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Abstract: Folates are crucial cofactors involved in the 
de  novo generation of purine and deoxythymidine 
monophosphate, which are essential for DNA synthesis. 
Antifolates are structural analogues of folate derivatives 
that act as inhibitors of folate-dependent enzymes and 
constitute the oldest antimetabolite class of anticancer 
agents. This review focuses on antifolates with remarkable 
anticancer activities that include a terminal alkyne func-
tion in their molecular structure. The properties of CB3717, 
a tremendous inhibitor of thymidylate synthase, are 
described, and the development of raltitrexed and prala-
trexate, a dihydrofolate reductase inhibitor approved by 
the U.S. Food and Drug Administration (FDA) as the first 
drug for the treatment of relapsed and refractory periph-
eral T cell lymphoma are presented.

Keywords: antifolate; cancer; CB3717; pralatrexate; 
raltitrexed; terminal alkyne.

Introduction
Folates, composed of a pterin ring coupled with p-ami-
nobenzoate and glutamate moieties (Figure 1A), are 
cofactors of enzymes involved in DNA/RNA syntheses 
and methylation processes. The endogenous synthesis 
of these molecules is only possible in bacteria; thus they 
are provided to humans by food intake. Given the vital 

importance of folates in cellular mechanisms, health 
authorities have underlined their absolute necessity of 
absorption, issuing notifications for recommended daily 
intake ratios [1–3]. This family of compounds can exist in 
either an oxidized form or a reduced dihydrofolate (DHF) 
or tetrahydrofolate (THF) form (Figure 1B). THF and its 
derivatives include two chiral centers (C6 and Cα), and 
natural THF and its 5-substituted derivatives consist of the 
(6S, αS) diastereomers, and due to nomenclature rules the 
natural N10-subsituted reduced folates are designated as 
(6S, αS) diastereomers. (6S, αS) is the only active form of 
folates in cells and bears one-carbon groups with different 
oxidation states (Figure 1C). It can bear a methyl group on 
its N-5 position (most reduced form), methylene or methe-
nyl moieties on positions 5 and 10 (intermediate), a formyl 
group on position 5 or 10 or a formimino group on position 
5. These one-carbon groups are further transferred to spe-
cific substrates, as one-carbon transfer mechanisms are 
the main cellular processes in which folates are involved 
(Figure 2) [4–6].

Polyglutamated THF constitutes the major folate form 
of ingested folate. Once hydrolyzed in the gut lumen into 
monoglutamate by glutamate carboxypeptidase II [7], its 
transport into enterocytes is ensured mainly by proton-
coupled folate transporter (PCFT) proteins. After internali-
zation, the THF is converted into the 5-methylated form 
that circulates in peripheral blood vessels [8]. Another 
source of folate comes from the absorption of synthetic 
folic acid, which is provided by food fortification or as 
a nutritional supplement. Folic acid is also internalized 
in enterocytes either by active transport processes using 
PCFT proteins or simply by passive diffusion. To play its 
cofactor role, folic acid is then converted by the dihy-
drofolate reductase enzyme (DHFR) into THF and trans-
formed, via several processes, to the plasma-circulating 
5-methyl tetrahydrofolate monoglutamate. This latter 
molecule, resulting either from diet or synthetic source, 
is further internalized by RFC proteins or folate receptors 
in other somatic cells where it is polyglutamated by folyl-
polyglutamate synthetase (FPGS) to finally enter the one-
carbon metabolic network [9–12].

Folate-mediated pathways are interdependent 
and are essential for many cellular biosyntheses. In 
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Figure 1: Chemical structures of folic acid (A), tetrahydrofolate (B) and its derivatives (C).

