DE GRUYTER Pteridines 2017; 28(2): 59–66

Review

Rowland Noakes*

Dissecting the enigma of scleroderma: possible involvement of the kynurenine pathway

DOI 10.1515/pterid-2016-0010 Received September 14, 2016; accepted March 21, 2017; previously published online June 17, 2017

Abstract: The kynurenine pathway (KP) is the metabolic pathway via which L-tryptophan is converted to nicotinamide. It serves important immune-regulatory roles. This article will review the evidence for involvement of the KP in scleroderma and present a possible model of kynurenine regulation of the cytokine cascade.

Keywords: aryl hydrocarbon receptor; kynurenine; scleroderma; TH2; transforming growth factor β.

Introduction

Cutaneous sclerosing disorders, frustratingly, are incompletely understood and treatments fall short of ideal. These disorders are associated with considerable morbidity and mortality with systemic sclerosis having the highest case specific mortality of any of the autoimmune rheumatic disorders [1].

Whilst an increased understanding of cytokine function has improved our understanding of this class of disorders, the mechanisms via which the cytokine cascade is controlled remains elusive.

This article will review the current evidence for the involvement of the kynurenine pathway (KP) in this group of disorders and present a possible model of kynurenine control.

Clinical considerations

Dermatologists define cutaneous sclerosis as scleroderma. They further divide it into diffuse variants and variants which involve the skin only. The diffuse variants may display pulmonary, renal, cardiac and

oesophageal involvement or oesophageal involvement only. The latter is known as limited diffuse systemic sclerosis. Previously the acronym CREST syndrome (Calcinosis, Oesophageal Dysmotility, Sclerodactyly, Telangiectasia) was used to describe this syndrome. In limited disease, the skin below the elbow and knees is involved with some cases displaying involvement of the face. In diffuse disease skin proximal to the elbows and knees is involved.

Scleroderma may involve the skin only. This is known as morphea. There are different classification systems but clinically several variants are recognised including fronto-parietal, plaque, linear, subcutaneous, keloidal, diffuse and a pan sclerotic variant with extension as far as bone. Atrophic variants known as atrophoderma of Pasini and Parini, Parry-Romberg syndrome and linear atrophoderma of Moulin are recognised. Many consider eosinophilic fasciitis part of the morphea spectrum [2].

Aetiology

The aetiology of these disorders is unknown but traditionally, they are viewed as falling within the spectrum of autoimmune disorders due to their known association with other autoimmune disorders [3] and the presence of autoantibodies [2]. Triggering factors include trauma, infection, medications and radiotherapy [4].

Transforming growth factor β (TGF- β) is a major fibrotic cytokine and its expression is altered in sclero-derma [5]. It is secreted as a large latent complex (LLP) that includes the active cytokine, a dimer of its processed N-terminal pro-peptide (latency associated peptide or LAP) and one of the three latent TGF- β binding proteins (LTBP-1, -3, or -4) [6].

Infantile stiff skin syndrome, a rare form of congenital scleroderma with a poor prognosis [7] provides an interesting insight into the possible pathogenesis. This disorder is due to mutations in fibrillin 1. Elastin and oxytalan fibres are components of the extracellular matrix and impart elastic properties to the skin. Elastic fibres consist of an amorphous component, predominantly composed

^{*}Corresponding author: Rowland Noakes, Queensland Institute of Dermatology, Greenslopes Private Hospital, Greenslopes, QLD 4120, Australia, E-mail: ky_n_urenine@hotmail.com

of cross-linked elastin built upon a scaffold of microfibrils. Fibrillins of which there are three types (fibrillin 1, 2 and 3) are glycoproteins polymerised end to end to form the microfibrils. Fibrillin-1 is a binding site for cellular integrin's enabling cells to bind to and interact with the extracellular matrix. Fibrillin regulates the activity of TGF-β by acting as a target for the LTBP's sequestrating TGF- β in the extracellular matrix.

Antibodies to fibrillin 1 have been detected in both morphea [8] and scleroderma [9] as have antibodies to matrix-metalloprotein-1 (MMP-1) which inhibit collagenase activity [10].

It has been proposed that the initial injury is endothelial [11]. Interstitial oedema, fibrosis, basal lamina lamellation and endothelial swelling have been demonstrated in systemic sclerosis patients compared to controls irrespective of clinical features or disease duration [12]. This may be mediated by viruses [13] as cytomegalovirus (CMV) RNA transcripts have been found in the endothelium of patients with sclerodermoid changes [14]. In due course, this leads to altered production of collagen and other connective tissue molecules. The shift to TH2 dominance leads to the production of anti-endothelial antibodies [15] which further promote endothelial damage.

