Mini review

Elisaveta Zvetkova and Dietmar Fuchs*

Medical significance of simultaneous application of red blood cell distribution width (RDW) and neopterin as diagnostic/prognostic biomarkers in clinical practice

https://doi.org/10.1515/pterid-2017-0021 Received October 5, 2017; accepted October 27, 2017; previously published online November 22, 2017

Abstract: In our individual and collaborative studies, we have played a part in pioneering investigations on the usefulness of biomarkers - red blood cell distribution width (RDW) and neopterin. This mini review includes historical data on the topic and is related to the first contributions in this field, as well as to the possibilities for further improvement and simultaneous application of RDW and neopterin measurements in the prevention, prognosis and treatment of a great number of socially important disease conditions (arterial, cardiovascular, brain vascular, peripheral artery diseases, inflammations, autoimmune states, cancers and leukemias, addictions, etc.). When comparing the results obtained with the immunobiochemical biomarker neopterin with RDW, they are reported to be very similar as independent predictors of the same pathological states in the human body although their biomedical origins are very different. Both the parameters were until now successfully, but only separately used in medical practice. The combined use of these two biomarkers can shed some more light on their interrelationships and provide some clues as to how the interaction between immune system activation and red blood cells biology are intertwined.

Keywords: early diagnosis; laboratory diagnostic applications; neopterin; predictor of adverse outcomes; prognostic significance; red blood cell distribution width (RDW); treatment.

Introduction

Red blood cell distribution width (RDW) is a hematologic index, automatically calculated by the common blood cell counters. RDW reflects the heterogeneity of erythrocyte volume and mean corpuscular volume (MCV) and is characterized as an electronic equivalent of erythrocyte anisocytosis as is registered light-microscopically in blood smears. As a coefficient of variation of erythrocyte volume (in percentage, %), RDW expresses the dispersion of the RBC volume curve obtained by using the formula: RDW%=SD of MCV/MCV×100, where MCV=mean RBC volume; SD=standard deviation of MCV. In different laboratories, RDW values are registered in the reference ranges between 11.5% and 14.5% [1].

In earlier hematological studies, RDW values were examined for the purposes of diagnosis, differential diagnosis and classification of anemia [2, 3]. Grant et al. [4] evaluated an inverse relationship between lung function and RDW in a population-based study.

In early 2006, we first proposed in the scientific literature RDW and MCV as hematometric erythrocyte indices to monitor the hemorheological properties of red blood cells (RBC) in chronic heroin addicts [5]. We observed increased RDW levels in chronic heroin users simultaneously with changes in RDW and MCV as bioindicators of negative effects of drugs on erythropoiesis. In conclusion, we recommended the results of our study be applied in medical practice in order to determine their clinical usefulness to optimize the treatment of some vascular/cardiovascular complications such as hypoxemia, major ischemic syndrome, circulatory disturbances, hypertension, cardiac arrythmia, acute myocardial infarction (AMI), etc. The prognostic value of RWD, as stated in our above-mentioned previous study has been recognized and this parameter was used for further studies by mainly cardiologists [6–11] (Table 1).

Recently, a large number of retrospective (and a few prospective) studies on the usefulness of RDW as an independent biomarker in the risk stratification and prevention of different socially important diseases in humans have been involved in the medical literature and clinical

^{*}Corresponding author: Dietmar Fuchs, Division of Biological Chemistry, Biocenter, Medical University, Innrain 80, 6020 Innsbruck, Austria, E-mail: dietmar.fuchs@i-med.ac.at Elisaveta Zvetkova: Bulgarian Biorheological Society; IM – Bulgarian Academy of Sciences, Acad G. Bonchev Str., Block 4, 1113 Sofia, Bulgaria

Table 1: Pioneering studies of clinical significance and prognostic values of increased red blood cell distribution width (RDW) as biomarker in cardiovascular, brain vascular and peripheral vascular diseases.

Authors/Reference

- [5] Elevated RDW levels in chronic heroin addicts: Savov Y, et al. Clin Hemorheol Microcirc 2006;35:129-33.
- [6] RDW elevation in patients with NSTEMI: Azab B, et al. Cardiology 2011;119:72-80.
- [7] High RDW levels in AMI and UAP: Gul M, et al. Coron Artery Dis 2012;23:330-6.
- [8] RDW prognostic significance in CAD: Isik T, et al. Coron Artery Dis 2012;23:51-6.
- [9] RDW in long-term prognosis of CVD: Isik T, et al. Cardiol J 2016;23:281-288.
- [10] Predictive RDW values following TAVI: Magri CJ, et al. Int J Cardiol 2014;172:456-7.
- [11] RDW a biomarker of MSB in CAD: Magri CJ, et al. Postgrad Med J 2017;93:607-612.

AMI, acute myocardial infarction; CAD, coronary artery disease; CVD, cardiovascular disease; MSB, myocardial scar burden; NSTMI, non-ST elevated myocardial infarction; STEMI, ST elevated myocardial infarction; TAVI, trans-catheter aortic valve implantation; UAP, unstable angina pectoris.

practice [3, 12–23]. Many studies have reported that the increased levels of RDW are closely associated with inflammation [24–27] and oxidative stress [28]. All recent data have shown a strong and independent association between RDW and cardiovascular, brain vascular and peripheral artery diseases.

