Dipeptidyl peptidase IV: a multifunctional enzyme with implications in several pathologies including cancer
-
Yarini Arrebola Sánchez
Abstract
Ectopeptidases are particularly interesting due to their potential to regulate/dysregulate the peptide mediated signaling cellular pathways because the active site located to the extracellular space. Dipeptidyl peptidase IV (DPP-IV, EC 3.4.14.5) is currently one of the ectopeptidases that has a great and complex influence on important physiological and pathological processes. Due to its influence on the immune system, type 2 diabetes mellitus, pulmonary pathologies, cardiovascular system, viral infections and cancer, DPP-IV is very attractive as a possible therapeutic target. However, its versatility makes such expectations very difficult. The aim of this work is to summarize relevant structural and functional aspects of DPP-IV and the role of this protein in several pathologies with special emphasis on cancer. DPP-IV role in cancer seems to depend on specific location, histologic type of tumour, tumour microenvironment, and presence/absence of molecules able to interact with DPP-IV. Because of DPP-IV controversial effects, generalizations are difficult and most of the time the role of DPP-IV must be analyzed case by case. However, new evidences in cell lines, animal models and clinical studies suggest that DPP-IV inhibitors open a promissory window through new therapeutic strategies against some cancers.
Funding source: Oficina de Gestión de Fondos y Proyectos Internacionales del Ministerio de Ciencia, TecnologÃ-a y Medio Ambiente de la República de Cuba
Award Identifier / Grant number: PN223LH010-010 2021-2023
Funding source: Ministerio de Ciencia, Tecnología y Medio Ambiente
Award Identifier / Grant number: Unassigned
Acknowledgements
The authors would like to thank the editors for their guidance and review of this article before its publication.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: Results of the group included in the review were partially supported by a University Laboratory in Nanotechnology and Cancer (NaNoCancer) project: “New inhibitors of aminopeptidases with potential applications in cancer” (2016-2022), and a grant from the “Oficina de Gestión de Fondos y Proyectos Internacionales del Ministerio de Ciencia, Tecnología y Medio Ambiente de la República de Cuba” (code PN223LH010-010 2021-2023).
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Bray, F, Soerjomataram, I. Chapter 01: global burden of cancer: current and future. In: Minghui, R, editor WHO report on cancer: setting priorities, investing wisely and providing care for all. Geneva, Switzerland: World Health Organization; 2020. pp. 23–37.Search in Google Scholar
2. Hanahan, D. Hallmarks of cancer: new dimensions. Cancer Discov 2022;12:31–46.10.1158/2159-8290.CD-21-1059Search in Google Scholar PubMed
3. Carl-McGrath, S, Lendeckel, U, Ebert, M, Rocken, C. Ectopeptidases in tumour biology: a review. Histol Histopathol 2006;21:1339–53.Search in Google Scholar
4. Barnieh, FM, Loadman, PM, Falconer, RA. Is tumour-expressed aminopeptidase N (APN/CD13) structurally and functionally unique? Biochim Biophys Acta Rev Cancer 2021, 1876:188641.10.1016/j.bbcan.2021.188641Search in Google Scholar PubMed
5. Drinkwater, N, Lee, J, Yang, W, Malcolm, TR, McGowan, S. M1 aminopeptidases as drug targets: broad applications or therapeutic niche? FEBS J 2017;284:1473–88.10.1111/febs.14009Search in Google Scholar PubMed PubMed Central