Unlike the other connective tissue disorders, the cytokine profile is skewed towards TH2 dominance [16] leading to peripheral blood eosinophilia, although the cellular infiltrate in these disorders is initially monocytic [17].

The kynurenine pathway

The KP is the metabolic pathway by which the essential amino acid L-tryptophan is converted to nicotinamide. Yet its role extends beyond contributing to the body's nicotinamide requirements. L-tryptophan is the least common of the essential amino acids and its availability is a rate limiting step for protein synthesis and thus cell division [18, 19]. T cells monitor L-tryptophan availability in their microenvironment via a GCN2 kinase [20], activation of which can lead to anti-proliferative and apoptotic effects [21]. This combined with the capacity to rapidly deplete the micro-environment of tryptophan via shunting to nicotinamide allows this metabolic pathway to exert powerful immunomodulatory effects. The rate limiting enzyme is indoleamine 2,3-dioxygenase (IDO) [22]. It is potently induced by interferon γ [23] thus providing a negative feedback loop during immune stimulation. In

addition to IDO, other enzymes are involved in tryptophan breakdown.

Yet the relationship between the KP and the T cell response is even more complex. Metabolic intermediates in the pathway have been shown to have important regulatory roles promoting apoptosis of TH1 but not TH2 cells [24] thus favouring a TH2 shift in the cytokine response.

Not unexpectedly, this has evolved to fulfil critical physiological roles. IDO expression varies between tissues being maximal in interface tissues such as the gastrointestinal tract, respiratory system, placenta and skin [25] where exposure to foreign antigens is common and immunological tolerance is desirable. In fact, Munn's work demonstrating inhibition of this pathway by methyl-tryptophan led to a loss of immunological tolerance during pregnancy, established the significant immune-regulatory role played by this pathway [26].

During the 1980s, L-tryptophan supplements were widely used as a natural alternative to antidepressant medication based on the assumption that taking the precursor amino acid would increase synaptic levels of serotonin. Soon reports of eosinophilia myalgia syndrome [27] and eosinophilic fasciitis [28, 29], associated with the ingestion of L-tryptophan were received. Although initially linked to a contaminant in a product made by a single manufacturer [30], authors soon reported the same reaction to L-tryptophan produced by other manufacturers [31]. Activation of the KP was reported in these patients [32], as it was in patients with the so-called toxic oil syndrome [33]. This was reported in Spain in 1981, as a result of adulterated rapeseed oil and shared many features in common with eosinophiliamyalgia syndrome and eosinophilic fasciitis, the latter considered by many to be part of the morphea spectrum [2]. Quinolinic acid is a downstream metabolite of the KP. In an experiment, quinolinic acid administered to a human volunteer resulted in peripheral eosinophilia and a mixed neutrophilic and eosinophilic subcutaneous infiltrate with immunohistochemical studies demonstrating TGF factor β staining in dermal dendritic cells and vascular endothelium supporting the relationship between kynurenine metabolites and this class of disorders [34].

Not all cells have the enzymatic repertoire to produce nicotinamide adenine dinucleotide (NAD), despite their ability to convert tryptophan to kynurenine [35, 36]. The initial segment of the pathway which involves the conversion of L-tryptophan to kynurenine is ubiquitous. The second segment of the pathway in which 3-hydroxykynurenine is metabolised to quinolinic acid is limited

to hepatocytes and leucocytes, while the final conversion of quinolinic acid to NAD takes place in hepatocytes only.

The aryl hydrocarbon receptor (Figure 1)

The aryl hydrocarbon receptor (AHR) is a cytosolic receptor for low molecular weight molecules maximally expressed in interface tissues [37, 38]. Its major function is the metabolism of exogenous toxins via the cytochrome P450 pathway in association with the Nrf2 anti-oxidant

pathway which also contains xenobiotic response elements (XRE) [39]. In the cytosol, the AHR exists in a latent state as part of a multiprotein complex (Figure 1) which includes the heat shock protein 90 (hsp90), heat shock protein 23 (hsp23) and hepatitis B virus X-associated protein 2 (XAP2) [40]. A signalling partner protooncogene c-Src (Pp60^{src}) is released into the cytosol on ligand binding attaching to the epidermal growth factor receptor (EGFR) activating mitogen-activated protein kinase (MAPK) signalling [41, 42].

On ligand binding, the receptor complex translocates to the nucleus [43] binding to the aryl hydrocarbon receptor nuclear transporter (ARNT). The AHR-ARNT heterodimer subsequently interacts with genes containing XRE.

