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Abstract: The kynurenine pathway (KP) is the metabolic
pathway via which L-tryptophan is converted to nicotina-
mide. It serves important immune-regulatory roles. This
article will review the evidence for involvement of the KP
in scleroderma and present a possible model of kynure-
nine regulation of the cytokine cascade.
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Introduction

Cutaneous sclerosing disorders, frustratingly, are incom-
pletely understood and treatments fall short of ideal.
These disorders are associated with considerable mor-
bidity and mortality with systemic sclerosis having the
highest case specific mortality of any of the autoimmune
rheumatic disorders [1].

Whilst an increased understanding of cytokine func-
tion has improved our understanding of this class of dis-
orders, the mechanisms via which the cytokine cascade is
controlled remains elusive.

This article will review the current evidence for the
involvement of the kynurenine pathway (KP) in this group
of disorders and present a possible model of kynurenine
control.

Clinical considerations

Dermatologists define cutaneous sclerosis as scle-
roderma. They further divide it into diffuse variants
and variants which involve the skin only. The diffuse
variants may display pulmonary, renal, cardiac and
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oesophageal involvement or oesophageal involvement
only. The latter is known as limited diffuse systemic
sclerosis. Previously the acronym CREST syndrome (Cal-
cinosis, Oesophageal Dysmotility, Sclerodactyly, Telangi-
ectasia) was used to describe this syndrome. In limited
disease, the skin below the elbow and knees is involved
with some cases displaying involvement of the face. In
diffuse disease skin proximal to the elbows and knees
is involved.

Scleroderma may involve the skin only. This is known
as morphea. There are different classification systems
but clinically several variants are recognised including
fronto-parietal, plaque, linear, subcutaneous, keloidal,
diffuse and a pan sclerotic variant with extension as far as
bone. Atrophic variants known as atrophoderma of Pasini
and Parini, Parry-Romberg syndrome and linear atropho-
derma of Moulin are recognised. Many consider eosino-
philic fasciitis part of the morphea spectrum [2].

Aetiology

The aetiology of these disorders is unknown but tradi-
tionally, they are viewed as falling within the spectrum
of autoimmune disorders due to their known association
with other autoimmune disorders [3] and the presence
of autoantibodies [2]. Triggering factors include trauma,
infection, medications and radiotherapy [4].

Transforming growth factor f (TGF-B) is a major
fibrotic cytokine and its expression is altered in sclero-
derma [5]. It is secreted as a large latent complex (LLP)
that includes the active cytokine, a dimer of its processed
N-terminal pro-peptide (latency associated peptide or
LAP) and one of the three latent TGF-B binding proteins
(LTBP-1, 3, or -4) [6].

Infantile stiff skin syndrome, a rare form of congenital
scleroderma with a poor prognosis [7] provides an inter-
esting insight into the possible pathogenesis. This disor-
der is due to mutations in fibrillin 1. Elastin and oxytalan
fibres are components of the extracellular matrix and
impart elastic properties to the skin. Elastic fibres consist
of an amorphous component, predominantly composed
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of cross-linked elastin built upon a scaffold of microfibrils.
Fibrillins of which there are three types (fibrillin 1, 2 and
3) are glycoproteins polymerised end to end to form the
microfibrils. Fibrillin-1 is a binding site for cellular integ-
rin’s enabling cells to bind to and interact with the extra-
cellular matrix. Fibrillin regulates the activity of TGF-3 by
acting as a target for the LTBP’s sequestrating TGF-$ in the
extracellular matrix.

Antibodies to fibrillin 1 have been detected in both
morphea [8] and scleroderma [9] as have antibodies to
matrix-metalloprotein-1 (MMP-1) which inhibit colla-
genase activity [10].

It has been proposed that the initial injury is
endothelial [11]. Interstitial oedema, fibrosis, basal
lamina lamellation and endothelial swelling have been
demonstrated in systemic sclerosis patients compared to
controls irrespective of clinical features or disease dura-
tion [12]. This may be mediated by viruses [13] as cyto-
megalovirus (CMV) RNA transcripts have been found
in the endothelium of patients with sclerodermoid
changes [14]. In due course, this leads to altered produc-
tion of collagen and other connective tissue molecules.
The shift to TH2 dominance leads to the production of
anti-endothelial antibodies [15] which further promote
endothelial damage.

Unlike the other connective tissue disorders, the
cytokine profile is skewed towards TH2 dominance
[16] leading to peripheral blood eosinophilia, although
the cellular infiltrate in these disorders is initially
monocytic [17].

