Home Quaternary ammonium based task specific ionic liquid for the efficient and selective extraction of neptunium
Article
Licensed
Unlicensed Requires Authentication

Quaternary ammonium based task specific ionic liquid for the efficient and selective extraction of neptunium

  • Nishesh Kumar Gupta , Arijit Sengupta EMAIL logo and Sujoy Biswas
Published/Copyright: March 15, 2017

Abstract:

Liquid–liquid extraction of neptunium from aqueous acidic solution using quaternary ammonium based task specific ionic liquid (TSIL) was investigated. The extraction of Np was predominated by the ‘cation exchange’ mechanism via [NpO2·Hpth]+ species for NpO22+, while NpO2+ was extracted in ionic liquid as [NpO2·H·Hpth]+. The extraction process was thermodynamically spontaneous while kinetically slower. Na2CO3 as strippant showed quantitative back extraction of neptunium ions from TSIL. TSIL showed excellent radiolytic stability upto 500 kGy gamma exposure. Finally, the TSIL was employed for the processing of simulated high level waste solutions revealing high selectivity of TSIL towards neptunium.

Acknowledgments

The authors wish to acknowledge Dr. P.K. Pujari, Head’ Radiochemistry Division, and Dr. R.M. Kadam, Head, Actinides Spectroscopy Section, radiochemistry Division for their constant support.

References

1. Welton, T.: Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem. Rev. 99, 2071 (1999).10.1021/cr980032tSearch in Google Scholar

2. Steinrück, H. P., Wasserscheid, P.: Ionic liquids in catalysis. Catal. Lett. 145, 380 (2015).10.1007/s10562-014-1435-xSearch in Google Scholar

3. Sheldon, R.: Catalytic reactions in ionic liquids. Chem. Commun. 23, 2399 (2001).10.1039/b107270fSearch in Google Scholar PubMed

4. Sun, X., Luo, H., Dai, S.: Ionic liquids-based extraction: a promising strategy for the advanced nuclear fuel cycle. Chem. Rev. 112, 2100 (2012).10.1021/cr200193xSearch in Google Scholar PubMed

5. Ha, S. H., Menchavez, R. N., Koo, Y. M.: Reprocessing of spent nuclear waste using ionic liquids. Korean J. Chem. Eng. 27, 1360 (2010).10.1007/s11814-010-0386-1Search in Google Scholar

6. Wang, P., Zakeeruddin, S. M., Exnar, I., Grätzel, M.: High efficiency dye-sensitized nanocrystalline solar cells based on ionic liquid polymer gel electrolyte. Chem. Commun. 24, 2972 (2002).10.1039/B209322GSearch in Google Scholar PubMed

7. Wang, P., Zakeeruddin, S. M., Moser, J. E., Grätzel, M.: A new ionic liquid electrolyte enhances the conversion efficiency of dye-sensitized solar cells. J. Phys. Chem. B 107, 13280 (2003).10.1021/jp0355399Search in Google Scholar

8. Kuboki, T., Okuyama, T., Ohsaki, T., Takami, N.: Lithium-air batteries using hydrophobic room temperature ionic liquid electrolyte. J. Power Sources 146, 766 (2005).10.1016/j.jpowsour.2005.03.082Search in Google Scholar

9. Seki, S., Kobayashi, Y., Miyashiro, H., Ohno, Y., Usami, A., Mita, Y., Kihira, N., Watanabe, M., Terada, N.: Lithium secondary batteries using modified-imidazolium room-temperature ionic liquid. J. Phys. Chem. B 110, 10228 (2006).10.1021/jp0620872Search in Google Scholar PubMed

10. Lewandowski, A., Mocek, A. Ś.: Ionic liquids as electrolytes for Li-ion batteries – An overview of electrochemical studies. J. Power Sources 194, 601 (2009).10.1016/j.jpowsour.2009.06.089Search in Google Scholar

11. Bates, E. D., Mayton, R. D., Ntai, I., Davis, J. H. Jr.: CO2 capture by a task-specific ionic liquid. J. Am. Chem. Soc. 124, 926 (2002).10.1021/ja017593dSearch in Google Scholar PubMed

