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Abstract: Thymidylate synthase (TS) is a valid target for
treatment of non-small cell lung cancer (NSCLC) and
mesothelioma (MPM). The TS inhibitor pemetrexed (PMX)
is now commonly used in combination with cisplatin
(CDDP) or carboplatin, in the first-line setting for both of
these lethal diseases. A combination of another TS inhibi-
tor, Tomudex with CDDP, demonstrated similar activity
in MPM patients. However, the efficacy of TS inhibitors is
limited by uptake, metabolism and target affinity. While
uptake of most antifolates is mediated by the reduced
folate carrier, PMX is also a good substrate for the pro-
ton-coupled folate transporter (PCFT), which displays
optimal activity at the acidic pH of the tumor microenvi-
ronment. NSCLC and MPM have a variable expression of
PCFT, which might be caused by the differential methyla-
tion status of the PCFT promoter, resulting in decreased
anticancer activity. PMX and TDX activity also depends
on polyglutamylation, catalyzed by folylpolyglutamate
synthetase (FPGS), which results in intracellular reten-
tion and thus enhanced cytotoxicity. We demonstrated
that resistance to the classical antifolate methotrexate in
human leukemia cells with a marked loss of FPGS activity
was associated with impaired splicing of FPGS pre-mRNA.
Moreover, we recently showed that the sensitivity of MPM
patients to PMX-carboplatin is related to tumor TS expres-
sion. Patients with low TS mRNA levels had a significantly
longer overall survival (20 vs. 7 months) compared with
patients with high expression. Intriguingly, recent trials
demonstrated that histology plays an important role in
the sensitivity of NSCLC patients, and PMX-CDDP is now
approved only for adenocarcinoma patients. These results
might be partly explained by the higher TS expression
detected in lung tumors of squamous histology. In sum-
mary, the clinical success of TS inhibitors may depend on
biomarker-driven patient selection, and further studies
should evaluate the genetic/epigenetic factors involved in
the modulation of these biomarkers in the preclinical and
clinical setting.
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Introduction

Thymidylate synthase (TS) inhibitors such as pemetrexed
changed the current practice of treatment of advanced
non-squamous non-small cell lung cancer (NSCLC) as
well as mesothelioma. In both diseases, its combination
with cisplatin has become first-line treatment [1-3]. In
this review, we highlight molecular determinants of TS
inhibitors in NSCLC, as well as new pharmacodynamics
and pharmacogenetic biomarkers. The evaluation of these
markers could help in the selection of the optimal clini-
cal dose, as well as markers of resistance, which might
be used to tailor TS inhibitor-based chemotherapy. This
review is an updated, shortened version of a review pub-
lished previously [4].

Lung cancer represents the leading cause of cancer
mortality worldwide with a 5-year survival rate at 10%-—
15% and <7% of patients alive 10 years after diagnosis.
Improvement of treatment remains a major challenge [5].
Surgery is curative only in early stage (I-1I) NSCLC, while
radiotherapy is an option in some patients. Platinum-
doublet treatment is considered the front-line standard
therapy in advanced NSCLC [6], improving both dis-
ease-free survival and 5-year overall survival (0S) [7] of
locally advanced or stage IIIA disease, as well as stages
[IB and IV [8]. Platinum-based doublet therapy is the
standard of care against these tumors. In patients with
good performance status, different combinations with
cisplatin, gemcitabine, taxanes, irinotecan, vinorelbine,



58 —— Peters et al.: Thymidylate synthase inhibitors for thoracic tumors

ifosfamide, mitomycin C, vindesine or vinblastine
reached better results than single agent treatment both
in terms of response and survival [9]. Three-drug combi-
nations were better than two-drug combinations only in
terms of response [10], while single-agent chemotherapy
is only applied in patients with poor performance status.
Because of the lower incidence of side effects, carboplatin
has often replaced cisplatin, although several meta-anal-
yses showed higher response rates for cisplatin compared
with carboplatin combinations [11]. Third-generation
drugs, such as gemcitabine, taxanes, irinotecan, peme-
trexed and vinorelbine, in combination with platinum
compounds, now constitute the core of chemotherapy in
advanced NSCLC [12]. Non-platinum based combinations
of some of these drugs is now considered as an alternative
first-line treatment when platinum therapy is contraindi-
cated [13].