The clinical usefulness of increased RDW is also of great importance in the short- and long-term prognosis of vascular, cardiovascular, brain vascular and peripheral artery-diseases, in autoimmune and oxidative stress states, inflammatory diseases, malignancies (cancer and leukemia), etc. [3, 29]. In the pathological conditions described above the increased RDW has a high negative predictive value as an independent biomarker and represents a strong risk factor for negative outcomes not only in cardiac, arterial, brain, renal, hepatic, infectious diseases, etc., but also in the general middle-aged and older adult population [13, 14]. In this sense, the elevated RDW values are considered as features of morphological and/ or functional (metabolic) imbalance in the human body. The exact biological, biochemical, cellular and molecular mechanisms remain unclear and should be elucidated in further studies.

From a hematological and hemorheological/biorheological point of view, in our opinion the fine biological mechanisms of increased RDW could be explained by pathophysiological changes in marrow/spleen erythropoiesis, in erythropoietin (EPO) synthesis and/or in RBC morphology, biochemistry, physiology and hemorheological properties. In this sense, RDW is not only a hematological/hematometrical, but also a hemorheological biomarker [5, 10].

In our pioneering studies on elevated RDW values (data obtained in chronic heroin addicts, see Savov et al. [5]), we supposed that increased RDW could be a biomarker of suboptimal nutritional status in heroin abusers

related to the so-called metabolic syndrome (MS), as was described in the recent medical literature [30].

MS is a metabolic disorder with multi-factor pathology, in which biochemical, morphological and functional (including rheological) changes occur in erythrocytes. RBC disorders are connected to abnormal metabolism of lipids, e.g. in cases of diabetes type 2 and hypertension. The results pointed to some essential changes in the erythrocyte plasma membrane. The increased levels of cholesterol concentrations and lipid peroxidation lead to decreased fluidity of RBC membranes and decreased RBC membrane viscoelasticity and flexibility with a simultaneous increase in plasma membrane rigidity [17, 18]. These pathophysiological cellular events further lead to a decrease in the ability of erythrocytes to change their shape (decreased RBC deformability) and, finally, to disorders of blood flow in the macro- and preliminary in the microcirculation. In this sense, the functions of RBCs not only as transporters of gas and nutrients, but also as bioactive cells, playing a central role in cardiovascular homeostasis, could be considered. There is clinical evidence of correlations between RBC dysfunction and cardiovascular/vascular disease outcomes [31]. From the same relationships we have concluded that our results on elevated hematometric indices RDW and MCV in chronic heroin addicts could be associated with heroin-induced negative effects on early hematopoiesis (erythropoiesis) and especially on the structure and functions of RBC membranes - such data are of importance in medical practice [5].

From the biorheological/hemorheological point of view, the so-called pro-inflammatory profile of MS-patients could be closely related to the association of elevated RDW with decreased erythrocyte (RBC-) deformability. Higher anisocytosis (=increased RDW) seems to be simultaneously obtained with other severe morphological

alterations in the erythrocyte shape and volume which also reduce RBC deformability. The loss of RBC plasma membrane flexibility is the main reason why in the peripheral blood of patients eythrocytes appeared with altered forms (spherocytes, elliptocytes, echinocytes, RBCs forming "rouleaux", RBCs which are soon retained and destroyed in the spleen, etc.).

Recently, some studies reported that elevated (above 14%) RDW values are significantly related to decreased erythrocyte deformability [13, 14, 17-20]. In the biorheological and hemorheological laboratories, RBC deformability is measured by means of a microfluidic slit-flow ektacytometer and expressed as erythrocyte elongation index (EI): patients with elevated RDW showed lower EI, than controls.

EI correlates directly with MCV (mean RBC volume p < 0.05) and with HDL-cholesterol (p < 0.05) in patients with AMI [17]. The same authors showed in their multivariate regression model that only hemoglobin (Hb) and MCV could be independent predictors of elevated RDW values. The decreased EI is related to the high rigidity of erythrocyte membranes and could impair blood flow (preliminary in microcirculation), leading to an increased risk of thromboses and development of vascular/cardiovascular, brainvascular, peripheral artery, etc. diseases. Horne et al. [21] reported that MCV is also a hematometric index and biomarker predicting adverse outcomes in chronic vascular diseases. In the recent study by Magri et al. [11], investigating RDW as a novel independent marker of cardiovascular disease (CVD) and especially of coronary artery disease (CAD), more hematometric indices such as MCV, Hb, platelet count (PLT), mean platelet volume (MPV), lipid profiles and other hematological and biochemical measurements were evaluated and statistically analyzed as additional strong and independent biomarkers associated with inflammation and oxidative stress. The normal reference range for RDW in Magri's laboratory is between 11.5% and 14.5%. The authors [10, 11] also supported our previous data and conclusions [5] that rheological alterations could explain an association between high RDW levels and increased total blood viscosity and whole blood viscosity (WBV) in cases of altered RBC rheological properties that result in significant changes in the microcirculation with consequent sluggish blood flow and vessel occlusions.