6. Amin, M, Adhikari, N, Jha, T. Design of aminopeptidase N (APN) inhibitors as anticancer agents. J Med Chem 2018;61:6468–90. https://doi.org/10.1021/acs.jmedchem.7b00782.Search in Google Scholar PubMed
7. Li, FJ, Hu, JH, Ren, X, Zhou, CM, Liu, Q, Zhang, YQ. Toad venom: a comprehensive review of chemical constituents, anticancer activities, and mechanisms. Arch Pharmazie 2021;354:2100060.10.1002/ardp.202100060Search in Google Scholar PubMed
8. Turk, B. Targeting proteases: successes, failures and future prospects. Nat Rev Drug Discov 2006;5:785–99.10.1038/nrd2092Search in Google Scholar PubMed
9. Leung, D, Abbenante, G, Fairlie, DP. Protease inhibitors: current status and future prospects. J Med Chem 2000;43:305–41.10.1021/jm990412mSearch in Google Scholar PubMed
10. Abbenante, G, Fairlie, DP. Protease inhibitors in the clinic. Med Chem 2005;1:71–104.10.2174/1573406053402569Search in Google Scholar PubMed
11. Pascual, I, Valiente, PA, García, G, Valdés, ME, Arrebola, Y, Díaz, L, et al.. Discovery of novel non-competitive inhibitors of mammalian neutral M1 aminopeptidase (APN). Biochimie 2017;142:216–25.10.1016/j.biochi.2017.09.015Search in Google Scholar PubMed PubMed Central
12. Rawlings, ND, Barrett, JA, Thomas, PD, Huang, X. The MEROPS database of proteolytic enzymes, their substrates and inhibitors in 2017 and a comparison with peptidases in the PANTHER database. Nucleic Acids Res 2018;46:624–32.10.1093/nar/gkx1134Search in Google Scholar PubMed PubMed Central
13. Kameoka, J, Tanaka, T, Nojima, Y, Schlossman, SF, Morimoto, C. Direct association of adenosine deaminase with a T cell activation antigen, CD26. Science 1993;261:466–9.10.1126/science.8101391Search in Google Scholar PubMed
14. Wagner, L, Klemann, C, Stephan, M, von Horsten, S. Unravelling the immunological roles of dipeptidyl peptidase 4 (DPP4) activity and/or structure homologue (DASH)proteins. Clin Exp Imm 2016;184:265–83.10.1111/cei.12757Search in Google Scholar PubMed PubMed Central
15. Klemann, C, Wagner, L, Stephan, M, von Horsten, S. Cut to the chase: a review of CD26/dipeptidyl peptidase-4′s (DPP4) entanglement in the immune system. Clin Exp Imm 2016;185:1–21.Search in Google Scholar
16. Shao, S, Xu, Q, Yu, X, Pan, R, Chen, Y. Dipeptidyl peptidase 4 inhibitors and their potential immune modulatory functions. Pharmacol Ther 2020;209:107503.10.1016/j.pharmthera.2020.107503Search in Google Scholar PubMed PubMed Central
17. Arrebola, YM, Gómez, H, Valiente, PA, Chávez, MA, Pascual, I. Biotecnol Apl 2014;31:102–10.Search in Google Scholar
18. Schuetz, CA, Ong, SH, Blüher, M. Clinical trial simulation methods for estimating the impact of DPP-4 inhibitors on cardiovascular disease. Clinicoecon Outcomes Res 2015;7:313–23.10.2147/CEOR.S75935Search in Google Scholar PubMed PubMed Central
19. Klemann, C, Wagner, L, Stephan, M, von Hörsten, S. Cut to the chase: a review of CD26/dipeptidyl peptidase-4’s (DPP4) entanglement in the immune system. Clin Exp Immunol 2016;185:1–21.Search in Google Scholar
20. Florentin, M, Kostapanos, MS, Papazafiropoulou, AK. Role of dipeptidyl peptidase 4 inhibitors in the new era of antidiabetic treatment. World J Diabetes 2022;13:85–96.10.4239/wjd.v13.i2.85Search in Google Scholar PubMed PubMed Central
21. Zhang, T, Tong, X, Zhang, S, Wang, D, Wang, L, Wang, Q, et al.. The roles of dipeptidyl peptidase 4 (DPP4) and DPP4 inhibitors in different lung diseases: new evidence. Front Pharmacol 2021;12:731453.10.3389/fphar.2021.731453Search in Google Scholar PubMed PubMed Central