The kynurenine pathway

The KP is the metabolic pathway by which the essential
amino acid L-tryptophan is converted to nicotinamide.
Yet its role extends beyond contributing to the body’s
nicotinamide requirements. L-tryptophan is the least
common of the essential amino acids and its availability
is a rate limiting step for protein synthesis and thus cell
division [18, 19]. T cells monitor L-tryptophan availability
in their microenvironment via a GCN2 kinase [20], activa-
tion of which can lead to anti-proliferative and apoptotic
effects [21]. This combined with the capacity to rapidly
deplete the micro-environment of tryptophan via shunt-
ing to nicotinamide allows this metabolic pathway to
exert powerful immunomodulatory effects. The rate lim-
iting enzyme is indoleamine 2,3-dioxygenase (IDO) [22].
It is potently induced by interferon vy [23] thus providing
a negative feedback loop during immune stimulation. In
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addition to IDO, other enzymes are involved in trypto-
phan breakdown.

Yet the relationship between the KP and the T cell
response is even more complex. Metabolic intermedi-
ates in the pathway have been shown to have important
regulatory roles promoting apoptosis of TH1 but not
TH2 cells [24] thus favouring a TH2 shift in the cytokine
response.

Not unexpectedly, this has evolved to fulfil critical
physiological roles. IDO expression varies between tissues
being maximal in interface tissues such as the gastroin-
testinal tract, respiratory system, placenta and skin [25]
where exposure to foreign antigens is common and immu-
nological tolerance is desirable. In fact, Munn’s work
demonstrating inhibition of this pathway by methyl-tryp-
tophan led to a loss of immunological tolerance during
pregnancy, established the significant immune-regulatory
role played by this pathway [26].

During the 1980s, L-tryptophan supplements were
widely used as a natural alternative to antidepressant
medication based on the assumption that taking the
precursor amino acid would increase synaptic levels
of serotonin. Soon reports of eosinophilia myalgia syn-
drome [27] and eosinophilic fasciitis [28, 29], associ-
ated with the ingestion of L-tryptophan were received.
Although initially linked to a contaminant in a product
made by a single manufacturer [30], authors soon
reported the same reaction to L-tryptophan produced
by other manufacturers [31]. Activation of the KP was
reported in these patients [32], as it was in patients with
the so-called toxic oil syndrome [33]. This was reported
in Spain in 1981, as a result of adulterated rapeseed oil
and shared many features in common with eosinophilia-
myalgia syndrome and eosinophilic fasciitis, the latter
considered by many to be part of the morphea spectrum
[2]. Quinolinic acid is a downstream metabolite of the
KP. In an experiment, quinolinic acid administered to
a human volunteer resulted in peripheral eosinophilia
and a mixed neutrophilic and eosinophilic subcutane-
ous infiltrate with immunohistochemical studies dem-
onstrating TGF factor B staining in dermal dendritic
cells and vascular endothelium supporting the relation-
ship between kynurenine metabolites and this class of
disorders [34].

Not all cells have the enzymatic repertoire to produce
nicotinamide adenine dinucleotide (NAD), despite their
ability to convert tryptophan to kynurenine [35, 36]. The
initial segment of the pathway which involves the con-
version of L-tryptophan to kynurenine is ubiquitous.
The second segment of the pathway in which 3-hydroxy-
kynurenine is metabolised to quinolinic acid is limited
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to hepatocytes and leucocytes, while the final conver-
sion of quinolinic acid to NAD takes place in hepato-
cytes only.

The aryl hydrocarbon receptor
(Figure 1)

The aryl hydrocarbon receptor (AHR) is a cytosolic
receptor for low molecular weight molecules maximally
expressed in interface tissues [37, 38]. Its major function
is the metabolism of exogenous toxins via the cytochrome
P450 pathway in association with the Nrf2 anti-oxidant
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pathway which also contains xenobiotic response ele-
ments (XRE) [39]. In the cytosol, the AHR exists in a
latent state as part of a multiprotein complex (Figure 1)
which includes the heat shock protein 90 (hsp90), heat
shock protein 23 (hsp23) and hepatitis B virus X-associ-
ated protein 2 (XAP2) [40]. A signalling partner proto-
oncogene c-Src (Pp60°) is released into the cytosol on
ligand binding attaching to the epidermal growth factor
receptor (EGFR) activating mitogen-activated protein
kinase (MAPK) signalling [41, 42].

On ligand binding, the receptor complex translocates
to the nucleus [43] binding to the aryl hydrocarbon recep-
tor nuclear transporter (ARNT). The AHR-ARNT heterodi-
mer subsequently interacts with genes containing XRE.