In patients with non-squamous NSCLC, the com-
bination of pemetrexed with cisplatin [1] was recently
approved as first-line therapy. Only for a small group
of NSCLC patients with activating mutations in the epi-
dermal growth factor receptor (EGFR), tyrosine kinase
inhibitors such as erlotinib and gefitinib are approved
as first-line treatment [14]. However, larger studies are
needed to examine the efficacy and safety of different
potential third-line regimens in an effort to prolong sur-
vival while maintaining quality of life of patients with
advanced NSCLC.

Role of thymidylate synthase as
therapeutic target

TS is a folate-dependent enzyme that catalyzes the meth-
ylation of deoxyuridine-5’-monophosphate (AUMP) using
5,10-methylene-tetrahydrofolate (5,10-CH,-THF) as the
methyl donor to form deoxythymidine-5’-monophosphate
(dTMP) [15]. This reaction is the only de novo source for
dTMP, which is critical for DNA replication and repair,
which in turn is essential for cell proliferation (Figure 1).
Therefore, inhibition of DNA synthesis through TS is an
established successful antimetabolite approach control-
ling tumor cell growth. Hence, TS inhibitors can be con-
sidered one of the first “targeted” drugs because they were
specifically designed in order to interfere with a very well-
defined molecular target, DNA with essential functions in
cell growth and proliferation. Like all “targeted” drugs, the
target has essential functions in normal cells. Regarding
TS inhibitors, proliferating tissues, such as bone marrow
and gastrointestinal mucosa, are also dependent on DNA
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synthesis and thus sensitive to TS inhibition, leading to
myelosuppression, mucositis and diarrhea.

As TS has two substrates, dUMP and 5,10-CH,-THF,
inhibition can be mediated by a dUMP or a folate analog
(Figures 1 and 2). 5-Fluorouracil (5-FU) was introduced
into the clinical setting more than 50 years ago [16]. 5-FU
is a precursor of fluoro-dUMP (FAUMP), which inhibits TS
by the formation of a covalent ternary complex with TS
and CH2-THF, resulting in a depletion of dTMP and inhibi-
tion of DNA synthesis leading to thymine-less death. TS
inhibition also results in an increase in 2’-deoxyuridine-
5’-triphosphate (dUTP), leading to misincorporation of
dUTP into DNA: its excision, catalyzed by uracil-DNA
glycosylase, results in DNA damage. Moreover, a specific
interaction exists between oncogenes and TS, by binding
of TS protein to p53 and c-myc RNA [17, 18], while wild-
type p53 can also inhibit TS promoter activity [19].

At transcriptional level, TS expression is activated by
the transcription factor E2F1, which plays a key role in cell
cycle progression [20]. In addition, TS protein functions
as an RNA-binding protein repressing the translation of
its own mRNA [21, 22]. When TS inhibitors bind to TS, the
complex cannot interact with its cognate mRNA, which
results in increased TS protein expression [23]. Hence, ele-
vated expression of TS after exposure to TS inhibitors was,
in part, attributable to increased protein stability [24, 25].