DNA synthesis, for instance, the de novo generation of 
purine heterocycles is mediated by β-glycinamide ribo-
nucleotide transformylase (GARFT) and 5′-amino-4′-
imidazolecarboxamide ribonucleotide transformylase 
(AICARFT), two key enzymes for which 10-formyl THF 
acts as a cofactor. Moreover, thymidylate synthase (TYMS) 
requires 5,10-methylene THF as a cofactor when convert-
ing deoxyuridine monophosphate (dUMP) into deoxythy-
midine monophosphate (dTMP) for the de novo synthesis 
of deoxythymidine triphosphate, one of the four building 
blocks of DNA [4–6].

Antifolates are structural analogues of folate deriva-
tives that tend to act as inhibitors of folate-dependent 
enzymes. These compounds constitute the oldest antime-
tabolite class of anticancer agents [13, 14]. In this review, 
the main emphasis will be placed on antifolates with a 

terminal alkyne function in their molecular structure 
showing remarkable anticancer activities.

Acetylenic antifolate as a TYMS 
inhibitor: CB3717, the forerunner 
of raltitrexed
Thymidylate synthase activation depends on the forma-
tion of a ternary complex composed of the protein, its 
substrate (dUMP), and 5,10-methylene THF, its cofactor. 
dTMP synthesis, which is essential for DNA synthesis 
and repair, is obtained via the reductive methylation of 
dUMP when 5,10-methylene THF is oxidized to 7,8-DHF. 
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The inhibition of TYMS leads to an important decrease 
in the amount of available thymidine, thus resulting 
in severe cytotoxicity in dividing cells. Hence, TYMS is 
considered as a key target in anticancer therapy [15–23]. 
Its inhibition can be achieved by preventing the access 
of either its substrate or its cofactor to the active site 
via pyrimidine or folate analogues, respectively. For 
instance, the pyrimidine analogue 5-fluorouracil (5-FU), 
a chemotherapeutic agent widely used in anticancer 
therapy for about 50 years, is converted into fluorode-
oxyuridine monophosphate, which forms, together with 
5,10-methylene THF and TYMS, a relatively stable ternary 
complex [24, 25].

Substituted 2-amino-4-hydroxy series of quinazolines, 
which are 5,8-dideazofolic acid derivatives, were also dem-
onstrated to be effective inhibitors of TYMS [26–28]. Con-
sidering this, and to develop novel potent TYMS inhibitors, 
Jones et al. [29] synthesized structures by introducing allyl 
and propargyl groups to the N-10 position of these folate 
analogues and investigated their anticancer properties. 
An N-propargylic compound called CB3717 (Figure 3) dem-
onstrated a great capacity to inhibit TYMS (Ki≈3 nmol/L), 
competing with 5,10-methylene THF. Moreover, the authors 
noticed its remarkable antitumor activity both in vitro and 
in vivo on either murine or human systems [30, 31]. Further 
investigations actually indicated a polyglutamation of the 
intracellular CB3717, since the molecule was proven to 
show an affinity for FPGS [32]. This chemical modification 

was demonstrated to stabilize the active structure inside 
the cell as the polyglutamated metabolite cannot be 
carried back by RFC proteins [33–35], providing to the 
drug an extended intracellular half-life and thus a greater 
antimetabolic activity. Some additional studies also estab-
lished that the glutamation degree was closely related 
to the inhibition ability of the TYMS protein, since the Ki 
values of these compounds were found to be considerably 
enhanced especially for those with four to five glutamate 
moieties (Ki≈40 pmol/L) [36, 37].