The more interesting result obtained as well as a general conclusion made by Magri et al. [11] postulated that RDW was found to be an independent predictor of disease outcomes in cases of CAD together with MPV and LDL-cholesterol. In our studies [5, 32], we also demonstrated interesting relationships between simultaneously increased values of RDW, MCV, WBV and simultaneously increased values of RDW, MCV, WBV and MPV in cases of chronic heroin addiction. Additionally, our cytological studies of blood smears [33, 34] revealed simultaneous anisocytosis of erythrocytes and platelets in the peripheral blood smears of chronic heroin abusers, probably secondary to ineffective and/or disturbed bone marrow hematopoiesis/erythropoiesis and megacaryocytopoiesis under the influence of drugs. Our results related to the injuries of platelets in long-term heroin addicts were well supported by the recent data of Lu et al. [35]. Confirming our previous results that opioids induced distinct biological, morphological and functional platelet alterations, the authors obtained lower platelet counts and plasma brain-derived neurotrophic factor (BDNF) and transforming growth factor (TGF)-β1 levels in long-term, more than 6 years, heroin addicts. In both cases [33, 35], the conclusions and hypotheses were similar: platelet-protective agents might provide improvement in heroin addiction therapy. It is probable that the same hypothesis is valid in all cases of RDW elevation, because the injuries in bone marrow hematopoiesis act simultaneously on the stem cells and early progenitor from two different cell lines involved in erythropoiesis and in megacaryocytopoiesis and are evaluated in vivo and in vitro.

Other recent investigations [36, 37] also examined correlations between RBCs and PLTs and suggested that both cells are sensitive to the presence of pro-inflammatory cytokines like interleukin-6 (IL-6), interleukin-8 (IL-8), and interleukin-1\beta (IL-1\beta). These and other cytokines could simultaneously affect both circulating RBCs and PLTs during inflammation and are closely related to the cardiovascular and vascular risks. A number of studies have shown that MPV is associated with cardiovascular risk factors and is a predictor of cerebrovascular disease [11, 16, 38]. The authors reported that higher PLT counts reflect underlying inflammation, as several inflammatory mediators and pro-inflammatory cytokines could influence bone marrow and spleen megacaryocytopoiesis, producing relative thrombocytosis in the blood stream and leading to the formation of platelet-rich thrombi on atherosclerotic plaques on the blood vessel walls. In this relationship, Cheng et al. [16] examined RDW to PLT ratio (RDW/PLT) as a novel noninvasive prognostic index.

Associations of RDW with other biomarkers of oxidative stress were also evaluated in cases of different vascular diseases. Oxidative stress may play a potential role in ischemic diseases with elevated RDW, as ischemic stroke, myocardial infarction, etc. [19, 39]. Oxidative stress is a pathological factor which directly injures RBC plasma membranes, which affects their survival leading to RBC senescence and shortened erythrocyte life [28, 40, 41].

Inflammation plus oxidative stress has been implicated in the hemorheology and pathophysiology of many cardiovascular, brain-vascular, peripheral artery and other non-hematological and hematological chronic diseases [10, 42–45].

In a great number of chronic inflammation states, significant correlations have been established between elevated RDW values and changed levels of other inflammatory biomarkers, namely, white blood cells (WBC), erythrocyte sedimentation [RBC sedimentation; erythrocyte sedimentation rate (ESR)], high sensitivity C-reactive protein (hsCRP) and pro-inflammatory cytokines (IL-2, IL-6, soluble TNF-receptor-1, etc.). The latter two can inhibit EPO-induced erythrocyte maturation leading to elevated RBC anisocytosis, B-type natriuretic peptides, triglycerides, lipoproteins and cholesterol [total, low density lipoprotein (LDL) and high-density lipoprotein (HDL) fractions] levels [6, 11, 18, 24, 27–29, 38, 40, 46–50].

Conclusions

Clinical studies have indicated that RDW is an independent biomarker of altered RBC hemorheological properties associated with changes in the WBV [5, 10]. From a biomedical point of view, RDW could be compared to the biochemical biomarker neopterin giving very similar results to those obtained by RDW and described as an independent predictor of the same pathological states in the human body. In addition to the existing data in the medical literature, only a limited number of simultaneous clinical studies could be obtained on the topics, namely, increased neopterin levels are associated with elevated RDW and comparative investigations of RDW and neopterin levels and concentrations of other pro-inflammatory biomarkers.

Neopterin (Figure 1) belongs to the group of chemical substances denominated as pteridines and is biosynthesized from guanosine triphosphate [51, 52]. Neopterin is primarily produced by human and primate monocytes/macrophages upon activation by pro-inflammatory stimuli like Th-1 type cytokine interferon-gamma (IFN- γ) [53, 54]. The concentrations of neopterin in the human

Figure 1: Neopterin (D-erythro-1',2',3'-trihydroxypropylpterin).

body increases simultaneously with IFN- γ levels, thereby neopterin assays help to monitor the activity of diseases associated with or inducible by IFN- γ as inflammation, malignancies, etc.

It should be kept in mind that neopterin is always formed together with its sister compound 7,8-diyhdrone-opterin, which shares many chemical properties with neopterin. One exception is the fluorescence of neopterin but not in the dihydroform. Enzyme-linked immunosorbent assay (ELISA) methods measure exclusively neopterin levels in body fluids. Other assays measuring total neopterin present a sum of neopterin and 7,8-dihydroneopterin after oxidation [51–57].

Measurement of neopterin concentrations in human body fluids like blood plasma, serum, urine, cerebrospinal fluid, saliva, etc. provides information about the cellular immune system activation [53–56, 58] for the purpose of diagnosis, successful treatment and prognosis of inflammatory states, including atherosclerosis [56, 59, 60], malignancies (cancer and leukemia) [61], vascular (cardiovascular-, brain vascular, peripheral artery vascular) [59, 62, 63], neurological, autoimmune, and many other socially important diseases [e.g. acquired immune deficiency syndrome (AIDS); other viral and bacterial infections], aging-related disorders, including MS [56, 57, 60, 64–70].