Thymidylate synthase inhibitors
in NSCLC

Pemetrexed

As pemetrexed not only inhibits TS but also dihydrofolate
reductase (DHFR) and the purine de novo pathway, it is
often referred to as a multitargeted antifolate. Pemetrexed
was first registered for the treatment of malignant pleural
mesothelioma, based on a randomized, Phase III, single-
blind, multicenter trial which compared cisplatin alone
versus cisplatin plus pemetrexed. In that trial, the addition
of pemetrexed to cisplatin significantly improved both the
survival, by 3 months, and the overall response rate [26].
Because pemetrexed was also active as a single agent in
Phase Il and Phase III trials with NSCLC patients previously
treated with chemotherapy, it was also approved for sec-
ond-line treatment of NSCLC [27]. In that trial, pemetrexed
(500 mg/m? every 3 weeks, with vitamin B12 and folic acid
supplementation) was equally as effective as docetaxel
(75 mg/m? every 3 weeks), with a median survival of 8.3
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Figure1 Uptake and metabolism of antifolates.

RTX and MTX are both taken up by the reduced folate carrier (RFC), while PMX is also a substrate for the proton-coupled folate transporter
(PCFT). Both RTX and PMX are activated to their polyglutamate forms by folylpolyglutamate synthetase (FPGS); both the monoglutamate and
polyglutamate (Glu ) forms inhibit dihydrofolate reductase (DHFR) and thymidylate synthase (TS), which converts deoxyuridine monophos-
phate (dUMP) to deoxythymidine monophosphate (dTMP) for which 5,10-methylene-tetrahydrofolate (5,10-CH,-THF) is the methyl donor.
Especially PMX-Glu,_is a more effective inhibitor of TS. 5-Fluoro-deoxyuridine monophosphate (FAUMP) forms a ternary stable covalent
complex with TS and 5,10-CH,-THF. PMX and PMX-Glu, also inhibit the purine de novo enzymes aminoimidazole carboxamide ribonucleotide
transformylase (AICARFT) and glycinamide ribonucleotide formyl transferase (GARFT), for which 10-formyl-tetrahydrofolate (10-CHO-THF)
donates the formyl group. Phosphoribosyl pyrophosphate (PRPP) is the initial phosphoribose ring donor for phosphoribosyl pyrophosphate
amidotransferase (PPAT) in the first step of the purine de novo pathway, leading to the synthesis of IMP, precursor for the purine (deoxy)
nucleotides (d)AMP and (d)GMP, substrates for RNA and DNA synthesis. UFT and S-1 are oral drug formulations which contain ftorafur (FT),
which is a prodrug for 5-fluorouracil (5-FU), which inhibits TS via its metabolite FAUMP. 5-FU can also be formed via several enzymatic steps
from another 5-FU prodrug capecitabine (Xeloda, Xel). Abbreviations: DHF, dihydrofolate; THF, tetrahydrofolate; Gln, glutamine.

vs. 79 months, respectively. However, side effects of peme- were equally as effective as gemcitabine plus cisplatin

trexed were significantly lower than with docetaxel.
In first-line therapy of advanced NSCLC patients, the
combinations of pemetrexed plus cisplatin or carboplatin

or carboplatin [2], while carboplatin plus pemetrexed or
gemcitabine were also equally effective. In this study with
436 patients, the overall median survival was 7.3 months
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Figure 2 Structural formulas.
5-Methyl-tetrahydrofolate (5-CH,-THF), the physiological precursor for 5,10-CH,-THF in a reaction catalyzed by methylene tetrahydrofolate
(MTHFR), methotrexate (MTX), pemetrexed (PMX, ALIMTA) and Raltitrexed (RTX, Tomudex).
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for the pemetrexed/carboplatin arm and 7.0 months for
the gemcitabine/carboplatin arm, but pemetrexed/carbo-
platin caused less toxicity [28]. In a randomized Phase III
trial enrolling 1725 chemotherapy-naive patients, cispla-
tin plus gemcitabine or cisplatin plus pemetrexed showed
similar efficacy with better tolerability and more conveni-
ent administration than cisplatin/gemcitabine [1], with
an OS of 10.3 months in both arms and a response rate of
30.6% in the pemetrexed/cisplatin arm and 28.2% in the
gemcitabine/cisplatin arm. For cisplatin/pemetrexed, the
rates of grade 3 or 4 neutropenia, anemia and thrombo-
cytopenia (p<0.001), febrile neutropenia (p=0.002) and
alopecia (p<0.001) were significantly lower [1].