Aryl hydrocarbon receptor

-

Co-resident/chaperone proteins
Hsp90 (Heat shock protein 90)
Hsp23 (Heat shock protein 23)
XAP? (HBV X-associated protein 2)

Pp60°" (proto-oncogene c-Src)

On ligand binding the receptor
translocates to the cell nuclear
membrane and binds with the AHR
nuclear transporter (AHRNT)

Co-resident/chaperone proteins are
released on ligand binding. Pp60™

by | Signals through EGFR/MAPK. It also

activates fibroblasts

The AHR/AHRNT complex binds to
genes containing xenobiotic response
elements (XRE).

AHR/AHRNT cross talks with
estrogen receptor, retinoblastoma
protein, retinoid receptor and Nfkb.

Figure 1: Schematic diagram of the aryl hydrocarbon receptor and its co-resident/chaperoning proteins outlining the mechanisms of action.

#| Cyp 1. Cytochrome P450. Involved in
initial detoxification reactions

Nrf2. Involved in anti-oxidant/phase-2
detoxification reactions (conjugation).

AHRR. Aryl hydrocarbon receptor
repressor. Inhibits further AHR
synthesis. Provides negative feedback

Degradation is via ubiquitin
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There is also crosstalk between the AHR and the estrogen
receptor [44], the retinoblastoma protein, thus inhibit-
ing cell cycle progression [45] and the retinoic signalling
pathways [46]. The AHR can also bind the p65 subunit
of nuclear factor k light chain enhancer of activated B
cells (NF-xB), thereby either suppressing or activating
(depending on cellular context) the expression of NF-xB-
dependent genes [47, 48].

Negative feedback is provided by ubiquitin medi-
ated degradation [49] and AHR mediated expression of a
repressor protein, the aryl hydrocarbon receptor repressor
(AHRR) [50].

The relationship between
the cytokine profile and the aryl
hydrocarbon receptor

In the early stages of scleroderma, Thl cells and TH17
cells are proposed to dominate the immune profile [51]
later shifting to TH2 [16]. The AHR facilitates the develop-
ment of the TH17 subset and their cytokines IL-17 and 22
[52] both of which have been identified in children with
morphea [51]. TH17 lymphocytes promote the expression
of the pro-fibrotic cytokines in scleroderma [53]. In addi-
tion, pp60° released from the AHR on ligand binding
plays a role in fibroblast activation [54].

The relationship between
the kynurenine pathway and aryl
hydrocarbon receptor

Several KP metabholites are physiological ligands for the
AHR [55-57] thereby integrating the KP with both the
initial Th17 dominance followed by the subsequent shift
to a TH2 as the KP metabolites promote apoptosis in TH1
lymphocytes.

A proposed model (Figure 2)

Endothelial injury leads to expression of vascular
endothelial growth factor (VEGF) [58], a known inducer
of the rate limiting step in the KP IDO [59]. Downstream
kynurenine metabolites promote a TH2 shift in the
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immune system [24, 60] favouring IL-4 secretion, B cell
switching and antibody production. This environment
enables the generation of anti-fibrillin antibodies which
may interfere with the targeting of the LTBP’s to the extra-
cellular matrix leading to increased production of the
extracellular matrix.

TGF-B is known to sustain IDO expression [61], allow-
ing the continued generation of kynurenine metabolites,
thus enhancing the fibrotic response. Finally, many
kynurenine metabolites are natural ligands of the AHR
[55-57] promoting further TGF-B production.

Fibrocytes are CD34+ cells which are recruited from
the circulation to sites of injury. During tissue remodelling,
they lose CD34 expression and gain smooth muscle actin
(SMA) becoming myofibroblasts. Interestingly and coun-
terintuitively, activation of the AHR with endogenous AhR
ligand  2-(1’H-indole-3"-carbonyl)-thiazole-4-carboxylic
acid methyl ester (ITE) inhibits myofibroblast differentia-
tion [62]. Yet the AHR has been described as a Janus-faced
receptor behaving in a non-canonical fashion in inflamed
tissues [63] and thus it is plausible that KP metabolites
acting through the AHR may promote the myofibroblast
differentiation seen in morphea [64].

In an immunohistochemical study, involving a small
number of patients with morphea at our institution, acti-
vation of the KP was noted in the epidermal basal layer,
eccrine units and vascular endothelium in involved com-
pared to non-involved tissue [65]. In a more recent study
involving peripheral blood mononuclear cells, it was
determined that monocytes but not lymphocytes express
the KP [66]. In morphea, the initial cellular infiltrate is
monocytic [17]. The resultant catabolism of tryptophan
would be expected to skew the subsequent lymphocytic
infiltrate towards TH2. In our study, it was not possible to
determine the nature of the infiltrating mononuclear cells
except that all did not express the KP, so the results would
be consistent.