12. Zhang, X., Zhang, X., Dong, H., Zhao, Z., Zhang, S., Huang, Y.: Carbon capture with ionic liquids: overview and progress. Energy Environ. Sci. 5, 6668 (2012).10.1039/c2ee21152aSearch in Google Scholar

13. Wei, G. T., Yang, Z., Chen, C. J.: Room temperature ionic liquid as a novel medium for liquid/liquid extraction of metal ions. Anal. Chim. Acta 488, 183 (2003).10.1016/S0003-2670(03)00660-3Search in Google Scholar

14. Visser, A. E., Swatloski, R. P., Reichert, W. M., Mayton, R., Sheff, S., Wierzbicki, A., Davis, Jr. J. H., Rogers, R. D.: Task-specific ionic liquids for the extraction of metal ions from aqueous solutions. Chem. Commun. 1, 135 (2001).10.1039/b008041lSearch in Google Scholar

15. Vissera, A. E., Swatloskia, R. P., Griffin, S. T., Hartman, D. H., Rogers, R. D.: Liquid/liquid extraction of metal ions in room temperature ionic liquids. Sep. Sci. Technol. 36, 785 (2001).10.1081/SS-100103620Search in Google Scholar

16. Marcilla, R., Blazquez, J. A., Rodriguez, J., Pomposo, J. A., Mecerreyes, D.: Tuning the solubility of polymerized ionic liquids by simple anion-exchange reactions. J. Polym. Sci. Part A: Polym. Chem. 42, 208 (2004).10.1002/pola.11015Search in Google Scholar

17. Huang, J., Riisager, A., Berg, R. W., Fehrmann, R.: Tuning ionic liquids for high gas solubility and reversible gas sorption. J. Mol. Catal. A: Chem. 279, 170 (2008).10.1016/j.molcata.2007.07.036Search in Google Scholar

18. Wang, C., Luo, H., Li, H., Zhu, X., Yu, B., Dai, S.: Tuning the physicochemical properties of diverse phenolic ionic liquids for equimolar CO2 capture by the substituent on the anion. Chem. Eur. J. 18, 2153 (2012).10.1002/chem.201103092Search in Google Scholar PubMed

19. Fischer, L., Falta, T., Koellensperger, G., Stojanovic, A., Kogelnig, D., Galanski, M., Krachler, R., Keppler, B. K., Hann, S.: Ionic liquids for extraction of metals and metal containing compounds from communal and industrial waste water. Water Res. 45, 4601 (2011).10.1016/j.watres.2011.06.011Search in Google Scholar PubMed

20. Priya, S., Sengupta, A., Jayabun, Sk., Adya, V. C.: Piperidinium based ionic liquid in combination with sulphoxides: highly efficient solvent systems for the extraction of thorium. Hydrometallurgy 164, 111 (2016).10.1016/j.hydromet.2016.06.013Search in Google Scholar

21. Mohapatra, P. K., Sengupta, A., Iqbal, M., Huskens, J., Verboom, W.: Highly efficient diglycolamide-based task specific ionic liquids: synthesis, unusual extraction behaviour, irradiation, and fluorescence studies. Chem. Euro. J. 19(9), 3230 (2013).10.1002/chem.201203321Search in Google Scholar PubMed

22. Paramanik, M., Raut, D. R., Sengupta, A., Ghosh, S. K., Mohapatra, P. K.: A trialkyl phosphine oxide functionalized task specific ionic liquid for actinide ion complexation: extraction and spectroscopic studies. RSC Adv. 6, 19763 (2016).10.1039/C5RA24174JSearch in Google Scholar

23. Sengupta, A., Mohapatra, P. K., Iqbal, M., Huskens, J., Verboom, W.: A diglycolamide-functionalized task specific ionic liquid (TSIL) for actinide extraction: solvent extraction, thermodynamics and radiolytic stability studies. Sep. Purif. Technol. 118, 264 (2013).10.1016/j.seppur.2013.07.005Search in Google Scholar

24. Mohapatra, P. K., Kandwal, P., Iqbal, M., Huskens, J., Murali, M. S., Verboom, W.: A novel CMPO-functionalized task specific ionic liquid: synthesis, extraction and spectroscopic investigations of actinide and lanthanide complexes. Dalton Trans. 42, 4343 (2013).10.1039/c3dt32967dSearch in Google Scholar PubMed