22. Green, BD, Flatt, PR, Bailey, CJ. Dipeptidyl peptidase IV (DPP IV) inhibitors: a newly emerging drug class for the treatment of type 2 diabetes. Diab Vasc. Dis Res 2006;3:159–65.10.3132/dvdr.2006.024Search in Google Scholar PubMed
23. Wu, D, Li, L, Liu, C. Efficacy and safety of dipeptidyl peptidase-4 inhibitors and metformin as initial combination therapy and as monotherapy in patients with type 2 diabetes mellitus: a meta-analysis. Diabetes Obes Metab 2014;16:30–7.10.1111/dom.12174Search in Google Scholar PubMed
24. Röhrborn, D, Wronkowitz, N, Eckel, J. DPP4 in diabetes. Front Immunol 2015;6:1–20.10.3389/fimmu.2015.00386Search in Google Scholar PubMed PubMed Central
25. Shimizu, S, Hosooka, T, Matsuda, T, Asahara, S, Koyanagi-Kimura, M, Kanno, A, et al.. DPP4 inhibitor vildagliptin preserves-cell mass through amelioration of endoplasmic reticulum stress in C/EBPB transgenic mice. J Mol Endocrinol 2012;49:125–35.10.1530/JME-12-0039Search in Google Scholar PubMed
26. De, S, Banerjee, S, Kumar, SK, Paira, P. Critical role of dipeptidyl peptidase IV: a therapeutic target for diabetes and cancer. Mini Rev Med Chem 2018;19:88–97.10.2174/1389557518666180423112154Search in Google Scholar PubMed
27. Ahrén, B. DPP-4 inhibition and the path to clinical proof. Front Endocrinol 2019;10:1–18.10.3389/fendo.2019.00376Search in Google Scholar PubMed PubMed Central
28. Arwert, EN, Mentink, RA, Driskell, RR, Hoste, E, Goldie, SJ, Quist, S. Upregulation of CD26 expression in epithelial cells and stromalcells during wound-induced skin tumour formation. Oncogene 2012;31:992–1000.Search in Google Scholar
29. Yamamoto, S, Tokuhara, T, Nishikawa, M, Nishizawa, S, Nishioka, T, Nozawa, A, et al.. Spontaneous regression of hepatocellular carcinoma after improving diabetes mellitus: possibly responsible for immune system. Kanzo 2012;53:164–7.10.2957/kanzo.53.164Search in Google Scholar
30. Abd Elhameed, AG, Helal, MG, Said, E, Salem, HA. Saxagliptin defers thioacetamide-induced hepatocarcinogenesis in rats: a novel suppressive impact on Wnt/Hedgehog/Notch1 signaling. Environ Toxicol Pharmacol 2021;86:103668.10.1016/j.etap.2021.103668Search in Google Scholar PubMed
31. Qin, CJ, Zhao, LH, Zhou, X, Zhang, HL, Wen, W, Tang, L, et al.. Inhibition of dipeptidyl peptidase IV prevents high fat diet-induced liver cancer angiogenesis by downregulating chemokine ligand 2. Cancer Lett 2018;420:26–37.10.1016/j.canlet.2018.01.064Search in Google Scholar PubMed
32. Jang, JH, Baerts, L, Waumans, Y, De Meester, I, Yamada, Y, Limani, P, et al.. Suppression of lung metastases by the CD26/DPP4 inhibitor Vildagliptin in mice. Clin Exp Metastasis 2015;32:677–87.10.1007/s10585-015-9736-zSearch in Google Scholar PubMed
33. Nyborg, NC, Molck, AM, Madsen, LW, Knudsen, LB. The human GLP-1 analog liraglutide and the pancreas: evidence for the absence of structural pancreatic changes in three species. Diabetes 2012;61:1243–9.10.2337/db11-0936Search in Google Scholar PubMed PubMed Central
34. Ligumsky, H, Wolf, I, Israeli, S, Haimsohn, M, Ferber, S, Karasik, A. The peptide-hormone glucagon-like peptide-1 activates cAMP and inhibits growth of breast cancer cells. Breast Cancer Res Treat 2012;132:449–61.10.1007/s10549-011-1585-0Search in Google Scholar PubMed
35. Rivera, L, Arrebola, Y, Valdés-Tresanco, ME, Díaz-Guevara, L, Bergado, G, Sánchez, B, et al.. Bestatin and bacitracin inhibit porcine kidney cortex dipeptidyl peptidase IV activity and reduce human melanoma MeWo cell viability. Int J Biol Macromol 2020;164:2944–52.10.1016/j.ijbiomac.2020.08.157Search in Google Scholar PubMed