In all pathological states examined in the medical scientific literature, the increased production of neopterin in the human body is associated with adverse outcomes and pure survival expectations as well as overall mortality in patients. Until now, it is comparable to high C-reactive protein (CRP) concentrations, but data on the comparison of neopterin with RDW values are still very scarce. We hypothesize that the conclusion from large future studies in this field might be that neopterin, RDW and CRP or hsCRP should be measured simultaneously in clinical laboratories. It will be more useful to monitor therapy and precise individual prognosis in individuals with elevated values obtained by simultaneous assays for these biomarkers.

Neopterin, applied *in vivo*, could suppress bone marrow erythropoiesis and simultaneously activate erythropoiesis in the spleen [71], probably leading to changes in the morphological properties of RBC and to RDW elevation. Inflammatory cytokine inhibition of erythropoiesis in patients has also been described [72].

As increased neopterin synthesis and high RDW values could be associated with elevated production of reactive oxygen and nitrogen species [reactive oxygen species (ROS), nitric oxide synthase (NOS), nitric oxide (NO), etc.] by activated immune cells, preferentially monocytes/macrophages, the lab results obtained could

be interpreted not only as bioindicators of inflammation and cellular immune activation, etc., but also as biomarkers of oxidative stress, e.g. oxidative stress due to immune activation and inflammation [57, 58, 62, 73].

Additionally, data from the large population studies showed that the increased cellular activity of neopterin correlated with hyperlipidemia in patients with MS: elevated neopterin concentrations are associated with reduced HDL cholesterol [57, 64]. From a medical practical perspective, for the future, it is a very interesting fact that the functions of HDL cholesterol include antiinflammatory and anti-oxidative activities in the human body. Thus, it will be important for laboratory medical practice to measure neopterin, in addition to cholesterols (especially to HDL cholesterol), preliminary in the elderly human populations and in the middle aged-individuals with suspected MS, and/or in the presence of other factors influencing cellular metabolism [57, 64, 74]. Earlier and recent studies including patients with HIV infection [57, 62, 64] have provided additional information on the interplay of immune response tested by neopterin assays and cholesterol metabolism, the neopterin concentrations were observed to be lower in individuals who used lipidlowering drugs.

Neopterin testing is comparable to that of other inflammatory biomarkers

Elevated serum/plasma neopterin levels are associated with inflammation as well as with inflammatory responses in atherosclerosis: CAD, acute coronary syndrome (ACS), stable and/or unstable angina pectoris, cardiomyopathy, AMI, post-infarction states and other coronary events and cardiovascular risk assessment in older adults and the middle-aged human population [53, 55, 56, 58-60, 62, 63, 75–80]. The diagnostic value of neopterin was found to be similar to well-established markers in the medical laboratories such as CRP, hs-CRP, cholesterol plasma levels, etc.

In all cases of cardiovascular, brain-vascular and peripheral artery diseases, the elevated neopterin concentration serves as a biomarker of disease progression and unfavorable prognosis. In this respect, elevated neopterin concentrations correlated positively with increased plasma levels of hsCRP [69]. However, the direct contribution of CRP to atherogenesis is still unclear and debated [59]. The cellular and molecular mechanisms of a direct involvement of neopterin in

atherogenesis through nuclear factor κB (NF-κB) could be better understood and clarified in the future, in view of its great potential as a bone marrow hematopoietic (granulocyte-macrophageal) growth factor, GM-CGF, as well as a bone marrow stromal cell growth factor [33, 81, 82]. The prospective and retrospective epidemiological studies on biomarkers neopterin and HDL cholesterol in patients with vascular/cardiovascular disease confirmed the direct association of neopterin with atherogenesis [33, 53, 56, 57, 59, 62, 64, 74–77, 82, 83].

Another interesting epiphenomenon is that low serum tryptophan and the kynurenine to tryptophan ratio (Kyn/ Trp) could be predictors of acute coronary and cardiovascular events and are associated with higher mortality in patients with CVD [63, 69, 80, 84]. The explanation of this phenomenon is related to the inverse relationship found between serum neopterin and tryptophan: low serum tryptophan concentrations are associated with high levels of the inflammatory biomarker neopterin and with elevated hsCRP [69] which results from a parallel induction of neopterin formation and tryptophan breakdown by the interferon-inducible enzyme indoleamine 2,3-dioxygenase 1 (IDO-1).

The determination of neopterin in blood serum and in urine [51–57, 85], or in combination with other methods for the detection of pro-inflammatory and inflammatory biomarkers, could be of great importance for medical practice. In this respect, we detected elevated urinary neopterin levels in HIV-seronegative drug users (chronic heroin addicts) [55, 86]. In the last case, we observed an increased number of granulocytes (WBC), simultaneous anisocytosis of RBCs and PLTs [32, 86] and thus, increased RDW values [5].

General conclusions

Although it has been well established that elevated RDW and neopterin levels in humans are risk biomarkers in different pathological conditions, the fine biological biochemical, cellular and molecular - mechanisms of this epiphenomenon are not fully established. The connection between RWD and neopterin is not obvious, and the biochemical link between the two biomarkers is unlikely to be direct. The critical role of the underlying inflammation, oxidative stress, alterations in hematopoiesis and metabolic imbalance (MS) in human body have been considered over the past decades for predicting the treatment responses, risk stratification and adverse outcomes in patients.