25. Singh, M., Sengupta, A., Jayabun, Sk., Ippil, T.: Understanding the extraction mechanism, radiolytic stability and stripping behavior of thorium by ionic liquid based solvent systems: evidence of ‘ion-exchange’ and ‘solvation’ mechanism. J Radioanal. Nucl. Chem. 311, 195 (2017).10.1007/s10967-016-4994-zSearch in Google Scholar

26. Priya, S., Sengupta, A., Jayabun, Sk.: Understanding the extraction/complexation of uranium using structurally modified sulphoxides in room temperature ionic liquid: speciation, kinetics, radiolytic stability, stripping and luminescence investigation. J. Radioanal. Nucl. Chem. 310, 1049 (2016).10.1007/s10967-016-4970-7Search in Google Scholar

27. Li, L., Dang, H., Xu, Q., Jiang, W., Li, M., Zhang, J.: A novel Np–Pu separation procedure based on extraction with di-(chlorophenyl)-dithiophosphinic acid in nitric solution. J Radioanal. Nucl. Chem. 301, 789 (2014).10.1007/s10967-014-3212-0Search in Google Scholar

28. Sengupta, A., Murali, M. S., Mohapatra, P. K., Iqbal, M., Huskens, J., Verboom, W.: Extracted species of Np(IV) complex with diglycolamide functionalized task specific ionic liquid: diffusion, kinetics and thermodynamics by cyclic voltammetry. J. Radioanal. Nucl. Chem. 304, 563 (2015).10.1007/s10967-014-3857-8Search in Google Scholar

29. Carrott, M., Maher, C., Mason, C., Sarsfield, M., Taylor, R. “TRU-SANEX”: A variation on the EURO-GANEX and i-SANEX processes for heterogeneous recycling of actinides Np-Cm. Sep. Sci. Technol. 51, 2198 (2016).10.1080/01496395.2016.1202979Search in Google Scholar

30. Egorov, V. M., Djigailo, D. I., Momotenko, D. S., Chernyshov, D. V., Torocheshnikova, I. I., Smirnova, S. V., Pletnev, I. V.: Task-specific ionic liquid trioctylmethylammonium salicylate as extraction solvent for transition metal ions. Talanta 80, 1177 (2010).10.1016/j.talanta.2009.09.003Search in Google Scholar PubMed

31. de los Ríos, A. P., Fernández, F. J. H., Alguacil, F. J., Lozano, L. J., Ginestá, A., Díaz, I. G., Segado, S. S., López, F. A., Godínez, C.: On the use of imidazolium and ammonium-based ionic liquids as green solvents for the selective recovery of Zn(II), Cd(II), Cu(II) and Fe(III) from hydrochloride aqueous solutions. Sep. Purif. Technol. 97, 150 (2012).10.1016/j.seppur.2012.02.040Search in Google Scholar

32. Parmentier, D., Metz, S. J., Kroon, M. C.: Tetraalkylammoniumoleate and linoleate based ionic liquids: promising extractants for metal salts. Green Chem. 15, 205 (2013).10.1039/C2GC36458ASearch in Google Scholar

33. Rout, A., Chatterjee, K., Venkatesan, K. A., Sahu, K. K., Antony, M. P., Rao, P. R. V.: Solvent extraction of plutonium(IV) in monoamide – ammonium ionic liquid mixture. Sep. Purif. Technol. 159, 43 (2016).10.1016/j.seppur.2015.12.053Search in Google Scholar

34. Zakharchenko, E. A., Malikov, D. A., Myasoedova, G. V., Mokhodoeva, O. B., Molochnikova, N. P., Kulyako, Yu, M.: Solid-phase extractants based on taunit carbon nanotubes for actinide and REE preconcentration from nitric acid solutions. Radiochemistry 54, 159 (2012).10.1134/S1066362212020117Search in Google Scholar

35. Biswas, S., Rupawate, V. H., Roy, S. B., Sahu, M.: Task-specific ionic liquid tetraalkylammonium hydrogen phthalate as an extractant for U(VI) extraction from aqueous media. J Radioanal. Nucl. Chem. 300, 853 (2014).10.1007/s10967-014-3063-8Search in Google Scholar