36. Rathmann, W, Kostev, K. Association of dipeptidyl peptidase 4 inhibitors with risk of metastases in patients with type 2 diabetes and breast, prostate or digestive system cancer. J Diabetes Complicat 2017;31:687–92.10.1016/j.jdiacomp.2017.01.012Search in Google Scholar PubMed
37. Noh, Y, Jeon, SM, Shin, S. Association between glucose-lowering treatment and cancer metastasis among patients with preexisting type 2 diabetes and incident malignancy. Int J Cancer 2019;144:1530–9.10.1002/ijc.31870Search in Google Scholar PubMed
38. Matteucci, E, Giampietro, O. Dipeptidyl peptidase-4 (CD26): knowing the function before inhibiting the enzyme. Curr Med Chem 2009;16:2943–51.10.2174/092986709788803114Search in Google Scholar PubMed
39. Klemann, C, Wagner, L, Stephan, M, von Hörsten, S. Cut to the chase: a review of CD26/dipeptidyl peptidase-4’s (DPP4) entanglement in the immune system. Clin Exp Immunol 2016;185:1–21.Search in Google Scholar
40. Hopsu-Havu, VK, Glenner, GG. A new dipeptide naphthylamidase hydrolyzing glycyl-prolyl-β-naphthylamide. Histochemie 1966;7:197–201.10.1007/BF00577838Search in Google Scholar PubMed
41. Yu, DM, Yao, TW, Chowdhury, S, Nadvi, NA, Osborne, B, Church, WB. The dipeptidyl peptidase IV family in cancer and cell biology. FEBS J 2010;277:1126–44.10.1111/j.1742-4658.2009.07526.xSearch in Google Scholar PubMed
42. Mulvihill, EE, Drucker, DJ. Pharmacology, physiology, and mechanisms of action of dipeptidyl peptidase-4 inhibitors. Endocr Rev 2014;35:992–1019.Search in Google Scholar
43. Klemann, C, Wagner, L, Stephan, M, von Horsten, S. Cut to the chase: a review of CD26/dipeptidyl peptidase-4’s (DPP4) entanglement in the immune system. Clin Exp Immunol 2016;185:1–21.10.1111/cei.12781Search in Google Scholar PubMed PubMed Central
44. Gutheil, WG, Subramanyam, M, Flentke, GR, Sanford, DG, Munoz, E, Huber, BT, et al.. Human immunodeficiency virus 1 Tat binds to dipeptidyl aminopeptidase IV (CD26): a possible mechanism for Tat’s immunosuppressive activity. Proc Natl Acad Sci USA 1994;91:6594–8.10.1073/pnas.91.14.6594Search in Google Scholar PubMed PubMed Central
45. Blanco, J, Valenzuela, A, Herrera, C, Lluis, C, Hovanessian, AG, Franco, R. The HIV-1 gp120 inhibits the binding of adenosine deaminase to CD26 by a mechanism modulated by CD4 and CXCR4 expression. FEBS Lett 2000;477:123–8.10.1016/S0014-5793(00)01751-8Search in Google Scholar PubMed
46. Lu, G, Hu, Y, Wang, Q, Qi, J, Gao, F, Li, Y, et al.. Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26. Nature 2013;500:227–31.10.1038/nature12328Search in Google Scholar PubMed PubMed Central
47. Bohm, SK, Gum, JR, Erickson, RH, Hicks, JW, Kim, YS. Human dipeptidyl peptidase IV gene promoter: tissue-specific regulation from a TATA-less GC-rich sequence characteristic of a housekeeping gene promoter. Biochem J 1995;311:835–43.10.1042/bj3110835Search in Google Scholar PubMed PubMed Central
48. The Human Protein Atlas; 2003. Available from: http://www.proteinatlas.org/ENSG00000197635-DPP4/tissue [Accessed 11 Sep 2022].Search in Google Scholar
49. NLH National Library of Medicine, National Center for Biotechnology Information; 2023. Available from: http://www.ncbi.nlm.hih.gov/protein/gene?Db=gene&Cmd=DetailsSearch&Term=1803 [Accessed 10 Feb 2023].Search in Google Scholar
50. NLH National Library of Medicine, National Center for Biotechnology Information; 2023. Available from: http://www.ncbi.nlm.hih.gov/protein/NP_001366535.1 [Accessed 10 Feb 2023].Search in Google Scholar
51. NLH National Library of Medicine, National Center for Biotechnology Information; 2023. Available from: http://www.ncbi.nlm.hih.gov/protein/NP_001926.2 [Accessed 10 Feb 2023].Search in Google Scholar