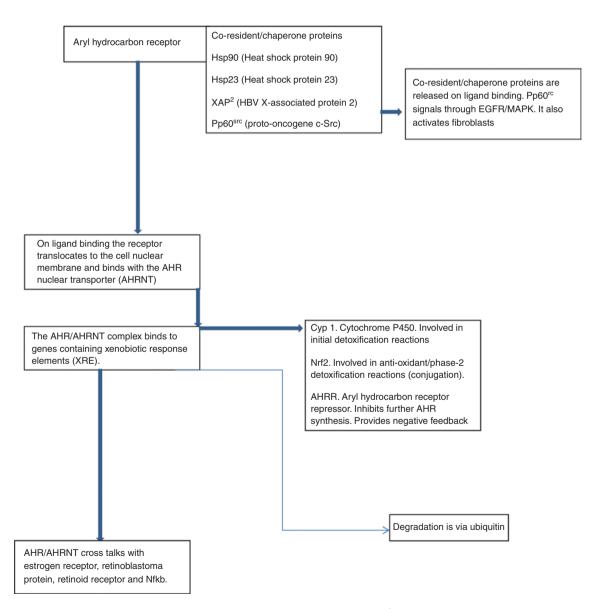


Figure 1: Schematic diagram of the aryl hydrocarbon receptor and its co-resident/chaperoning proteins outlining the mechanisms of action.

There is also crosstalk between the AHR and the estrogen receptor [44], the retinoblastoma protein, thus inhibiting cell cycle progression [45] and the retinoic signalling pathways [46]. The AHR can also bind the p65 subunit of nuclear factor κ light chain enhancer of activated β cells (NF-κB), thereby either suppressing or activating (depending on cellular context) the expression of NF-κBdependent genes [47, 48].

Negative feedback is provided by ubiquitin mediated degradation [49] and AHR mediated expression of a repressor protein, the aryl hydrocarbon receptor repressor (AHRR) [50].

The relationship between the cytokine profile and the aryl hydrocarbon receptor

In the early stages of scleroderma, Th1 cells and TH17 cells are proposed to dominate the immune profile [51] later shifting to TH2 [16]. The AHR facilitates the development of the TH17 subset and their cytokines IL-17 and 22 [52] both of which have been identified in children with morphea [51]. TH17 lymphocytes promote the expression of the pro-fibrotic cytokines in scleroderma [53]. In addition, pp60^{src} released from the AHR on ligand binding plays a role in fibroblast activation [54].

The relationship between the kynurenine pathway and aryl hydrocarbon receptor

Several KP metabolites are physiological ligands for the AHR [55-57] thereby integrating the KP with both the initial Th17 dominance followed by the subsequent shift to a TH2 as the KP metabolites promote apoptosis in TH1 lymphocytes.

A proposed model (Figure 2)

Endothelial injury leads to expression of vascular endothelial growth factor (VEGF) [58], a known inducer of the rate limiting step in the KP IDO [59]. Downstream kynurenine metabolites promote a TH2 shift in the immune system [24, 60] favouring IL-4 secretion, B cell switching and antibody production. This environment enables the generation of anti-fibrillin antibodies which may interfere with the targeting of the LTBP's to the extracellular matrix leading to increased production of the extracellular matrix.

TGF-β is known to sustain IDO expression [61], allowing the continued generation of kynurenine metabolites, thus enhancing the fibrotic response. Finally, many kynurenine metabolites are natural ligands of the AHR [55–57] promoting further TGF-β production.

Fibrocytes are CD34+ cells which are recruited from the circulation to sites of injury. During tissue remodelling, they lose CD34 expression and gain smooth muscle actin (SMA) becoming myofibroblasts. Interestingly and counterintuitively, activation of the AHR with endogenous AhR ligand 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE) inhibits myofibroblast differentiation [62]. Yet the AHR has been described as a Janus-faced receptor behaving in a non-canonical fashion in inflamed tissues [63] and thus it is plausible that KP metabolites acting through the AHR may promote the myofibroblast differentiation seen in morphea [64].

In an immunohistochemical study, involving a small number of patients with morphea at our institution, activation of the KP was noted in the epidermal basal layer, eccrine units and vascular endothelium in involved compared to non-involved tissue [65]. In a more recent study involving peripheral blood mononuclear cells, it was determined that monocytes but not lymphocytes express the KP [66]. In morphea, the initial cellular infiltrate is monocytic [17]. The resultant catabolism of tryptophan would be expected to skew the subsequent lymphocytic infiltrate towards TH2. In our study, it was not possible to determine the nature of the infiltrating mononuclear cells except that all did not express the KP, so the results would be consistent.