Further supporting evidence

Loss of adnexal structures

Loss of adnexal structures and subcutaneous fat is seen
in advanced morphea. Epithelial mesenchymal transi-
tion (EMT) is the process by which epithelial cells lose
their adhesion proteins and gain migratory properties
thus transforming into mesenchymal stem cells. TGF-f3
is one of several cytokines involved in EMT [67] and
EMT has been reported as a possible cause of fibrosis of
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Noakes: Kynurenines in scleroderma

endothelial growth factor (VGEF)

Tryptophan |

Kynurenine I

Indoleamine 2,3-dioxygenase
| Kynurenic acid

‘ 3-Hydroxkynurenine

1

v

| 3-Hydroxyanthranilic acid

|7

|Aryl hydrocarbon receptor

!

2-Amino-3-carboxymuconate-semialdehyde

Anti-endothelial antibodies

I_
l-

Piconilic acid

!

TH17 proliferation

Fibroblast activation from pp60°®
release from AHR

Quinolinic acid

[y

TH1 apoptosis with TH2 shift/eosinophilia and
antibody production

!

with sequestration of LTBP’s

Production of anti-fibrillin 1 antibodies interfere

Matric metalloproteinase 1 antibody production

y

Increased TGFB production

| Tissue fibrosis

Figure 2: Proposed model outlining the involvement of the kynurenine pathway in scleroderma.

the eccrine units in morphea [68]. Interestingly, in our
small study, strong expression of the KP was found in the
eccrine unit [65].

Raynaud’s phenomenon

The diffuse variants of scleroderma are characterised
by Raynaud’s phenomenon (chronic episodic digital
ischemia) which is absent in the cutaneous variants. The
cause is unknown but nitric oxide is thought to play a
role and one of the KP metabolites 3-hydroxyanthrinilic
acid is known to inhibit the expression and activity of
inducible nitric oxide synthetase [69]. Although specula-
tive, the final phase of the KP is expressed only in hepat-
ocytes. Scleroderma most commonly affects interface
organs with intrinsic high IDO activity. Venous return
from these organs most commonly drains to the supe-
rior vena cava prior to distribution through the pulmo-
nary vasculature, left heart and arterial circulation. This

allows distribution of 3-hydroxyanthrinilic acid to the
upper half of the body before return to the liver which
could conceivably account for the Raynaud’s phenom-
ena seen in systemic disease.

Neurological symptoms

Most research on kynurenines has focused on their role in
neuro-inflammation [70-72] and neurological symptoms
have increasingly been reported in scleroderma [73].

Relationship to environmental factors

Scleroderma has established associations with exposure
to organic solvents [74] many of which are ligands for the
AHR through which many of the activities of the KP are
expressed.
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Morphea may follow radiotherapy for breast carci-
noma with an incidence if 1:500 [75]. Radiotherapy is a
recognised cause of endothelial injury [76] thus support-
ing the concept that the initial injury is endothelial.

Tranilast

Tranilast is a structural and functional analogue of the
kynurenine metabolite anthranilic acid which is available
in Japan and South Korea and is used in the management
of both allergic and scarring disorders. It inhibits both
fibroblast proliferation [77] and TGF-B action [78]. There
have been anecdotal reports of success in morphea [79]
and the agent has been shown to manipulate the KP in a
human subject [36]. We are currently conducting a trial at
our institution comparing the efficacy of topical corticos-
teroids compared to a topical corticosteroid and tranilast
combination in morphea [80].

Conclusion

There is strong evidence of the involvement of the KP in
sclerosing cutaneous diseases principally via orchestra-
tion of the cytokine cascade and the establishment of a
TH2 dominated immunological environment. Many effects
of the KP are mediated via the AHR, several metabolites of
which are physiological ligands.

It is proposed that endothelial damage leads to activa-
tion of the KP via VEGF. KP metabolites activate the AHR,
facilitating the development of the TH17 subset of lympho-
cytes which subsequently secrete pro-fibrotic cytokines.
Pp60° liberated from the AHR complex activates fibro-
blasts. Downstream KP metabolites promote the apopto-
sis of TH1 with the preservation of TH2 cells leading to the
development of auto-antibodies. Anti-fibrillin 1 antibod-
ies interfere with binding of the LTBP’s promoting further
tissue fibrosis. Antibodies directed against MMP-1 inhibit
collagenase activity and connective tissue cycling. Anti-
endothelial antibodies promote further vascular damage
perpetuating the cycle.

Current recommended management is via non-
targeted immunosuppression with the best evidence for
corticosteroids, methotrexate and mycophenylate mofetil
[81]. Targeting the KP may provide additional and more
targeted therapy for this group of disorders.
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