52. NLH National Library of Medicine, National Center for Biotechnology Information; 2023. Available from: http://www.ncbi.nlm.hih.gov/protein/NP_001366533.1 [Accessed 10 Feb 2023].Search in Google Scholar
53. NLH National Library of Medicine, National Center for Biotechnology Information; 2023. Available from: http://www.ncbi.nlm.hih.gov/protein/NP_001366534.1 [Accessed 10 Feb 2023].Search in Google Scholar
54. NLH National Library of Medicine. National Center for Biotechnology Information; 2023. Available from: http://www.ncbi.nlm.hih.gov/protein/NP_001366535.1 [Accessed 10 Feb 2023].Search in Google Scholar
55. Kahne, T, Kroning, H, Thiel, U, Ulmer, AJ, Flad, HD, Ansorge, S. Alterations in structure and cellular localization of molecular forms of DP IV/CD26 during T cell activation. Cell Immunol 1996;170:63–70.10.1006/cimm.1996.0134Search in Google Scholar PubMed
56. The Human Protein Atlas; 2003. Available from: http://www.proteinatlas.org/ENSG00000197635-DPP4/mRNA [Accessed 10 Feb 2022].Search in Google Scholar
57. Engel, M, Hoffmann, T, Wagner, L, Wermann, M, Heiser, U, Kiefersauer, R. The crystal structure of dipeptidyl peptidase IV (CD26) reveals its functional regulation and enzymatic mechanism. Proc Natl Acad Sci USA 2003;100:5063–8.10.1073/pnas.0230620100Search in Google Scholar PubMed PubMed Central
58. Rasmussen, HB, Branner, S, Wiberg, FC, Wagtmann, N. Crystal structure of human dipeptidyl peptidase IV/CD26 in complex with a substrate analog. Nat Struct Biol 2003;10:19–25.10.1038/nsb882Search in Google Scholar PubMed
59. Duke-Cohan, JS, Morimoto, C, Rocker, JA, Schlossman, SF. Serum high molecular weight dipeptidyl peptidase IV (CD26) is similar to a novel antigen DPPT-L released from activated T cells. J Immunol 1996;156:1714–21.10.4049/jimmunol.156.5.1714Search in Google Scholar
60. Pascual, I, Gomez, H, Pons, T, Chappe, M, Vargas, MA, Valdes, G. Effect of divalent cations on the porcine kidney cortex membrane-bound form of dipeptidyl peptidase IV. Int J Biochem Cell Biol 2011;43:363–71.Search in Google Scholar
61. Gomez, H, Chappe, M, Valiente, PA, Pons, T, Chavez, ML, Charli, JL. Effect of zinc and calcium ions on the rat kidney membrane-bound form of dipeptidyl peptidase IV. J Biosci 2013;38:461–9.Search in Google Scholar
62. Mentlein, R. Dipeptidyl-peptidase IV (CD26) Role in the inactivation of regulatory peptides. Regul Pept 1999;85:9–24.10.1016/S0167-0115(99)00089-0Search in Google Scholar
63. Lee, KN, Jackson, KW, Christiansen, VJ, Chung, KH, McKee, PA. A novel plasma proteinase potentiates alpha2-antiplasmin inhibition of fibrin digestion. Blood 2004;103:3783–8.10.1182/blood-2003-12-4240Search in Google Scholar PubMed
64. Ajami, K, Abbott, CA, McCaughan, GW, Gorrell, MD. Dipeptidyl peptidase 9 has two forms, a broad tissue distribution, cytoplasmic localization and DPIV-like peptidase activity. Biochim Biophys Acta 2004;1679:18–28.10.1016/j.bbaexp.2004.03.010Search in Google Scholar PubMed
65. Delacour, D, Gouyer, V, Leteurtre, E, Ait-Slimane, T, Drobecq, H, Lenoir, C. 1-benzyl-2-acetamido-2-deoxy-alphaD-galactopyranoside blocks the apical biosynthetic pathway in polarized HT-29 cells. J Biol Chem 2003;278:37799–809.10.1074/jbc.M305755200Search in Google Scholar PubMed
66. Thoma, R, Loffler, B, Stihle, M, Huber, W, Ruf, A, Hennig, M. Structural basis of proline-specific exopeptidase activity as observed in human dipeptidyl peptidase-IV. Structure 2003;11:947–59.10.1016/S0969-2126(03)00160-6Search in Google Scholar
