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Abstract: Folates are crucial cofactors involved in the
de novo generation of purine and deoxythymidine
monophosphate, which are essential for DNA synthesis.
Antifolates are structural analogues of folate derivatives
that act as inhibitors of folate-dependent enzymes and
constitute the oldest antimetabolite class of anticancer
agents. This review focuses on antifolates with remarkable
anticancer activities that include a terminal alkyne func-
tion in their molecular structure. The properties of CB3717,
a tremendous inhibitor of thymidylate synthase, are
described, and the development of raltitrexed and prala-
trexate, a dihydrofolate reductase inhibitor approved by
the U.S. Food and Drug Administration (FDA) as the first
drug for the treatment of relapsed and refractory periph-
eral T cell lymphoma are presented.
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Introduction

Folates, composed of a pterin ring coupled with p-ami-
nobenzoate and glutamate moieties (Figure 1A), are
cofactors of enzymes involved in DNA/RNA syntheses
and methylation processes. The endogenous synthesis
of these molecules is only possible in bacteria; thus they
are provided to humans by food intake. Given the vital
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importance of folates in cellular mechanisms, health
authorities have underlined their absolute necessity of
absorption, issuing notifications for recommended daily
intake ratios [1-3]. This family of compounds can exist in
either an oxidized form or a reduced dihydrofolate (DHF)
or tetrahydrofolate (THF) form (Figure 1B). THF and its
derivatives include two chiral centers (C6 and Co), and
natural THF and its 5-substituted derivatives consist of the
(6S, 0.S) diastereomers, and due to nomenclature rules the
natural N10-subsituted reduced folates are designated as
(6S, aS) diastereomers. (6S, aS) is the only active form of
folates in cells and bears one-carbon groups with different
oxidation states (Figure 1C). It can bear a methyl group on
its N-5 position (most reduced form), methylene or methe-
nyl moieties on positions 5 and 10 (intermediate), a formyl
group on position 5 or 10 or a formimino group on position
5. These one-carbon groups are further transferred to spe-
cific substrates, as one-carbon transfer mechanisms are
the main cellular processes in which folates are involved
(Figure 2) [4-6].

Polyglutamated THF constitutes the major folate form
of ingested folate. Once hydrolyzed in the gut lumen into
monoglutamate by glutamate carboxypeptidase II [7], its
transport into enterocytes is ensured mainly by proton-
coupled folate transporter (PCFT) proteins. After internali-
zation, the THF is converted into the 5-methylated form
that circulates in peripheral blood vessels [8]. Another
source of folate comes from the absorption of synthetic
folic acid, which is provided by food fortification or as
a nutritional supplement. Folic acid is also internalized
in enterocytes either by active transport processes using
PCFT proteins or simply by passive diffusion. To play its
cofactor role, folic acid is then converted by the dihy-
drofolate reductase enzyme (DHFR) into THF and trans-
formed, via several processes, to the plasma-circulating
5-methyl tetrahydrofolate monoglutamate. This latter
molecule, resulting either from diet or synthetic source,
is further internalized by RFC proteins or folate receptors
in other somatic cells where it is polyglutamated by folyl-
polyglutamate synthetase (FPGS) to finally enter the one-
carbon metabolic network [9-12].

Folate-mediated pathways are interdependent
and are essential for many cellular biosyntheses. In
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Figure 1: Chemical structures of folic acid (A), tetrahydrofolate (B) and its derivatives (C).

DNA synthesis, for instance, the de novo generation of
purine heterocycles is mediated by B-glycinamide ribo-
nucleotide transformylase (GARFT) and 5-amino-4’-
imidazolecarboxamide ribonucleotide transformylase
(AICARFT), two key enzymes for which 10-formyl THF
acts as a cofactor. Moreover, thymidylate synthase (TYMS)
requires 5,10-methylene THF as a cofactor when convert-
ing deoxyuridine monophosphate (l{UMP) into deoxythy-
midine monophosphate (dTMP) for the de novo synthesis
of deoxythymidine triphosphate, one of the four building
blocks of DNA [4-6].

Antifolates are structural analogues of folate deriva-
tives that tend to act as inhibitors of folate-dependent
enzymes. These compounds constitute the oldest antime-
tabolite class of anticancer agents [13, 14]. In this review,
the main emphasis will be placed on antifolates with a

terminal alkyne function in their molecular structure
showing remarkable anticancer activities.