Further supporting evidence

Loss of adnexal structures

Loss of adnexal structures and subcutaneous fat is seen in advanced morphea. Epithelial mesenchymal transition (EMT) is the process by which epithelial cells lose their adhesion proteins and gain migratory properties thus transforming into mesenchymal stem cells. TGF-β is one of several cytokines involved in EMT [67] and EMT has been reported as a possible cause of fibrosis of

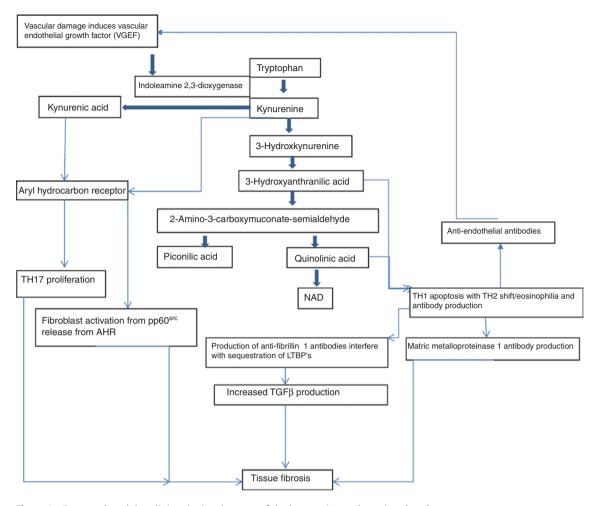


Figure 2: Proposed model outlining the involvement of the kynurenine pathway in scleroderma.

the eccrine units in morphea [68]. Interestingly, in our small study, strong expression of the KP was found in the eccrine unit [65].

Raynaud's phenomenon

The diffuse variants of scleroderma are characterised by Raynaud's phenomenon (chronic episodic digital ischemia) which is absent in the cutaneous variants. The cause is unknown but nitric oxide is thought to play a role and one of the KP metabolites 3-hydroxyanthrinilic acid is known to inhibit the expression and activity of inducible nitric oxide synthetase [69]. Although speculative, the final phase of the KP is expressed only in hepatocytes. Scleroderma most commonly affects interface organs with intrinsic high IDO activity. Venous return from these organs most commonly drains to the superior vena cava prior to distribution through the pulmonary vasculature, left heart and arterial circulation. This

allows distribution of 3-hydroxyanthrinilic acid to the upper half of the body before return to the liver which could conceivably account for the Raynaud's phenomena seen in systemic disease.

Neurological symptoms

Most research on kynurenines has focused on their role in neuro-inflammation [70–72] and neurological symptoms have increasingly been reported in scleroderma [73].

Relationship to environmental factors

Scleroderma has established associations with exposure to organic solvents [74] many of which are ligands for the AHR through which many of the activities of the KP are expressed.

Morphea may follow radiotherapy for breast carcinoma with an incidence if 1:500 [75]. Radiotherapy is a recognised cause of endothelial injury [76] thus supporting the concept that the initial injury is endothelial.

Tranilast

Tranilast is a structural and functional analogue of the kynurenine metabolite anthranilic acid which is available in Japan and South Korea and is used in the management of both allergic and scarring disorders. It inhibits both fibroblast proliferation [77] and TGF-B action [78]. There have been anecdotal reports of success in morphea [79] and the agent has been shown to manipulate the KP in a human subject [36]. We are currently conducting a trial at our institution comparing the efficacy of topical corticosteroids compared to a topical corticosteroid and tranilast combination in morphea [80].

Conclusion

There is strong evidence of the involvement of the KP in sclerosing cutaneous diseases principally via orchestration of the cytokine cascade and the establishment of a TH2 dominated immunological environment. Many effects of the KP are mediated via the AHR, several metabolites of which are physiological ligands.

It is proposed that endothelial damage leads to activation of the KP via VEGF. KP metabolites activate the AHR, facilitating the development of the TH17 subset of lymphocytes which subsequently secrete pro-fibrotic cytokines. Pp60src liberated from the AHR complex activates fibroblasts. Downstream KP metabolites promote the apoptosis of TH1 with the preservation of TH2 cells leading to the development of auto-antibodies. Anti-fibrillin 1 antibodies interfere with binding of the LTBP's promoting further tissue fibrosis. Antibodies directed against MMP-1 inhibit collagenase activity and connective tissue cycling. Antiendothelial antibodies promote further vascular damage perpetuating the cycle.