In the same study, patients with non-squamous
NSCLC performed statistically superior in the cisplatin/
pemetrexed treatment arm, whereas patients with squa-
mous cell histology performed better with cisplatin/gem-
citabine [1]. Other Phase Il studies and retrospective review
of two large, randomized, Phase III trials supported the
predictive role of histology for pemetrexed [2], which was
confirmed in a multicenter, double-blind Phase III trial
evaluating pemetrexed versus placebo in stage IIIB/IV
NSCLC patients who did not progress after four cycles of
first-line platinum-based chemotherapy [29]. Pemetrexed
showed a statistically significant superior activity in non-
squamous (n=482; 4.5 months vs. 2.6 months) than in
squamous histology (n=182; 2.8 months vs. 2.6 months).
Therefore, pemetrexed was approved for use in first-line
treatment of advanced non-squamous NSCLC.

Thymidylate synthase expression as determinant of
pemetrexed activity

One potential explanation of the differential activity with
pemetrexed treatment was related to the baseline expres-
sion of TS gene and protein, which were significantly
higher in squamous cell carcinoma compared with adeno-
carcinoma patients (p<0.0001) [29].

Pemetrexed is a multitargeted agent that enters the
cell via the reduced folate carrier (RFC) and is converted
by folylpolyglutamate synthetase (FPGS) to a series of
active polyglutamate derivatives able to inhibit several
folate-dependent enzymes such as TS, DHFR, glycina-
mide ribonucleotide formyl transferase (GARFT) and, to
a lesser extent, aminoimidazole carboxamide ribonucleo-
tide transformylase (AICARFT) [30] (Figure 1). This mecha-
nism of action leads to depletion of fully reduced folates
and results in disruption of both purine and pyrimidine
nucleotides. These polyglutamates are retained intracellu-
larly longer than the parent compound, resulting in more
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prolonged cytotoxic effects. Whereas GARFT is inhibited
just weakly by pemetrexed, TS represents the main target
of this drug and its inhibition leads to the interruption
of tetrahydrofolate oxidation with consequential lack of
DHFR activity [31]. However, GARFT inhibition may become
important in the case of TS overexpression or mutation,
and the multitargeted effects of pemetrexed explain its
broader spectrum of cytotoxic activity when compared in
preclinical studies with other antimetabolites such as 5-FU
and antifolates such as methotrexate or raltitrexed [32, 33].

Preclinical data showed a significant correlation
between overexpression of TS mRNA or protein with
reduced sensitivity to pemetrexed in NSCLC cell lines
[34, 35]. The inhibition of DNA synthesis and induction of
apoptotic cell death by pemetrexed were also significantly
reduced by overexpression of TS [36]. Messenger RNA
expression of genes involved in the mechanism of action
of pemetrexed was correlated with in vitro sensitivity of 61
freshly explanted human tumor specimens, and low gene
expression levels of TS, as well as of GARFT and DHFR, sig-
nificantly correlated with chemosensitivity to pemetrexed
[37]. Moreover, xenografts with TS overexpression were
more resistant to pemetrexed [36]. Hence, patients with
“low” baseline TS were more likely to respond to peme-
trexed than patients with “high” baseline TS [38]. Two
recent studies on mesothelioma samples reported that
TS protein and mRNA expression significantly correlated
with survival and response rates in patients treated with
pemetrexed-based regimens [39, 40]. Similarly, the immu-
nohistochemical analysis of TS expression in 24 NSCLC
specimens from pemetrexed non-responding patients was
significantly higher than that in those of responders [36].
In another study, the analysis of 49 tumor specimens from
NSCLC patients treated with pemetrexed showed that low
TS expression was correlated with longer median PFS (4.8
vs. 3.4 months; p=0.01), whereas in patients with adeno-
carcinoma, the low TS patient group also had a longer
median survival as compared with patients with high TS
expression [41].