Based on these promising results, CB3717 was evalu-
ated in clinical trials in patients with breast, ovarian and 
hepatocellular carcinoma. However, phase I [38–40] and 
phase II [41, 42] studies revealed a severe nephrotoxicity 
in patients with either weekly or 3-weekly administration 
schedules, probably due to the precipitation of the drug 
in renal tubules as it is poorly water soluble at physiologi-
cal pH [43]. This considerable drawback marked the end 
of the clinical investigation of CB3717 but led to a sub-
sequent collaboration between the Institute of Cancer 
Research and ICI Pharmaceuticals (now AstraZeneca) for 
the development of a library of water-soluble molecules 
with CB3717-like structures. The evaluation of this library 
revealed an N-10-methylthiophene analogue, namely, 
ZD1694 (Figure 3), that exhibited great inhibition proper-
ties toward TYMS [43–45]. This compound, better known 
as raltitrexed or Tomudex©, is now approved by many 
countries as an anticancer agent for the treatment of 

DHF THF

5,10-methylene-THF
dUMP

dTMP

TYMS

5,10-methenyl-THF

10-formyl THFPurines
5-methyl-THF

Homocysteine

Methionine

S-adenosyl-methionine

MTR

de novo purine
synthesis

de novo thymidine
synthesis

Methylation
reactions

DHFR

MTHFD1

SHMT1

MTHFR

MTHFD1

MTHFD1/GART

Garft
aircarft
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metastatic colorectal cancer, although its administration 
is often limited to specific cases only [46–50].

Acetylenic antifolate as a DHFR 
inhibitor: pralatrexate
DHFR that catalyzes the reduction of DHF to THF also con-
stitutes a key target in anticancer therapy as its inhibition 
blocks the THF synthesis and thus leads to a depletion 
in purine and pyrimidine precursors, which are essential 
for DNA, RNA and hence protein synthesis. The DHFR 
inhibitor methotrexate (MTX, 4-amino-10-methylpteroyl-
glutamic acid) was first demonstrated to exhibit an anti-
neoplastic effect in 1948 [51] (Figure 3). This anticancer 
agent is now commonly used for the treatment of a wide 
range of cancers including leukemia, lymphoma, breast, 
lung, bladder carcinomas, head and neck cancer, and oste-
ogenic carcinoma [52]. In the early 1980s, Sirotnak et al. [53, 
54] developed a new family of folate analogues composed 
of a series of 10-deazaaminopterins (with a carbon atom 
instead of a nitrogen atom present at position 10) that were 

found to be more potent than MTX. Their exalted activity 
were attributed to an enhanced capacity of internaliza-
tion coupled with a higher degree of glutamation, as these 
molecules were shown to have notable affinity for the RFC 
proteins [53] and the FPGS enzyme [55, 56].

Also, with the development of CB3717, the role of pro-
pargylic moiety for the generation of anticancer properties 
was explored by several research groups. While Jackman 
et  al. [57, 58] were investigating the activity of the prop-
argylic group of 2-amino-deficient folate analogues, Piper 
et  al. [59] investigated the potency of the 10-N-propar-
gylaminopterin, which was shown to be more active than 
MTX, although requiring a high-dose injection to be effec-
tive in vivo. Based on these results, DeGraw et al. [60] syn-
thesized the 10-propargyl-10-deazaminopterin molecule or 
pralatrexate (PDX) (Figure 3) and evaluated its anticancer 
properties in in vitro and in vivo studies. Even if the struc-
ture was found to inhibit DHFR less efficiently than MTX 
(Ki = 3-fold higher), it exhibited an outstanding cytotoxic-
ity, being five times more potent than MTX in cell growth 
inhibition (IC50

MTX = 9.50 nmol/L, IC50
PDX = 2.0  nmol/L) and 

quite more effective on murine mammary models in vivo 
[60].
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Figure 3: Chemical structures of THF and antifolate anticancer agents.
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Given these promising results, PDX was then evalu-
ated on human cancer cell lines in vitro and investigated 
on human tumor xenografted mice in vivo. Breast and 
non-small cell lung cancer (NSCLC) constituted the first 
human cell lines on which PDX demonstrated its effi-
cacy, being up to 30-fold more cytotoxic than MTX. As the 
most sensitive cell line was detected to be the adenocar-
cinoma cell line, NSCLC tumor xenografts (LX-1 and A549 
cell lines) were chosen to be studied in vivo. Whereas 
tumors of MTX-treated mice did not yield in any healing, 
PDX led to a complete regression of the tumors in 75% of 
the animals [56]. The superior antitumor activity of PDX 
on NSCLC tumor models was also further confirmed by 
Izbicka et al. [61].