Acetylenic antifolate as a TYMS
inhibitor: CB3717, the forerunner
of raltitrexed

Thymidylate synthase activation depends on the forma-
tion of a ternary complex composed of the protein, its
substrate (AUMP), and 5,10-methylene THEF, its cofactor.
dTMP synthesis, which is essential for DNA synthesis
and repair, is obtained via the reductive methylation of
dUMP when 5,10-methylene THF is oxidized to 7,8-DHF.
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Figure 2: The folate-mediated one-carbon metabolic network. AICARFT, 5-amino-4’-imidazolecarboxamide ribonucleotide transformylase;
DHF, dihydrofolate; DHFR, dihydrofolate reductase enzyme; dTMP, deoxythymidine monophosphate; dUMP, deoxyuridine monophosphate;
GARFT, B-glycinamide ribonucleotide transformylase; MTHFD1, C-1-tetrahydrofolate synthase; MTHFR, methylene tetrahydrofolate reduc-
tase; MTR, 5-methyltetrahydrofolate-homocysteine methyltransferase; SHMT1, serine hydroxymethyltransferase; THF, tetrahydrofolate;
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TYMS, thymidylate synthase.

The inhibition of TYMS leads to an important decrease
in the amount of available thymidine, thus resulting
in severe cytotoxicity in dividing cells. Hence, TYMS is
considered as a key target in anticancer therapy [15-23].
Its inhibition can be achieved by preventing the access
of either its substrate or its cofactor to the active site
via pyrimidine or folate analogues, respectively. For
instance, the pyrimidine analogue 5-fluorouracil (5-FU),
a chemotherapeutic agent widely used in anticancer
therapy for about 50 years, is converted into fluorode-
oxyuridine monophosphate, which forms, together with
5,10-methylene THF and TYMS, a relatively stable ternary
complex [24, 25].

Substituted 2-amino-4-hydroxy series of quinazolines,
which are 5,8-dideazofolic acid derivatives, were also dem-
onstrated to be effective inhibitors of TYMS [26-28]. Con-
sidering this, and to develop novel potent TYMS inhibitors,
Jones et al. [29] synthesized structures by introducing allyl
and propargyl groups to the N-10 position of these folate
analogues and investigated their anticancer properties.
An N-propargylic compound called CB3717 (Figure 3) dem-
onstrated a great capacity to inhibit TYMS (K;~3 nmol/L),
competing with 5,10-methylene THF. Moreover, the authors
noticed its remarkable antitumor activity both in vitro and
in vivo on either murine or human systems [30, 31]. Further
investigations actually indicated a polyglutamation of the
intracellular CB3717, since the molecule was proven to
show an affinity for FPGS [32]. This chemical modification

was demonstrated to stabilize the active structure inside
the cell as the polyglutamated metabolite cannot be
carried back by RFC proteins [33-35], providing to the
drug an extended intracellular half-life and thus a greater
antimetabolic activity. Some additional studies also estab-
lished that the glutamation degree was closely related
to the inhibition ability of the TYMS protein, since the K;
values of these compounds were found to be considerably
enhanced especially for those with four to five glutamate
moieties (K~40 pmol/L) [36, 37].

Based on these promising results, CB3717 was evalu-
ated in clinical trials in patients with breast, ovarian and
hepatocellular carcinoma. However, phase I [38-40] and
phase II [41, 42] studies revealed a severe nephrotoxicity
in patients with either weekly or 3-weekly administration
schedules, probably due to the precipitation of the drug
in renal tubules as it is poorly water soluble at physiologi-
cal pH [43]. This considerable drawback marked the end
of the clinical investigation of CB3717 but led to a sub-
sequent collaboration between the Institute of Cancer
Research and ICI Pharmaceuticals (now AstraZeneca) for
the development of a library of water-soluble molecules
with CB3717-like structures. The evaluation of this library
revealed an N-10-methylthiophene analogue, namely,
ZD1694 (Figure 3), that exhibited great inhibition proper-
ties toward TYMS [43-45]. This compound, better known
as raltitrexed or Tomudex®, is now approved by many
countries as an anticancer agent for the treatment of
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Figure 3: Chemical structures of THF and antifolate anticancer agents.

metastatic colorectal cancer, although its administration
is often limited to specific cases only [46-50].

Acetylenic antifolate as a DHFR
inhibitor: pralatrexate

DHER that catalyzes the reduction of DHF to THF also con-
stitutes a key target in anticancer therapy as its inhibition
blocks the THF synthesis and thus leads to a depletion
in purine and pyrimidine precursors, which are essential
for DNA, RNA and hence protein synthesis. The DHFR
inhibitor methotrexate (MTX, 4-amino-10-methylpteroyl-
glutamic acid) was first demonstrated to exhibit an anti-
neoplastic effect in 1948 [51] (Figure 3). This anticancer
agent is now commonly used for the treatment of a wide
range of cancers including leukemia, lymphoma, breast,
lung, bladder carcinomas, head and neck cancer, and oste-
ogenic carcinoma [52]. In the early 1980s, Sirotnak et al. [53,
54] developed a new family of folate analogues composed
of a series of 10-deazaaminopterins (with a carbon atom
instead of a nitrogen atom present at position 10) that were

; OH
NH, NHW
N
NZ X
)\N N/ -
XX

found to be more potent than MTX. Their exalted activity
were attributed to an enhanced capacity of internaliza-
tion coupled with a higher degree of glutamation, as these
molecules were shown to have notable affinity for the RFC
proteins [53] and the FPGS enzyme [55, 56].