However, there may be a difference in the potential
prognostic and predictive role of TS. Although several
studies suggested that TS levels may be associated with
stage of disease, lymph node metastasis, tumor differ-
entiation, prognosis and tumor cell proliferation, many
results were controversial [42-44]. A high cytoplasm
tumoral TS analyzed by automated in situ protein quan-
tification (AQUA) was associated with improved survival
for NSCLC patients [44], but in colon cancer improved sur-
vival was found for patients with low tumoral TS expres-
sion as detected by immunohistochemistry [45]. However,
standard immunohistochemistry with visual scoring in
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an attempt to quantify protein expression has significant
technical limitations, including the non-quantitative
chemistry of routine immunoperoxidase stains and the
subjective light intensity perception of the human eye
[45]. Additional studies, with consistent methodology,
and broader validation cohorts are needed to define the
precise value of TS.

Although overexpression of TS is the most studied
mechanism involved in resistance to pemetrexed, mul-
tiple other mechanisms of antifolate resistance might
reduce pemetrexed activity in vitro and in vivo, such as
(i) impaired uptake due to loss of transporter function of
either the RFC or the proton-coupled folate transporter
(PCFT); (ii) overexpression of ATP-driven multidrug resist-
ance (MDR) transporters which increase drug efflux; (iii)
defective antifolate polyglutamylation due to decreased
FPGS expression, inactivating mutations or altered splic-
ing; (iv) increased expression of y-glutamyl hydrolase
(GGH); (v) overexpression of DHFR and mutations that
decrease its affinity; and (vi) expansion of intracellular
5,6,7,8-tetrahydrofolate (THF) cofactor pools [46].

Previous preclinical findings showed that multidrug
resistance protein 1 (MRP1)-MRP5 and BCRP can transport
folates and antifolates including methotrexate, raltitrexed
and pemetrexed. Polymerase chain reaction (PCR) analy-
sis in NSCLC samples showed an increased MRP4 (signifi-
cant) or MRP5 (trend) in resistant tumors [37], as well as a
higher gene and protein expression of ABCC11/MRPS [47].
However, in 13 lung adenocarcinoma cells there was no
correlation between ABCC11 gene expression and peme-
trexed sensitivity, whereas in most antifolate-resistant
selected cell lines no overexpression of any of the MRPs or
BCRP has been reported [48]. By contrast, 14 human leu-
kemia cell lines were made resistant against various poly-
glutamatable inhibitors of DHFR, TS and GARFT, using a
repeated high-dose intermittent schedule mimicking the
chemotherapeutic treatment. The vast majority of these
antifolate-resistant cell lines had a 90%-99% loss of FPGS
activity, but without any substantial decrease in FPGS
mRNA levels. Cross-resistance was observed in polygluta-
mylation-dependent antifolates including pemetrexed up
to five orders of magnitude, while retaining sensitivity to
polyglutamylation-independent antifolates [49]. Although
inactivating FPGS mutations exist, they are not a frequent
cause for the loss of FPGS function [50]. However, multi-
ple antifolate-resistant tumor cell lines showed a marked
suppression of FPGS activity in the absence of decreased
FPGS mRNA levels [51]. An alternative explanation for the
post-transcriptional loss of FPGS activity in the absence of
decreased FPGS mRNA levels is the alternative splicing of
FPGS, as demonstrated in leukemia cells [52].
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The impact of an increase in the intracellular THF
cofactor pool size on the cytotoxic activity of multiple
antifolates was shown by a marked increase of the 50%
inhibitory concentrations for the polyglutamatable anti-
folates pemetrexed and raltitrexed. The high intracel-
lular folate pool resulted in a significant suppression of
the formation of antifolate polyglutamates, whereas folate
depletion resulted in enhanced pemetrexed inhibition of
purine synthesis [53, 54]. Of note, impaired RFC function
is an important mechanism of resistance to methotrexate
and other antifolates in vitro [55], and may be associated
with clinical resistance to this agent in the treatment of
acute lymphoblastic leukemia [56]. The transport for
pemetrexed is very different, because an RFC-independ-
ent, pH-dependent pathway serves as an alternative trans-
port route for this drug and is mediated by the PCFT [57].
A high PCFT increased the growth inhibitory activity of
pemetrexed, illustrating its unique role in the transport
and pharmacological activity of pemetrexed. Because of
the ubiquitous expression of PCFT in human tumors, and
the ability of PCFT to sustain pemetrexed activity even in
the absence of RFC, tumor cells are unlikely to become
resistant to pemetrexed as a result of impaired transport
because of the redundancy of these genetically distinct
routes [58].