When used simultaneously and/or in combination with other biomarkers of inflammation (hsCRP, Kyn/Trp, some interleukins like IL-6, -8, -1β, and related hematometrical/hemorheological indices (MCV, PLT, MPV, PDW, NLR, PLR, etc.), RDW and neopterin could have higher predictive values for the correct diagnosis of different pathological states, monitoring of disease activity and response to therapy applied, as well as for complications and/or adverse outcomes and thus, prognosis of many diseases.

A strong-graded association of RDW with other hematometrical/hemorheological indices and its combination with biochemical biomarkers like neopterin and tryptophan breakdown (Kyn/Trp), might provide a new rational idea, namely to introduce simultaneous RDWand neopterin measurements in an algorithm with eventual participation of additional biochemical biomarkers and hematometrical bioindices for the purpose of more precise diagnosis and prognosis of diseases including stratification of risk and prediction of adverse outcomes in different pathological states.

Conflict of interest statement: All authors have declared no conflicts of interest. All authors contributed to the manuscript and approved its final version.

References

- 1. Lappegard J. Red cell distribution width (RDW) and risk of arterial cardiovascular disease - a literature study. Master Thesis, 2016, 56 pp. The Arctic University of Norway, Tromso -
- 2. Bessman JD, Gilmer PR, Gardner FH. Improuved classification of anemias by MCV and RDW. Am J Clin Pathol 1983;80: 322-6.
- 3. Salvagno GL, Sanchis-Gomar F, Picanza A, Lippi G. Red blood cell distribution width: a simple parameter with multiple clinical applications. Clin Rev Clin Lab Sci 2015:52:86-105.
- 4. Grant BJ, Kudalkar DP, Muti P, McCann SE, Trevisan M, Freudenheim JL, et al. Relation between lung function and red blood cell distribution width in a population-based study. Chest 2003;124:494-500.
- 5. Savov Y, Antonova N, Zvetkova E, Gluhcheva Y, Ivanov I, Sainova I. Whole blood viscosity and erythrocyte hematometric indices in chronic heroin addicts. Clin Hemorheol Microcirc 2006:35:129-33.
- 6. Azab P, Torbey E, Hatoum H, Singh J, Khoueiry G, Bachir R, et al. Usefulness of red cell distribution width in predicting all-cause long-term mortality after non-ST-elevation myocardial infarction. Cardiology 2011;119:72-80.
- 7. Gul M, Uyarel H, Ergelen M, Karacimen D, Ugur M, Turer A, et al. The relationship between red blood cell distribution width and the clinical outcomes in non-ST elevation myocardial infarction and unstable angina pectoris: 3-year follow-up. Coron Art Dis 2012;23:330-6.

- 8. Isik T, Uyarel H, Tanboga IH, Kurt M, Ekinci M, Kaya A, et al. Relation of red cell distribution width with the presence, severity and complexity of coronary artery disease. Coron Artery Dis 2012:23:51-6.
- 9. Isik T, Kurt M, Tanboga IH, Ayhan E, Gunaydin ZY, Kaya A, et al. The impact of admission red cell distribution width on long-term cardiovascular events after primary percutaneous intervention: a four-year prospective study. Cardiol J 2016;23:281-8.
- 10. Magri CJ, Chieffo A, Latib A, Montorfano M, Maisano F, Cioni M, et al. Red blood cell distribution width predicts one-year mortality following transcatheter aortic valve implantation. Int J Cardiol 2014;172:456-7.
- 11. Magri CJ, Tian TX, Camilleri L, Xuereb R, Galea J, Fava S. Red blood cell distribution width and myocardial scar burden in coronary artery disease. Postgrad Med J 2017;93:607-12.
- 12. Felker SM, Allen LA, Pocock SJ, Shaw LK, McMurrav JJ, Pfeffer MA, et al. RDW as a novel prognostic marker in heart failure: data from the CHARM Program and Duke Datebank. J Am Coll Cardiol 2007;50:40-7.
- 13. Patel KV, Ferrucci L, Ershler WB, Longo DL, Guralnik JM. Red blood cell distribution width and the risk of death in middleaged and older adults. Arch Int Med 2009;169:515-23.
- 14. Patel KV, Semba RD, Ferrucci L, Newman AB, Fried LP, Wallace RB, et al. Red blood cell distribution width and mortality in older adults: a meta-analysis. J Gerontol A Biol Sci Med Sci 2010;65:258-65.
- 15. Luca MC, Liuni A, Munzel T, Forkoni S. Chronic pharmacological preconditioning against ischemia. Clin Hemorheol Microcirc 2011;49:287-93.
- 16. Cheng B, Ye B, Zhang J, Ying L, Chen Y. RDW to platelet ratio: a novel noninvasive index for predicting hepatic fibrosis and cirrhosis in chronic Hepatitis B. PLosOne 2013;8:e68780.
- 17. Vaya A, Rivera L, de la Espriella R, Sanchez F, Suescun M, Hernandez JL, et al. Red blood cell distribution width and erythrocyte deformability in patients with acute myocardial infarction. Clin Hemorheol Microcirc 2015;59:107-14.
- 18. Vaya A, Rivera L, de la Espriella R, Alis R, Romagnoli M. Influence of inflammation and lipidic parameters on red blood cell distribution width in a healthy population. Clin Hemorheol Microcirc 2015;59:379-85.
- 19. Vaya A, Alis R, Suescún M, Rivera L, Murado J, Romagnoli M, et al. Association of erythrocyte deformability with RDW in metabolic diseases and Thalassemia trait. Clin Hemorheol Microcirc 2015;61:407-15.
- 20. Vaya A, Hernandez V, Rivera L, Hernández JL, Lago A, España F, et al. Red blood cell distribution width in patients with cryptogenic stroke. Clin Appl Thromb Hemost 2015;21:241-5.
- 21. Horne BD, Muhlestein JB, Bennett ST, Muhlestein JB, Ronnow BS, May HT, et al. Association of the dispersion in red blood cell volume with mortality. Eur J Clin Invest 2015;45:541-9.
- 22. Iriyama N, Hatta Y, Kobayashi S, Uchino Y, Miura K, Kurita D, et al. RDW has a critical role in risk stratification of CML-patients for predicting treatment responses and outcomes. Anticancer Res 2015;35:5473-8.
- 23. Hu L, Li M, Ding Y, Pu L, Liu J, Xie J, et al. Prognostic value of RDW in cancer: a systemic review and meta-analysis. Oncotarget 2017;8:16027-35.
- 24. Lippi G, Targher G, Montagnana M, Salvagno GL, Zoppini G, Guidi GC. Relation between red blood cell distribution width and inflammatory biomarkers in a large cohort of unselected outpatients. Arch Pathol Lab Med 2009;133:628-32.