Also, with the development of CB3717, the role of pro-
pargylic moiety for the generation of anticancer properties
was explored by several research groups. While Jackman
et al. [57, 58] were investigating the activity of the prop-
argylic group of 2-amino-deficient folate analogues, Piper
et al. [59] investigated the potency of the 10-N-propar-
gylaminopterin, which was shown to be more active than
MTX, although requiring a high-dose injection to be effec-
tive in vivo. Based on these results, DeGraw et al. [60] syn-
thesized the 10-propargyl-10-deazaminopterin molecule or
pralatrexate (PDX) (Figure 3) and evaluated its anticancer
properties in in vitro and in vivo studies. Even if the struc-
ture was found to inhibit DHFR less efficiently than MTX
(Ki=3-fold higher), it exhibited an outstanding cytotoxic-
ity, being five times more potent than MTX in cell growth
inhibition (IC, *™=9.50 nmol/L, IC_™=2.0 nmol/L) and
quite more effective on murine mammary models in vivo
[60].
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Given these promising results, PDX was then evalu-
ated on human cancer cell lines in vitro and investigated
on human tumor xenografted mice in vivo. Breast and
non-small cell lung cancer (NSCLC) constituted the first
human cell lines on which PDX demonstrated its effi-
cacy, being up to 30-fold more cytotoxic than MTX. As the
most sensitive cell line was detected to be the adenocar-
cinoma cell line, NSCLC tumor xenografts (LX-1 and A549
cell lines) were chosen to be studied in vivo. Whereas
tumors of MTX-treated mice did not yield in any healing,
PDX led to a complete regression of the tumors in 75% of
the animals [56]. The superior antitumor activity of PDX
on NSCLC tumor models was also further confirmed by
Izbicka et al. [61].

The antitumor efficacy of PDX was also examined
on human lymphoma, whether used as a single agent
or combined with other cytotoxic agents such as the
nucleoside analogue gemcitabine or the proteasome
inhibitor bortezomib. The IC, values obtained with all
of the Hodgkin or non-Hodgkin lymphoma cell lines
treated with PDX were ten-fold smaller than the values
obtained with MTX-treated cells. In addition, no or very
slight regression of tumors was observed in MTX-treated
lymphoma xenografted mice (RL- and SKI-DLBCL),
whereas PDX treatment led to complete regression in
30% of RL- and 56% of SKI-DLBCL-xenografted mice
[62]. Toner et al. [63] have shown the synergic effect of
PDX and gemcitabine especially in treatments occur-
ring in a scheduled manner (gemcitabine administration
24 h after the PDX treatment) as they demonstrated the
significantly superior activity of this combination when
compared with the MTX—cytarabine combination on
animals with SKI-DLBCL xenografts (3/5 complete remis-
sion for PDX—gemcitabine, whereas no remission for
MTX—cytarabine). A similar synergetic efficacy was also
noticed by Marchi et al. [64] when they tested PDX in com-
bination with bortezomib in in vitro and in vivo models of
T-cell lymphoid malignancies.