However, the promoter of the PCFT is highly methyl-
ated [59], leading to reduced activity in cancer cell systems.
Promoter silencing through methylation and gene copy
loss accounted for the loss of PCFT activity in antifolate-
resistant HeLa R1-11 cells [60]. A plausible modality to
overcome antifolate resistance in cells that are devoid of
PCFT activity due to promoter methylation might be the
combination with relatively well-tolerated demethylating
agents, such as 5-Aza-dC [59]. Therefore, data about the
possible association of PCFT promoter methylation and
clinical outcome in NSCLC patients treated with peme-
trexed can be very useful to offer alternative therapies to
resistant patients.

In conclusion, resistance to pemetrexed in NSCLC
is likely to be related to TS and a transporter, but other
mechanisms need further clarification. However, the clini-
cal safety profile of pemetrexed makes this drug an attrac-
tive agent for polychemotherapy regimens, because it can
overcome tumor resistance and improve clinical outcome.

UFT and S-1

As primary lung cancers are characterized by high expres-
sion and activity of dihydropyrimidine dehydrogenase
(DPD), which is the key enzyme of 5-FU degradation,
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studies on the activity of oral 5-FU derivatives preventing
5-FU degradation appeared of interest for NSCLC treat-
ment. The first oral 5-FU derivatives were tegafur [61],
and 5’-deoxy-5-fluorouridine (5-DFUR), which yielded a
response rate lower than 15% [62]. Other rationally engi-
neered and metabolically activated DPD inhibiting fluoro-
pyrimidines (DIFs), such as UFT [63] and S-1 [64], proved
to be effective in several randomized controlled studies in
NSCLC patients.

UFT combines uracil, a competitive inhibitor of DPD,
with the 5-FU prodrug tegafur in a 4:1 molar ratio (Figure 1).
In Japan, UFT is approved for several tumors, includ-
ing NSCLC [65], while in the UK, the combination of UFT
and folinic acid is approved as first-line treatment for
metastatic colorectal cancer and was active in second- or
third-line therapy of Caucasian NSCLC patients [66], and
because of its favorable toxicity profile warranted further
investigation. Another more promising oral 5-FU prodrug
formulation is S-1, in which a more potent DPD inhibi-
tor is combined. S-1 combines the 5-FU prodrug tegafur
(ftorafur, FT) with two enzyme inhibitors, CDHP (5-chloro-
2,4-dihydroxypyridine) and OXO (potassium oxonate), in
a molar ratio of 1(FT):0.4(CDHP):1(0X0O). CDHP is a revers-
ible very potent competitive inhibitor of DPD, prevent-
ing the degradation of FT-derived 5-FU. Therefore, 5-FU
remains in plasma and tumor tissue longer and at higher
levels than when low dose 5-FU is continuously infused
intravenously. OXO is a reversible competitive inhibitor
of orotate phosphoribosyltransferase, which is expressed
at high levels in the gastrointestinal tract. After oral S-1
administration, OXO will prevent activation of 5-FU in gas-
trointestinal endothelial cells, resulting in a reduction in
diarrhea and mucositis caused by 5-FU. A recent Phase III
trial showed that treatment with carboplatin plus S-1 was
non-inferior than carboplatin plus paclitaxel with regard
to OS in 564 chemotherapy-naive Japanese patients [67].
Median OS was 15.2 months in patients in the carboplatin
and S-1 arm and 13.3 months in the carboplatin/paclitaxel
arm, respectively, suggesting that S-1 might be a valid
treatment option in patients with advanced NSCLC.