Current recommended management is via nontargeted immunosuppression with the best evidence for corticosteroids, methotrexate and mycophenylate mofetil [81]. Targeting the KP may provide additional and more targeted therapy for this group of disorders.

Conflict of interest statement: The author has declared no conflicts of interest.

References

- 1. Griffiths C, Barker J, Bleiker T, Chalmers R, Creamer D. Rook's textbook of dermatology, 9th Edition. West Sussex, UK: Wiley-Blackwell, 2016.
- 2. Peterson LS, Nelson AM, Su WP. Classification of morphea (localized scleroderma). Mayo Clin Proc 1995;70:1068-76.
- 3. Leitenberger JJ, Cayce RL, Haley RW, Adams-Huet B, Bergstresser PR, Jacobe HT. Distinct autoimmune syndromes in morphea: a review of 245 adult and pediatric cases. Arch Dermatol 2009;145:545-50.
- 4. Fett N, Werth VP. Update on morphea: Part I. Epidemiology, clinical presentation, and pathogenesis. J Am Acad Dermatol 2011;64:217-28.
- 5. Denton CP, Abraham DJ. Transforming growth factor-β and connective tissue growth factor: key cytokines in scleroderma pathogenesis. Curr Opin Rheumatol 2001;13:505-11.
- 6. Li Ming O, Flavell RA. "TGF-β: a master of all T cell trades." Cell 2008:134:392-404.
- 7. Loeys BL, Gerber EE, Riegert-Johnson D, Iqbal S, Whiteman P, McConnell V, et al. Mutations in fibrillin-1 cause congenital scleroderma: stiff skin syndrome. Sci Transl Med 2010:2:23ra20.
- 8. Arnett FC, Tan FK, Uziel Y, Laxer RM, Krafchik BR, Antohi S, et al. Autoantibodies to the extracellular matrix microfibrillar protein, fibrillin 1, in patients with localized scleroderma. Arthritis Rheum 1999;42:2656-9.
- 9. Tan FK, Arnett FC, Antohi S, Saito S, Mirarchi A, Spiera H, et al. Autoantibodies to the extracellular matrix microfibrillar protein, fibrillin-1, in patients with scleroderma and other connective tissue diseases. J Immunol 1999;163:1066-72.
- 10. Tomimura S, Ogawa F, Iwata Y, Komura K, Hara T, Muroi E, et al. Autoantibodies against matrix metalloproteinase-1 in patients with localized scleroderma. J Dermatol Sci 2008;52:47-54.
- 11. Sartori-Valinotti JC, Tollefson MM, Reed AM. Updates on morphea: role of vascular injury and advances in treatment. Autoimmune Dis 2013;2013:8 pages, Article ID 467808. doi: 10.1155/2013/467808.
- 12. Frech TM, Revelo MP, Drakos SG, Murtaugh MA, Markewitz BA, Sawitzke AD, et al. Vascular leak is a central feature in the pathogenesis of systemic sclerosis. J Rheumatol 2012;39:1385-91.
- 13. Renaudineau Y, Revelen R, Levy Y, Salojin K, Gilburg B, Shoenfeld Y, et al. Anti-endothelial cell antibodies in systemic sclerosis. Clin Diagn Lab Immunol 1999;6:156-60.
- 14. Magro CM, Crowson AN, Ferri C. Cytomegalovirus-associated cutaneous vasculopathy and scleroderma sans inclusion body change. Hum Pathol 2007:38:42-9.
- 15. Mihai C, Tervaert JW. Anti-endothelial cell antibodies in systemic sclerosis. Ann Rheum Dis 2010;69:319-24.
- 16. Boin F, De Fanis U, Bartlett SJ, Wigley FM, Rosen A, Casolaro V. T cell polarization identifies distinct clinical phenotypes in scleroderma lung disease. Arthritis Rheum 2008;58:1165-74.
- 17. Kräling BM, Maul GG, Jimenez SA. Mononuclear cellular infiltrates in clinically involved skin from patients with systemic sclerosis of recent onset predominantly consist of monocytes/ macrophages. Pathobiology 1995;63:48-56.
- 18. Brown RR, Ozaki Y, Datta SP, Borden EC, Sondel PM, Malone DG. Implications of interferon-induced tryptophan catabolism in cancer, autoimmune diseases and AIDS. In Kynurenine and serotonin pathways. New York: Springer, 1991:425-435.

