Search in Google Scholar

19. Poineau, F., Fattahi, M., Auwer, C. D., Hennig, C., Grambow, B.: Speciation of technetium and rhenium complexes by in situ XAS-electrochemistry. Radiochim. Acta 94, 283 (2006).10.1524/ract.2006.94.5.283Search in Google Scholar

20. Paquette, J., Lawrence, W. E.: A spectroelectrochemical study of the technetium(IV)/technetium(III) couple in bicarbonate solutions. Can. J. Chem. 63, 2369 (1985).10.1139/v85-392Search in Google Scholar

21. Haygarth, K. S., Marin, T. W., Janik, I., Kanjana, K., Stanisky, C. M., Bartels, D. M.: Carbonate radical formation in radiolysis of sodium carbonate and bicarbonate solutions up to 250 °C and the mechanism of its second order decay. J. Phys. Chem. A 114, 2142 (2010).10.1021/jp9105162Search in Google Scholar PubMed

22. Ghalei, M., Ma, J., Schmidhammer, U., Vandenborre, J., Fattahi, M., Mostafavi, M.: Picosecond pulse radiolysis of highly concentrated carbonate solutions. J. Phys. Chem. B 120, 2434 (2016).10.1021/acs.jpcb.5b12405Search in Google Scholar PubMed

23. Buxton, G. V., Greenstock, C. L., Helman, W. P., Ross, A. B.: Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (OH/O) in aqueous solution. J. Phys. Chem. Ref. Data 17, 513 (1988).10.1063/1.555805Search in Google Scholar

24. LaVerne, J. A.: Radiation chemical effects of heavy ions. In: M. Dekker, A. Mozumder, Y. Hatano (Eds.), Charged Particle and Photon Interactions – Chemical, Physicochemical, and Biological consequences with applications. Book, NY, USA (2004).10.1201/9780203913284.ch14Search in Google Scholar

Received: 2018-02-07
Accepted: 2018-09-04
Published Online: 2018-10-02
Published in Print: 2019-02-25

©2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 16.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ract-2018-2939/pdf
Scroll to top button