Preclinical studies showed a synergistic antitumor
effect of S-1 with the EGFR tyrosine kinase inhibitor (TKI)
gefitinib in NSCLC cell lines. Importantly, gefitinib reduced
the expression of the transcription factor E2F1, down-
regulating TS at both mRNA and protein levels, favoring
the activity of S-1 [68]. Furthermore, the combination of
S-1 and gefitinib synergistically inhibited the growth of
NSCLC gefitinib-resistant NSCLC cells and xenografts with
MET amplification, suggesting that the addition of S-1 to
EGFR TKIs is a promising strategy to overcome EGFR TKI
resistance in NSCLC with MET amplification [69].
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Although a recent study showed that tumor expres-
sion levels of TS and DPD were predictive of response to
S-1-carboplatin chemotherapy [70], a pooled analysis of
S-1 trials in NSCLC demonstrated that the activity of S-1
was independent of tumor histology [71].

Other thymidylate synthase inhibitors

Other TS inhibitors in NSCLC include the quinazoline
folate analog raltitrexed (Figures 1 and 2), which is a direct
and specific TS inhibitor. In a Phase I trial, the dose-esca-
lation study of the combination of raltitrexed and cispla-
tin was studied in 19 patients with previously untreated
metastatic NSCLC. In this trial, 3 patients achieved a
partial response, 13 had stable disease and 3 progressed
[72]. However, withdrawal of the sponsor’s support has
left raltitrexed (i.e., Tomudex) without the level of con-
tinuing investigation afforded to pemetrexed.

Raltitrexed was also evaluated in the treatment of
mesothelioma in combination with cisplatin versus cis-
platin alone, reaching an overall survival of 11.4 and 8.8
months, respectively [73]. Evaluation of raltitrexed as an
alternative for pemetrexed in mesothelioma is ongoing.

Capecitabine is another oral 5-FU prodrug, for which
thymidine phosphorylase (TP) mediates the final step of
its activation pathway. A high TP expression could provide
a rationale for the use of this drug in NSCLC. High TP
expression in lung cancer cells and stroma was associated
with response to capecitabine/docetaxel chemotherapy
[74], and might be a useful predictor of NSCLC response
to capecitabine-based chemotherapy. Moreover, the high
response rate observed in a Phase II trial of docetaxel plus
capecitabine in pretreated NSCLC patients [75] encourage
further evaluation of capecitabine in NSCLC. However, the
prognostic significance of TP expression in NSCLC as well
as the possible role of capecitabine in NSCLC treatment
need further evaluation.

Conclusions and future
perspectives

TS is a validated target in NSCLC and mesothelioma,
resulting in the widespread use of the TS inhibitor peme-
trexed as first/second-line and maintenance therapy for
both non-squamous NSCLC and mesothelioma. However,
benefits from conventional chemotherapy in NSCLC
have plateaued, while much more cost-effective results
should be obtained with individualized patient treatment.
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Accordingly, the clinical success for TS inhibitors may ulti-
mately be dependent upon our ability to correctly admin-
ister these agents following appropriate biomarker-driven
patient selection, including TS genotype and expression,
and using the right combination therapy.