36. Tochiyama, O., Endo, S., Inoue, Y.: Sorption of neptunium(V) on various iron oxides and hydrous iron oxides. Radiochim. Acta 68, 105 (1995).10.1524/ract.1995.68.2.105Search in Google Scholar

37. Panja, S., Ruhela, R., Tripathi, S. C., Dhami, P. S., Singh, A. K., Gandhi, P. M.: Effect of room temperature ionic liquid on the extraction behavior of plutonium (IV) using a novel reagent, bis-(2-ethylhexyl) carbamoyl methoxyphenoxy-bis-(2-ethylhexyl) acetamide [Benzodioxodiamide, BenzoDODA]. Sep. Purif. Technol. 151, 139 (2015).10.1016/j.seppur.2015.07.038Search in Google Scholar

38. Rout, A., Venkatesan, K. A., Antony, M. P., Rao, P. R. V.: Liquid–Liquid extraction of americium(III) using a completely incenerable ionic liquid system. Sep. Purif. Technol. 158, 137 (2016).10.1016/j.seppur.2015.12.011Search in Google Scholar

39. Sengupta, A., Mohapatra, P. K., Iqbal, M., Huskens, J., Verboom, W.: Role of organic diluent on actinide ion extraction using a both-side diglycolamide-functionalized calix[4]arene. Supramol. Chem. 25(9–11), 688 (2013).10.1080/10610278.2013.833335Search in Google Scholar

40. Prabhu, D. R., Sengupta, A., Murali, M. S., Pathak, P. N.: Role of diluents in the comparative extraction of Th(IV), U(VI) and other relevant metal ions by DHOA and TBP from nitric acid media and simulated wastes: reprocessing of U-Th based fuel in perspective. Hydrometallurgy 158, 132 (2015).10.1016/j.hydromet.2015.10.011Search in Google Scholar

41. Sengupta, A., Ali, Sk. M., Shenoy, K. T.: Understanding the complexation of Eu3+ with TODGA, CMPO, TOPO and DMDBTDMA: extraction, luminescence and theoretical investigation. Polyhedron 117, 612 (2016).10.1016/j.poly.2016.06.037Search in Google Scholar

42. Ranke, J., Othman, A., Fan, P., Muller, A.: Explaining ionic liquid water solubility in terms of cation andanion hydrophobicity. Int. J. Mol. Sci. 10, 1271 (2009).10.3390/ijms10031271Search in Google Scholar PubMed PubMed Central

43. Sengupta, A., Mohapatra, P. K.: Extraction of radiostrontium from nuclear waste solution using crown ethers in room temperature ionic liquids. Supramol. Chem. 24(11), 771 (2012).10.1080/10610278.2012.716840Search in Google Scholar

44. Sengupta, A., Mohapatra, P. K., Iqbal, M., Verboom, W., Huskens J., Godbole, S. V.: Extraction of Am(III) using novel solvent systems containing a tripodal diglycolamide ligand in room temperature ionic liquids: a ‘green’ approach for radioactive waste processing. RSc Adv. 2, 7492 (2012).10.1039/c2ra20577gSearch in Google Scholar

45. Mohapatra, P. K., Sengupta, A., Iqbal, M., Huskens, J., Verboom, W.: Diglycolamide-functionalized calix[4]arenes showing unusual complexation of actinide ions in room temperature ionic liquids: Role of ligand structure, radiolytic stability, emission spectroscopy, and thermodynamic studies. Inorg. Chem. 52 (5), 2533 (2013).10.1021/ic302497kSearch in Google Scholar PubMed

46. Sengupta, A., Mohapatra, P. K., Iqbal, M., Huskens, J., Verboom, W.: A highly efficient solvent system containing functionalized diglycolamides and an ionic liquid for americium recovery from radioactive wastes. Dalton Trans. 41 (23), 6970 (2012).10.1039/c2dt12364aSearch in Google Scholar PubMed


Supplemental Material:

The online version of this article offers supplementary material (DOI: https://doi.org/10.1515/ract-2016-2694).


Received: 2016-9-6
Accepted: 2017-2-9
Published Online: 2017-3-15
Published in Print: 2017-9-26

©2017 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 2.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ract-2016-2694/html
Scroll to top button