- 19. Pfefferkorn ER. Interferon gamma blocks the growth of Toxoplasma gondii in human fibroblasts by inducing the host cells to degrade tryptophan. Proc Natl Acad Sci 1984;81:908-12.
- 20. Fallarino F, Grohmann U, You S, McGrath BC, Cavener DR, Vacca C, et al. Tryptophan catabolism generates autoimmune-preventive regulatory T cells. Transpl Immunol 2006;17:58-60.
- 21. Lee GK, Park HJ, Macleod M, Chandler P, Munn DH, Mellor AL. Tryptophan deprivation sensitizes activated T cells to apoptosis prior to cell division. Immunology 2002;107:452-60.
- 22. Platten M, Wick W, Van den Eynde BJ. Tryptophan catabolism in cancer: beyond IDO and tryptophan depletion. Cancer Res 2012;72:5435-40.
- 23. Widner B, Werner ER, Schennach H, Wachter H, Fuchs D. Simultaneous measurement of serum tryptophan and kynurenine by HPLC. Clin Chem 1997:43:2424-6.
- 24. Fallarino F, Grohmann U, Vacca C, Bianchi R, Orabona C, Spreca A, et al. T cell apoptosis by tryptophan catabolism. Cell Death Differ 2002;9:1069-77.
- 25. Dai X, Zhu BT. Indoleamine 2,3-dioxygenase tissue distribution and cellular localization in mice: implications for its biological functions. J Histochem. Cytochem 2010;58:17-28.
- 26. Munn DH, Zhou M, Attwood JT, Bondarev I, Conway SJ, Marshall B, et al. Prevention of allogeneic fetal rejection by tryptophan catabolism. Science 1998;281:1191-3.
- 27. Martin RW, Duffy J, Engel AG, Lie JT, Bowles CA, Moyer TP, et al. The clinical spectrum of the eosinophilia-myalgia syndrome associated with L-tryptophan ingestion: clinical features in 20 patients and aspects of pathophysiology. Ann Intern Med 1990;113:124-34.
- 28. Freundlich B, Werth VP, Rook AH, O'Connor CR, Schumacher HR, Leyden JJ, et al. L-tryptophan ingestion associated with eosinophilic fasciitis but not progressive systemic sclerosis. Ann Intern Med 1990;112:758-62.
- 29. Grigoris I, de Launey W, Jevtic AP. Eosinophilic fasciitis associated with L-tryptophan ingestion. Med J Aust 1992;157:329-30.
- 30. Mayeno AN, Lin F, Foote CS, Loegering DA, Ames MM, Hedberg CW, et al. Characterization of "peak E," a novel amino acid associated with eosinophilia-myalgia syndrome. Science 1990:250:1707-8.
- 31. Blauvelt A, Falanga V. Idiopathic and L-tryptophan-associated eosinophilic fasciitis before and after L-tryptophan contamination. Arch Dermatol 1991;127:1159-66.
- 32. Silver RM, McKinley K, Smith EA, Quearry B, Harati Y, Sternberg EM, et al. Tryptophan metabolism via the kynurenine pathway in patients with the eosinophilia-Myalgia syndrome. Arthrit Rheumat 1992;35:1097-105.
- 33. Silver RM, Sutherland SE, Carreira P, Heyes MP. Alterations in tryptophan metabolism in the toxic oil syndrome and in the eosinophilia-myalgia syndrome. J Rheumatol 1992;19:69-73.
- 34. Noakes R, Spelman L, Williamson R. Is the L-tryptophan metabolite quinolinic acid responsible for eosinophilic fasciitis? Clin Experiment Med 2006;6:60-4.
- 35. Moffett JR, Namboodiri MA. Tryptophan and the immune response. Immunol Cell Biol 2003;81:247-65.
- 36. Noakes RR. Effects of tranilast on the urinary excretion of kynurenic and quinolinic acid under conditions of L tryptophan loading. Int J Tryptoph Res 2013;6:67.
- 37. Carlstedt-Duke JM. Tissue distribution of the receptor for 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin in the rat. Cancer Res 1979;39:3172-6.