- 25. Lippi G, Plebani M. Red blood cell distribution width (RDW) and human pathology. One size fits all. Clin Chem Lab Med 2014;52:1247-9.
- 26. Forhecz Z, Gombos T, Borgulya G, Pozsonyi Z, Prohászka Z, Jánoskuti L, et al. Red cell distribution width in heart failure: prediction of clinical events and relationship with markers of ineffective erythropoiesis, inflammation, renal function, and nutritional state. Am Heart J 2009;158:659-66.
- 27. Lappe JM, Horne BD, Shah SH, May HT, Muhlestein JB, Lappé DL, et al. Red cell distribution width, C-reactive protein, the complete blood count, and mortality in patients with coronary disease and a normal comparison population. Clin Chim Acta 2011;412:2094-9.
- 28. Semba RD, Patel KV, Ferrucci L, Sun K, Roy CN, Guralnik JM, et al. Serum antioxidants and inflammation predict red cell distribution width in older women: the women's health and aging study I. Clin Nutr 2010:29:600-4.
- 29. Yao M, Liu Y, Jin H, Liu X, Lv K, Wei H, et al. Prognostic value of preoperative inflammatory markers in Chenese patients with breast cancer. Onco Targets Ther 2014;7:1743-52.
- 30. Ziobro A, Duchnovich P, Mulik A, Koter-Michalak M, Broncel M. Oxidative damage in erythrocytes of patients with metabolic syndrome. Mol Cell Biochem 2013;378:267-73.
- 31. Cortese-Kroff MM, Kramer CM, Kelm M. NOS, NO and the red cells. In: Ignarro LJ, Freeman B, editors. Nitric oxide: Biology and Pathobiology, 3rd ed., Chapter 14. Cambridge, MA, USA: Academic Press, 2017:185-94.
- 32. Zvetkova E, Antonova N, Ivanov I, Savov Y, Gluhcheva Y. Platelet morphological, functional and rheological properties attributable to addictions. Clin Hemorheol Microcirc 2010;45:245-51.
- 33. Zvetkova E, Gluhcheva Y, Fuchs D. Use of neopterin as a bone marrow hematopoietic and stromal cell growth factor in tissueengineered devices. In: Fisher JP, editor. Tissue Engineering. Boston, MA: Springer, 2006:115-21.
- 34. Zvetkova E, Savov Y, Gluhcheva Y, Ilieva I, Bichkidijeva E. Red cells - acquired disorders - diagnostics. In: Thein SL, editor. Simultaneous anisocytosis of red blood cells and platelets in chronic heroin addicts. Oxford, UK: BloodMed <www.bloodmed. com - Slide Atlas>, Blackwell Publishing, 2006.
- 35. Lu RB, Lee SY, Wang TY, Chang YH, Chen PS, Yang YK, et al. Long-term heroin use was associated with the downregulation of systemic platelets, BDNF and TGF-B1, and it contributed to the disruption of executive function in Taiwanese Han Chinese. Drug Alcohol Depend 2017;179:139-45.
- 36. Bester J, Pretorius E. Effects of IL-1β, IL-6 and IL-8 on erythrocytes, platelets and clot viscoelasticity. Sci Rep 2016;26:32188.
- 37. Wiwanitkit V. Plateletkrit, mean platelet volume, platelet distribution width: its expected values and correlation with parallel red blood cell parameters. Clin Appl Thromb Hemost 2004;10:175-8.
- 38. Azab B, Shah N, Rabdel J, Tan P, Bhatt V, Vonfrolio S, et al. Pretreatment neutrophil/lymphocyte ratio is superior to platelet/ lymphocyte ratio as predictor of long-term mortality in breast cancer patients. Med Oncol 2013;30:432.
- 39. Feng G-H, Li HP, Li Q-L, Fu Y, Huang R-B. Red blood cell distribution width and ischaemic stroke. Stroke Vasc Neurol 2017:2:172-5.
- 40. Kiefer CR, Snyder LM. Oxidation and erythrocyte senescence. Curr Opin Hematol 2000;7:113-6.
- 41. Hou H, Sun T, Li Ch, Li Y, Guo Z, Wang W, et al. An overall and dose-response meta-analysis of red blood cell distribution width and CVD outcomes. Nature Sci Rep 2017;7:43420.