The levels of TS expression have been correlated with
resistance to therapy with pemetrexed, and a prospective
validation on the role of TS for pemetrexed-based chemo-
therapy is ongoing in a Phase III randomized study [4].
Further studies should also evaluate the genetic and epige-
netic factors involved in the regulation of TS. The promoter
of the human TS gene contains a 28-bp tandem repeat
near the initiation codon in its 5’-untranslated region. This
tandem repeat region functions as an enhancer element
for the TS gene promoter, the TS enhancer region (TSER).
TSER has been shown to be polymorphic: (i) a variable
number of the tandem repeat of a 28-bp sequence (2R/3R)
and (ii) a G>C single nucleotide substitution within the
repeats, altering the E-box sequence binding an upstream
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stimulatory factor (USF-1) [76]. In vitro expression studies
have suggested an association between the number of
repeats and TS expression: the presence of a triple repeat
(3R/3R) results in 2.6-fold greater TS expression than a
double repeat [77]. However, the relationship between
these polymorphisms, regulation of TS expression and
patient response to fluoropyrimidine treatment has been
inconsistent, and no correlation between TS polymor-
phisms and survival was observed in patients enrolled
in a randomized Phase II study of pemetrexed compared
with pemetrexed plus carboplatin in pretreated patients
with advanced NSCLC [78].

Negative results were also reported in a study on TS
gene copy number, which was increased more frequently
in squamous cell carcinomas, but was not associated
with prognosis. These results are consistent with studies
in colorectal cancer which showed that tandem repeats
were associated with TS activity in normal colon tissue,
but not in tumors [4]. Therefore, it seems unlikely that

| 1S
K 5,10-CH,-THF

Cisplatin, carboplatin, paclitaxel,
docetaxel, gemcitabine

5 THF

Figure 3 Interaction between PMX and signaling and DNA targeted drugs.

PMX and other thymidylate synthase inhibitors (TSIs) cause DNA damage through the depletion of dTMP, which is a basis for the interaction
with DNA targeted drugs, such as cisplatin, carboplatin, paclitaxel docetaxel and gemcitabine. Signaling pathways, such as the Ras-RAF-
MEK-ERK pathway, the PI3-K, Akt, mTor pathway, and the Src family kinases (SFKs) pathway are often activated during cytotoxic stress in
order to support cellular growth, proliferation, angiogenesis and inhibition of apoptosis. These signaling pathways can be inhibited by rela-
tively specific drugs such as erlotinib, gefitinib and BIB2992, which inhibit epidermal growth factor receptor (EGFR), leading to inhibition of
other signaling pathways. Antagonists of natural ligands can inhibit the EGFR and vascular endothelial growth factor receptor (VEGFR). Mul-
titargeted drugs such as vandetanib inhibit Mek and Akt; dasatinib inhibits the SFK pathway, while enzastaurin inhibits the serine-theonine
kinase PKXp. Hence, inhibition of one (more or all) of these survival signaling pathways forms a basis for synergistic interaction with PMX.
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the TS gene copy number will predict clinical benefit
from treatment with pemetrexed, although this can only
be validated in prospective clinical studies. Another
promising genetic marker consists of a polymorphism
in methylene tetrahydrofolate reductase (MTHFR), for
which a number of polymorphisms have been described.
In a combined analysis of 206 patients treated with
either pemetrexed or pemetrexed plus carboplatin, an
increased progression-free and overall survival were
observed for patients harboring the TT genotype [79].
This genotype results in an altered MTHFR activity
affecting the reduced folate pools, which are important
for sensitivity to pemetrexed.

A recent study evaluated two microRNA targeting TSs,
miR-192 and miR-215. However, downregulation of TS by
miR-192/215 did not increase 5-FU sensitivity. By contrast,
overexpression of both microRNAs resulted in a reduction
of cell proliferation and therefore diminished the effec-
tiveness of S-phase specific drugs such as 5-FU, suggesting
that miR-192 and miR-215 can still play a role in resistance
to TS inhibitors [80]. Therefore, further studies should
evaluate whether miRNA expressed in NSCLC cells might
regulate resistance mechanisms towards pemetrexed, as
reported for other chemotherapeutic agents [81]. Addi-
tional information will also be gained with the integration
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