- 38. Johansson G, Gillner M, Högberg B, Gustafsson JÅ. The TCDD receptor in rat intestinal mucosa and its possible dietary ligands. Nutr Cancer 1982;3:134-44.
- 39. Noakes R. The aryl hydrocarbon receptor: a review of its role in the physiology and pathology of the integument and its relationship to the tryptophan metabolism. Int J Tryptoph Res 2015;8:7.
- 40. Agostinis P, Garmyn M, Van Laethem A. The aryl hydrocarbon receptor: an illuminating effector of the UVB response. Science Signal 2007;2007:pe49.
- 41. Enan E, Matsumura F. Identification of c-Src as the integral component of the cytosolic Ah receptor complex, transducing the signal of 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD) through the protein phosphorylation pathway. Biochem Pharmacol 1996:52:1599-612.
- 42. Fritsche E, Schäfer C, Calles C, Bernsmann T, Bernshausen T, Wurm M, et al. Lightening up the UV response by identification of the arythydrocarbon receptor as a cytoplasmatic target for ultraviolet B radiation. Proc National Acad Sci 2007;104:8851-6.
- 43. Furue M, Takahara M, Nakahara T, Uchi H. Role of AhR/ ARNT system in skin homeostasis. Arch Dermatologic Res 2014;306:769-79.
- 44. Matthews J, Gustafsson JA. Estrogen receptor and aryl hydrocarbon receptor signaling pathways. Nucl Recept Signal 2006:4:e016.
- 45. Puga A, Ma C, Marlowe JL. The aryl hydrocarbon receptor crosstalks with multiple signal transduction pathways. Biochem Pharmacol 2009;77:713-22.
- 46. Murphy KA, Quadro L, White LA. The intersection between the Aryl hydrocarbon receptor (AhR)-and retinoic acid-signaling pathways. Vitam Hormon 2007;75:33-67.
- 47. Tian Y. Ah receptor and NF-κB interplay on the stage of epigenome. Biochem Pharmacol 2009;77:670-80.
- 48. Vogel CF, Khan EM, Leung PS, Gershwin ME, Chang WW, Wu D, et al. Cross-talk between aryl hydrocarbon receptor and the inflammatory response a role for nuclear factor-κB. J Biologic Chem 2014;289:1866-75.
- 49. Pollenz RS. The mechanism of AH receptor protein down-regulation (degradation) and its impact on AH receptor-mediated gene regulation. Chemico-Biologic Interact 2002;141:41-61.
- 50. Evans BR, Karchner SI, Allan LL, Pollenz RS, Tanguay RL, Jenny MJ, et al. Repression of aryl hydrocarbon receptor (AHR) signaling by AHR repressor: role of DNA binding and competition for AHR nuclear translocator. Mol Pharmacol 2008;73:387-98.
- 51. Kurzinski K, Torok KS. Cytokine profiles in localized scleroderma and relationship to clinical features. Cytokine 2011;55:157-64.
- 52. Veldhoen M, Hirota K, Westendorf AM, Buer J, Dumoutier L, Renauld JC, et al. The aryl hydrocarbon receptor links TH17cell-mediated autoimmunity to environmental toxins. Nature 2008;453:106-9.
- 53. Yang X, Yang J, Xing X, Wan L, Li M. Increased frequency of Th17 cells in systemic sclerosis is related to disease activity and collagen overproduction. Arthrit Res Therp 2014;16:1.
- 54. Skhirtladze C, Distler O, Dees C, Akhmetshina A, Busch N, Venalis P, et al. Src kinases in systemic sclerosis: central roles in fibroblast activation and in skin fibrosis. Arthrit Rheumat 2008:58:1475-84.
- 55. Mezrich JD, Fechner JH, Zhang X, Johnson BP, Burlingham WJ, Bradfield CA. An interaction between kynurenine and the aryl