- 42. Weiss G, Goodnough LT. Anemia of chronic disease. N Engl J Med 2005;352:1011-23.
- 43. Hoffman G, Wirleitner B, Fuchs D. Potential role of immune system activation-associated production of neopterin derivatives in humans. Inflamm Res 2003;8:313-21.
- 44. Drakopoulu M, Toutouzas K, Stefanadi E, Tsiamis E, Tousoulis D, Stefanadis C. Association of inflammatory markers with angiographic severity and extent of coronary artery disease. Atherosclerosis 2009;206:335-9.
- 45. Bozkurt B, Mann DL, Deswal A. Biomarkers of inflammation in heart failure. Heart Fail Rev 2010;15:331-41.
- 46. Fukuta H, Ohte N, Mukai S, Saeki T, Asada K, Wakami K, et al. Elevated plasma levels of B-type natriuretic peptide but not C-reactive protein are associated with higher red cell distribution width in patients with coronary artery disease. Int Heart J 2009:50:301-12.
- 47. Azab B, Zaher M, Weiserbs KT, Torbey E, Lacossiere K, Gaddam S, et al. Usefulness of neutrophil to lymphocyte ratio in predicting short- and long-term mortality after non ST-elevation myocardial infarction. Am J Cardiol 2010;106:470-6.
- 48. Azab B, Bhatt VR, Phookan J, Murukutla S, Kohn N, Terjanian T, et al. Usefulness of the neutrophil to lymphocyte ratio in predicting short- and long-term mortality in breast cancer patients. Ann Surg Oncol 2012;19:217-24.
- 49. De Gonzalo-Calvo D, de Luxan-Delgado B, Rodriguez-Gonzalez S, García-Macia M, Suárez FM, Solano JJ, et al. Interleukin 6, soluble tumor necrosis factor receptor I and red blood cell distribution width as biological markers in an elderly population: a translation approach. Cytokine 2012;58:193-8.
- 50. Charach G, Rabinovich A, Ori A, Weksler D, Sheps D, Charach L, et al. Low levels of low-density lipoprotein cholesterol: a negative predictor of survival in elderly patients with advanced heart failure. Cardiology 2014;127:40-50.
- 51. Wachter H, Fuchs D, Hausen A, Reibnegger G, Werner ER. Neopterin as marker for activation of cellular immunity: immunologic basis and clinical application. Adv Clin Chem 1989;27:81-141.
- 52. Wachter H, Fuchs D, Hausen A, Reibnegger G, Weiss G, Werner-Felmayer G. Neopterin: biochemistry, methods, clinical application. Berlin-New York: Walter de Gruyber, 1992.
- 53. Fuchs D, Weiss G, Reibnegger G, Wachter H. The role of neopterin as a monitor of cellular immune activationin transplantation, inflammatory, infectious and malignant diseases. Crit Rev Clin Lab Sci 1992;29:307-41.
- 54. Fuchs D, Weiss G, Wachter H. Neopterin, biochemistry and clinical use as a marker for cellular immune reactions. Int Arch Allergy Immunol 1993;101:1-6.
- 55. Fuchs D, Hausen A, Reibnegger G, Schönitzer D, Unterweger B, Blecha HG, et al. Immune status of drug abusers. Cancer Detect Prev Suppl 1987;1:535-41.
- 56. Fuchs D, Avanzas P, Arroyo-Espliguero R, Jenny M, Consuegra-Sanchez L, Kaski JC. The role of neopterin in atherogenesis and cardiovascular risk assessment. Curr Med Chem 2009;16:4644-53.
- 57. Chuang S-C, Boeing H, Vollset SE, Midttun Ø, Ueland PM, Bueno-de-Mesquita B, et al. Cellular immune activity of biomarker neopterin is associated with hyperlipidemia: results from a large population-based study. Immunity Ageing 2016;13:5.
- 58. Murr C, Widner B, Wirleitner B, Fuchs D. Neopterin as a marker of immune system activation. Curr Drug Metabol 2002;3:175-87.