The antitumor efficacy of PDX was also examined 
on human lymphoma, whether used as a single agent 
or combined with other cytotoxic agents such as the 
nucleoside analogue gemcitabine or the proteasome 
inhibitor bortezomib. The IC50 values obtained with all 
of the Hodgkin or non-Hodgkin lymphoma cell lines 
treated with PDX were ten-fold smaller than the values 
obtained with MTX-treated cells. In addition, no or very 
slight regression of tumors was observed in MTX-treated 
lymphoma xenografted mice (RL- and SKI-DLBCL), 
whereas PDX treatment led to complete regression in 
30% of RL- and 56% of SKI-DLBCL-xenografted mice 
[62]. Toner et  al. [63] have shown the synergic effect of 
PDX and gemcitabine especially in treatments occur-
ring in a scheduled manner (gemcitabine administration 
24 h after the PDX treatment) as they demonstrated the 
significantly superior activity of this combination when 
compared with the MTX→cytarabine combination on 
animals with SKI-DLBCL xenografts (3/5 complete remis-
sion for PDX→gemcitabine, whereas no remission for 
MTX→cytarabine). A similar synergetic efficacy was also 
noticed by Marchi et al. [64] when they tested PDX in com-
bination with bortezomib in in vitro and in vivo models of 
T-cell lymphoid malignancies.

To understand the molecular basis underlying the 
enhancement of the cytotoxic effect with the propargylic 
molecule, studies evaluating the expression levels of the 
genes coding for proteins involved in one-carbon metabo-
lisms were conducted. As the RFC1 that codes for the RFC 
protein was found to be more expressed in PDX-sensitive 
cell lines (diffuse large B cell and HT cell line), it was sug-
gested that a better internalization of the drug could lead 
to the enhancement of its antiproliferative activity [63]. 
A similar investigation was further carried out on a wide 
panel of cancer cells including colon, breast, melanoma, 
NSCLC, ovarian, prostate and head and neck cell lines by 
Serova et  al. [65]. The authors analyzed the expression 

levels of genes coding for DHFR, FPGS, RFC, TYMS, GARFT, 
SLC25A32 (mitochondrial folate transporter/carrier) and 
ATP-binding cassette transporters (ABCB1) and did not 
notice any correlation between PDX sensitivity and the 
expression levels of TYMS, GARFT, LC25A32 or ABCB1, 
nor of RFC1, and thus they could not support the find-
ings previously established. However, they determined a 
significant increase in the levels of FPGS genes, indicat-
ing again the important role of glutamation in acquiring 
cytotoxicity. A moderate but not statistically significant 
increase in the expression of DHFR was also reported. To 
better characterize the molecular mechanisms implied in 
PDX-sensitive cell lines, the group also generated PDX- 
and MTX-resistant cells from cells detected to be the 
most sensitive to the corresponding drugs. The examina-
tion of gene expression levels in DU-PDX and HEP-PDX 
cell lines, both being PDX resistant, revealed a consid-
erable decrease in the expression of RFC1, indicating a 
decisive role of the folate transport protein for PDX to be 
active, as previously suggested [53, 63]. Furthermore, an 
increase in the ABCB1 gene was also observed. Modifica-
tion in ABCB1 expression levels did not show any corre-
lation with PDX sensitivity though, as the inhibition of 
the ABC proteins did not restore sensitivity to the drug. 
Interestingly, even though MTX-resistant cells exhibited 
an extensive increase in DHFR levels as expected since 
DHFR over-regulation constitutes the main mechanism 
for the generation of MTX resistance [66], the increase 
observed for PDX-resistant cells was not statistically sig-
nificant, suggesting different molecular mechanisms of 
action for these two antifolates. This hypothesis is actu-
ally in agreement with Zain and O’Connor’s [67] findings, 
which indicated that modifications in gene expression 
levels in MTX-treated cells were mainly occurring in 
genes involved in folate metabolism, whereas the gene 
expression of PDX-treated cells was essentially disrupted 
for genes implied in pathways regulating immunomodu-
lation and transcription factors.