- hydrocarbon receptor can generate regulatory T cells. J Immunol 2010;185:3190-8.
- 56. DiNatale BC, Murray IA, Schroeder JC, Flaveny CA, Lahoti TS, Laurenzana EM, et al. Kynurenic acid is a potent endogenous aryl hydrocarbon receptor ligand that synergistically induces interleukin-6 in the presence of inflammatory signaling. Toxicological Sciences. 2010;115:89-97.
- 57. Lowe MM, Mold JE, Kanwar B, Huang Y, Louie A, Pollastri MP, et al. Identification of cinnabarinic acid as a novel endogenous Aryl hydrocarbon receptor ligand that drives IL-22 production. PLoS One 2014;9:e87877.
- 58. Dziankowska-Bartkowiak B, Zebrowska A, Wagrowska-Danielewicz M, Kobos J, Waszczykowska E. [Systemic sclerosis and scleroderma circumscripta--disturbances of selected serum parameters which are responsible for vascular changes and CD34 expression in involved skin]. Przeglad lekarski 2008:66:1040-5.
- 59. Marti LC, Pavon L, Severino P, Sibov T, Guilhen D, Moreira-Filho CA. Vascular endothelial growth factor-A enhances indoleamine 2, 3-dioxygenase expression by dendritic cells and subsequently impacts lymphocyte proliferation. Memórias do Instituto Oswaldo Cruz 2014;109:70-9.
- 60. Platten M, Ho PP, Youssef S, Fontoura P, Garren H, Hur EM, et al. Treatment of autoimmune neuroinflammation with a synthetic tryptophan metabolite. Science 2005;310:850-5.
- 61. Belladonna ML, Volpi C, Bianchi R, Vacca C, Orabona C, Pallotta MT, et al. Cutting edge: autocrine TGF-β sustains default tolerogenesis by IDO-competent dendritic cells. J Immunol 2008;181:5194-8.
- 62. Lehmann GM, Xi X, Kulkarni AA, Olsen KC, Pollock SJ, Baglole CJ, et al. The aryl hydrocarbon receptor ligand ITE inhibits TGFβ1-induced human myofibroblast differentiation. Am J Pathol 2011;178:1556-67.
- 63. Haarmann-Stemmann T, Esser C, Krutmann J. The janus-faced role of aryl hydrocarbon receptor signaling in the skin: consequences for prevention and treatment of skin disorders. J Invest Dermatol 2015:135:2572-6.
- 64. Skobieranda K, Helm KF. Decreased expression of the human progenitor cell antigen (CD34) in morphea. Am J Dermatopathol 1995;17:471-5.
- 65. Noakes R, Mellick N. Immunohistochemical studies of the kynurenine pathway in morphea. Int J Tryptoph Res 2013;6:97.
- 66. Jones SP, Franco NF, Varney B, Sundaram G, Brown DA, de Bie J, et al. Expression of the kynurenine pathway in human peripheral blood mononuclear cells: implications for inflammatory and neurodegenerative disease. PLoS One 2015;10:e0131389.

- 67. Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest 2010;120:1786.
- 68. Takahashi M, Akamatsu H, Yagami A, Hasegawa S, Ohgo S, Abe M, et al. Epithelial-mesenchymal transition of the eccrine glands is involved in skin fibrosis in morphea. J Dermatol 2013;40:720-5.
- 69. Sekkaï D, Guittet O, Lemaire G, Tenu JP, Lepoivre M. Inhibition of nitric oxide synthase expression and activity in macrophages by 3-hydroxyanthranilic acid, a tryptophan metabolite. Arch Biochem Biophys 1997:340:117-23.
- 70. Moroni F, Russi P, Lombardi G, Beni M, Carla V. Presence of kynurenic acid in the mammalian brain. J Neurochem 1988;51:177-80.
- 71. Jhamandas K, Boegman RJ, Beninger RJ, Bialik M. Quinolinateinduced cortical cholinergic damage: modulation by tryptophan metabolites. Brain Res 1990:529:185-91.
- 72. Kim JP, Choi DW. Quinolinate neurotoxicity in cortical cell culture. Neuroscience 1987;23:423-32.
- 73. Amaral TN, Peres FA, Lapa AT, Marques-Neto JF, Appenzeller S. Neurologic involvement in scleroderma: a systematic review. Semin Arthritis Rheum 2013;43:335-47.
- 74. Dospinescu P, Jones GT, Basu N. Environmental risk factors in systemic sclerosis. Curr Opin Rheumatol 2013;25:179-83.
- 75. Bleasel NR, Stapleton KM, Commens C, Ahern VA. Radiationinduced localized scleroderma in breast cancer patients. Australas J Dermatol 1999;40:99-102.
- 76. Garcia-Barros M, Paris F, Cordon-Cardo C, Lyden D, Rafii S, Haimovitz-Friedman A, et al. Tumor response to radiotherapy regulated by endothelial cell apoptosis. Science 2003;300:1155-9.
- 77. Isaji M, Nakajoh M, Naito J. Selective inhibition of collagen accumulation by N-(3,4-dimethoxycinnamoyl) anthranilic acid (N-5') in granulation tissue. Biochem Pharmacol 1987;36:469-74.
- 78. Yamada H, Tajima S, Nishikawa T, Murad S, Pinnell SR. Tranilast, a selective inhibitor of collagen synthesis in human skin fibroblasts. J Biochem 1994;116:892-7.
- 79. Taniguchi S, Yorifuji T, Hamada T. Treatment of linear localized scleroderma with the anti-allergic drug, tranilast. Clin Experiment Dermatol 1994;19:391-3.
- 80. Assessing the response of limited scleroderma to manipulation of the kynurenine pathway. A prospective study comparing topical corticosteroids vs topical corticosteroids/tranilast-Universal Trial Number (UTN) U1111-1177-3064.
- 81. Denton CP, Hughes M, Gak N, Vila J, Buch MH, Chakravarty K, et al. BSR and BHPR guideline for the treatment of systemic sclerosis. Rheumatology 2016;55:1906-10.