- 59. De Rosa S, Cirillo Pl, Pacileo M, Petrillo G, D'Ascoli GL, Maresca F, et al. Neopterin: from forgotten biomarker to leading actor in cardiovascular pathophysiology. Curr Vasc Pharmacol 2011:9:188-99.
- 60. Prasanna JS, Sumathura C, Karunakar P. Neopterin as a diagnostic biomarker for diagnosis of inflammatory diseases like paradontitis. J Oral Res Rev 2017;9:45-9.
- 61. Sucher R, Schroecksnadel K, Weiss G, Margreiter R, Fuchs D, Brandacher G. Neopterin, a prognostic marker in human malignancies. Cancer Lett 2010:287:13-22.
- 62. Grammer TB, Fuchs D, Boehm BO, Winkelmann BR, Maerz W. Neopterin as a predictor of total and cardiovascular mortality in individuals undergoing angiography in the Ludwigshafen Risk and Cardiovascular Health Study. Clin Chem 2009;55:1135-46.
- 63. Sulo G, Vollset SE, Nygård O, Midttun Ø, Ueland PM, Eussen SJ, et al. Neopterin and kynurenine-tryptophan ratio as predictors of coronary events in older adults, the Hordaland Health Study. Int J Cardiol 2013;168:1435-40.
- 64. Zangerle R, Sarcletti M, Gallati H, Reibnegger G, Wachter H, Fuchs D. Decreased plasma concentrations in HIV-infected individuals are associated with immune activation. Acquir Immune Defic J Syndr 1994;7:1149-56.
- 65. Viljoen M, Coetzee IH, Roux LJ, Pretorius JP. Anemia in surgical intensive care patients. Haematologica 1994;79:19-24.
- 66. Oustamanolakis P, Koutrobakis IS, Messaritakis I, Kefalogiannis G, Niniraki M, Kouroumalis EA. Measurement of reticulocyte and red blood cell indices in the evaluation of anemia in inflammatory Bowel disease. J Crohn's Colitis 2011;5:295-300.
- 67. Nancey S, Boschetti G, Moussata D, Cotte E, Peyras J, Cuerg C, et al. Neopterin as a novel fecal marker as accurate as calprotectin for predicting endoscopic disease activity in patients with inflammatory bowel disease. Inflamm Bowel Dis 2013;19:1043-59.
- 68. Bipath P, Levay P, Olorunju S, Viljoen M. A non-specific biomarker of disease activity in HIV/AIDS patients from resourcelimited environments. Afr Health Sci 2015;15:334-43.
- 69. Murr C. Grammer TB, Kleber ME, Meinitzer A, März W, Fuchs D. Low serum tryptophan predicts higher mortlity in cardiovascular disease. Eur J Clin Invest 2015;45:247-54.
- 70. Bahgat MH, El-Etreby SA. Biomarkers of inflammatory bowel disease: past, present and future. Austin J Gastroenterol 2017;4:1082.
- 71. Tsuboi I, Harada T, Oshima O, Aizawa S. Effect of neopterin on splenic erythropoiesis in mice. Pteridines 2010;21:7-10.
- 72. Pierce CN, Larson DF. Inflammatory cytokine inhibition of erythropoiesis in patients implanted with a mechanical circulatory assist device. Perfusion 2005;20:83-90.

- 73. Weiss G, Murr C, Zoller H, Schobersberger W, Fuchs D. Immune response and iron metabolism. Br J Anaesth 1998: 81:6-9.
- 74. Schennach H, Murr C, Gachter E, Mayersbach P, Schoenitzer D, Fuchs D. Factors influencing serum neopterin concentrations in a population of blood donors. Clin Chem 2002;48:643-5.
- 75. Rudzite V, Skards JI, Fuchs D, Reibnegger G, Wachter H. Serum kynurenine and neopterin concentrations in patients with cardiomyopathy. Immunol Lett 1992;32:125-9.
- 76. Weiss G. Willeit I. Kiechl S. Fuchs D. Jarosch E. Oberhollenzer F. et al. Increased concentrations of neopterin in carotid atherosclerosis. Atherosclerosis 1994;106:263-71.
- 77. Gupta S, Fredericks S, Schwartzman RA, Holt DW, Kaski JC. Serum neopterin in acute coronary syndromes. Lancet
- 78. Avanzas P. Arrovo-Espliguero R. Kaski IC. Neopterin and cardiovascular disease: growing evidence for a role in patients risk stratification. Clin Chem 2009;55:1056-7.
- 79. Lyu Y, Jiang X, Dai W. The role of a novel inflammatory cytokine neopterin in subjects with coronary atherosclerotic heart disease. Int Immunopharmacol 2015;24:169-72.
- 80. Capuron L, Geisler S, Kurz K, Leblhuber F, Sperner-Unterweger B, Fuchs D. Activated immune system and inflammation in healthy ageing: relevance for tryptophan- and neopterin metabolism. Curr Pharm Des 2014;20:6048-57.
- 81. Aizawa S, Miramoto M, Araki S, Negishi S, Kimura Y, Hoshi H, et al. Stimulatory effects of neopterin on hematopoiesis in vitro are mediated by activation of stromal cell function. Hematol Oncol 1998;16:57-67.
- 82. Zvetkova E, Fuchs D, Katzarova E, Bakalska M, Svetoslavova M, Nikolov B. Neopterin acting as a bone marrow stem cell factor on early common haematopoietic (myeloid) and stromal (dendritic, CD34+) cell progenitors in vitro. Pteridines 2001;12:135-9.
- 83. Ledochowski M, Murr C, Widner B, Fuchs D. Association between insulin resistance, body mass and neopterin concentrations. Clin Chim Acta 1999;282:115-23.
- 84. Wirleitner B, Rudzite V, Neurauter G, Murr C, Kalnins U, Erglis A, et al. Immune activation and degradation of tryptophan in coronary heart disease. Eur J Clin Invest
- 85. Werner ER, Bichler A, Daxenbichler G, Fuchs D, Fuith LC, Hausen A, et al. Determination of neopterin in serum and urine. Clin Chem 1987;33:62-6.
- 86. Zvetkova EB, Savov Y, Tomov N, Neurauter G, Fuchs D. Urinary neopterin concentration in HIV-seronegative drug users. Pteridines 2003;14:63-4.