To understand the molecular basis underlying the
enhancement of the cytotoxic effect with the propargylic
molecule, studies evaluating the expression levels of the
genes coding for proteins involved in one-carbon metabo-
lisms were conducted. As the RFC1 that codes for the RFC
protein was found to be more expressed in PDX-sensitive
cell lines (diffuse large B cell and HT cell line), it was sug-
gested that a better internalization of the drug could lead
to the enhancement of its antiproliferative activity [63].
A similar investigation was further carried out on a wide
panel of cancer cells including colon, breast, melanoma,
NSCLC, ovarian, prostate and head and neck cell lines by
Serova et al. [65]. The authors analyzed the expression
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levels of genes coding for DHFR, FPGS, RFC, TYMS, GARFT,
SLC25A32 (mitochondrial folate transporter/carrier) and
ATP-binding cassette transporters (ABCB1) and did not
notice any correlation between PDX sensitivity and the
expression levels of TYMS, GARFT, LC25A32 or ABCBI,
nor of RFC1, and thus they could not support the find-
ings previously established. However, they determined a
significant increase in the levels of FPGS genes, indicat-
ing again the important role of glutamation in acquiring
cytotoxicity. A moderate but not statistically significant
increase in the expression of DHFR was also reported. To
better characterize the molecular mechanisms implied in
PDX-sensitive cell lines, the group also generated PDX-
and MTX-resistant cells from cells detected to be the
most sensitive to the corresponding drugs. The examina-
tion of gene expression levels in DU-PDX and HEP-PDX
cell lines, both being PDX resistant, revealed a consid-
erable decrease in the expression of RFCI1, indicating a
decisive role of the folate transport protein for PDX to be
active, as previously suggested [53, 63]. Furthermore, an
increase in the ABCB1 gene was also observed. Modifica-
tion in ABCB1 expression levels did not show any corre-
lation with PDX sensitivity though, as the inhibition of
the ABC proteins did not restore sensitivity to the drug.
Interestingly, even though MTX-resistant cells exhibited
an extensive increase in DHFR levels as expected since
DHFR over-regulation constitutes the main mechanism
for the generation of MTX resistance [66], the increase
observed for PDX-resistant cells was not statistically sig-
nificant, suggesting different molecular mechanisms of
action for these two antifolates. This hypothesis is actu-
ally in agreement with Zain and O’Connor’s [67] findings,
which indicated that modifications in gene expression
levels in MTX-treated cells were mainly occurring in
genes involved in folate metabolism, whereas the gene
expression of PDX-treated cells was essentially disrupted
for genes implied in pathways regulating immunomodu-
lation and transcription factors.

Based on the encouraging results obtained during
the first preclinical studies, the clinical evaluation of PDX
began with NSCLC patients. The phase I studies revealed
mucositis as the drug’s dose-limiting toxicity. Its anti-
tumor activity was confirmed as two of 33 patients with
stage IV NSCLC responded favorably to the treatment
and the conditions of five of 33 patients were stabilized
[68]. The phase II study of 38 NSCLC patients provided
satisfactory results, with 10% of objective responses and
31% of disease stabilization. Stomatitis and mucositis
constituted the main toxicities associated with the treat-
ment [69]. When examining the efficacy of the drug in
combination with probenecid on patients presenting
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solid tumors, Fury et al. [70] mentioned the possibility
of supplementation with vitamin B,, and folate in order
to prevent mucositis, hence allowing a dose escalation
during treatments. Azzoli et al. [71] evaluated PDX in com-
bination with taxanes, incorporating to their protocol
the co-administration of vitamin B, and folic acid. This
supplementation allowed the patients to tolerate safely
higher doses of the drug [71], confirming the predictions
of Fury et al. [70]. From then on, investigators always
incorporated vitamin B, and folic acid supplementation
into their protocols.

PDX was further evaluated on other carcinomas.
Although the drug did not show any activity on patients
with malignant pleural mesothelioma [72], it demon-
strated successful activity on lymphoma, with achieve-
ment of complete regression in all of the patients with
T-cell lymphoma in a study carried out on 20 patients,
16 of whom presenting B-cell and four presenting T-cell
lymphomas [73]. The authors tested two different doses
for the treatment of T-cell lymphoma: the first treatment
at the recommended dose (135 mg/m? every other week)
resulted in the development of severe mucositis, whereas
the administration of 30 mg/m? of PDX weekly for 6 weeks
was well tolerated by three other patients. These find-
ings led to a new phase I clinical study that redefined
the maximum-tolerated dose of PDX, which decreased
the ratio of patients developing stomatitis from almost
100%-17% [74]. Based on these results, a multicenter
phase II study, carried out with patients with relapsed or
refractory peripheral T-cell lymphoma, demonstrated the
drug’s outstanding efficacy, as on 109 evaluable patients
29% experienced objective responses and 38% achieved
complete remission. These data led to the approval of PDX
by the U.S. FDA in 2009 for the treatment of peripheral
T-cell lymphoma on patients who have relapsed or have
not responded to other chemotherapy drugs [75-77]. PDX
is the first drug approved for this disease [78].

To conclude, this review focused on antifolates with
a terminal alkyne function. Antifolates constitute the first
class of anticancer antimetabolites, and the development
of folate antagonists bearing a propargyl group led to the
generation of the first clinically evaluated folate-based
TYMS inhibitor, CB3717. Yet, the clinical studies of this
highly potent molecule revealed a serious nephrotoxicity
of the structure due to its poor solubility. CB3717 struc-
ture optimization studies contributed to the development
of two marketed anticancer agents: raltitrexed, a TYMS
inhibitor used for the treatment of colorectal cancer, and
pralatrexate, a propargylic DHFR inhibitor, which is the
first drug approved for relapsed or refractory peripheral
T-cell lymphoma. These results highlight the potential of
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the propargyl group for the development of novel potent
anticancer molecules.
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