Based on the encouraging results obtained during 
the first preclinical studies, the clinical evaluation of PDX 
began with NSCLC patients. The phase I studies revealed 
mucositis as the drug’s dose-limiting toxicity. Its anti-
tumor activity was confirmed as two of 33 patients with 
stage IV NSCLC responded favorably to the treatment 
and the conditions of five of 33 patients were stabilized 
[68]. The phase II study of 38 NSCLC patients provided 
satisfactory results, with 10% of objective responses and 
31% of disease stabilization. Stomatitis and mucositis 
constituted the main toxicities associated with the treat-
ment [69]. When examining the efficacy of the drug in 
combination with probenecid on patients presenting 
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solid tumors, Fury et  al. [70] mentioned the possibility 
of supplementation with vitamin B12 and folate in order 
to prevent mucositis, hence allowing a dose escalation 
during treatments. Azzoli et al. [71] evaluated PDX in com-
bination with taxanes, incorporating to their protocol 
the co-administration of vitamin B12 and folic acid. This 
supplementation allowed the patients to tolerate safely 
higher doses of the drug [71], confirming the predictions 
of Fury et  al. [70]. From then on, investigators always 
incorporated vitamin B12 and folic acid supplementation 
into their protocols.

PDX was further evaluated on other carcinomas. 
Although the drug did not show any activity on patients 
with malignant pleural mesothelioma [72], it demon-
strated successful activity on lymphoma, with achieve-
ment of complete regression in all of the patients with 
T-cell lymphoma in a study carried out on 20 patients, 
16 of whom presenting B-cell and four presenting T-cell 
lymphomas [73]. The authors tested two different doses 
for the treatment of T-cell lymphoma: the first treatment 
at the recommended dose (135 mg/m2 every other week) 
resulted in the development of severe mucositis, whereas 
the administration of 30 mg/m2 of PDX weekly for 6 weeks 
was well tolerated by three other patients. These find-
ings led to a new phase I clinical study that redefined 
the maximum-tolerated dose of PDX, which decreased 
the ratio of patients developing stomatitis from almost 
100%–17% [74]. Based on these results, a multicenter 
phase II study, carried out with patients with relapsed or 
refractory peripheral T-cell lymphoma, demonstrated the 
drug’s outstanding efficacy, as on 109 evaluable patients 
29% experienced objective responses and 38% achieved 
complete remission. These data led to the approval of PDX 
by the U.S. FDA in 2009 for the treatment of peripheral 
T-cell lymphoma on patients who have relapsed or have 
not responded to other chemotherapy drugs [75–77]. PDX 
is the first drug approved for this disease [78].

To conclude, this review focused on antifolates with 
a terminal alkyne function. Antifolates constitute the first 
class of anticancer antimetabolites, and the development 
of folate antagonists bearing a propargyl group led to the 
generation of the first clinically evaluated folate-based 
TYMS inhibitor, CB3717. Yet, the clinical studies of this 
highly potent molecule revealed a serious nephrotoxicity 
of the structure due to its poor solubility. CB3717 struc-
ture optimization studies contributed to the development 
of two marketed anticancer agents: raltitrexed, a TYMS 
inhibitor used for the treatment of colorectal cancer, and 
pralatrexate, a propargylic DHFR inhibitor, which is the 
first drug approved for relapsed or refractory peripheral 
T-cell lymphoma. These results highlight the potential of 

the propargyl group for the development of novel potent 
anticancer molecules.
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