67. Aertgeerts, K, Ye, S, Tennant, MG, Kraus, ML, Rogers, J, Sang, BC. Crystal structure of human dipeptidyl peptidase IV in complex with a decapeptide reveals details on substrate specificity and tetrahedral intermediate formation. Protein Sci 2004;13:412–21.10.1110/ps.03460604Search in Google Scholar PubMed PubMed Central
68. Abbott, CA, McCaughan, GW, Gorrell, MD. Two highly conserved glutamic acid residues in the predicted beta propeller domain of dipeptidyl peptidase IV are required for its enzyme activity. FEBS Lett 1999;458:278–84.10.1016/S0014-5793(99)01166-7Search in Google Scholar PubMed
69. Ajami, K, Abbott, CA, Obradovic, M, Gysbers, V, Kahne, T, McCaughan, GW. Structural requirements for catalysis, expression, and dimerization in the CD26/DPIV gene family. Biochemistry 2003;42:694–701.10.1021/bi026846sSearch in Google Scholar PubMed
70. Chien, CH, Huang, LH, Chou, CY, Chen, YS, Han, YS, Chang, GG. One site mutation disrupts dimer formation in human DPP-IV proteins. J Biol Chem 2004;279:52338–45.10.1074/jbc.M406185200Search in Google Scholar PubMed
71. Varghese, JN, Laver, WG, Colman, PM. Structure of the influenza virus glycoprotein antigen neuraminidase at 2.9 A resolution. Nature 1983;303:35–40.10.1038/303035a0Search in Google Scholar PubMed
72. Vellieux, FM, Huitema, F, Groendijk, H, Kalk, KH, Jzn, JF, Jongejan, JA. Structure of quinoprotein methylamine dehydrogenase at 2.25 A resolution. EMBO J 1989;8:2171–8.10.1002/j.1460-2075.1989.tb08339.xSearch in Google Scholar PubMed PubMed Central
73. Ito, N, Phillips, SE, Stevens, C, Ogel, ZB, McPherson, MJ, Keen, JN. Novel thioether bond revealed by a 1.7 A crystal structure of galactose oxidase. Nature 1983;350:87–90.10.1038/350087a0Search in Google Scholar PubMed
74. Xia, ZX, Dai, WW, Xiong, JP, Hao, ZP, Davidson, VL, White, S. The three-dimensional structures of methanol dehydrogenase from two methylotrophic bacteria at 2.6-A resolution. J Biol Chem 1992;267:22289–97.10.1016/S0021-9258(18)41668-7Search in Google Scholar
75. Murzin, AG. Structural principles for the propeller assembly of beta-sheets: the preference for seven-fold symmetry. Proteins 1992;14:191–201.10.1002/prot.340140206Search in Google Scholar PubMed
76. Fülöp, V, Jones, DT. Beta propellers: structural rigidity and functional diversity. Curr Opin Struct Biol 1999;9:715–21.10.1016/S0959-440X(99)00035-4Search in Google Scholar
77. Paoli, M. Protein folds propelled by diversity. Prog Biophys Mol Biol 2001;76:103–30.10.1016/S0079-6107(01)00007-4Search in Google Scholar PubMed
78. Jawad, Z, Paoli, M. Novel sequences propel familiar folds. Structure 2002;10:447–54.10.1016/S0969-2126(02)00750-5Search in Google Scholar PubMed
79. Adams, J, Kelso, R, Cooley, L. The kelch repeat superfamily of proteins: propellers of cell function. Trends Cell Biol 2000;10:17–24.10.1016/S0962-8924(99)01673-6Search in Google Scholar
80. Russell, RB, Sasieni, PD, Sternberg, MJ. Supersites within superfolds. Binding site similarity in the absence of homology. J Mol Biol 1998;282:903–18.10.1006/jmbi.1998.2043Search in Google Scholar PubMed
81. Todd, AE, Orengo, CA, Thornton, JM. Evolution of function in protein superfamilies, from a structural perspective. J Mol Biol 2001;307:1113–43.10.1006/jmbi.2001.4513Search in Google Scholar PubMed
82. Pons, T, Gomez, R, Chinea, G, Valencia, A. Beta-propellers: associated functions and their role in human diseases. Curr Med Chem 2003;10:505–24.10.2174/0929867033368204Search in Google Scholar PubMed
83. Love, CA, Harlos, K, Mavaddat, N, Davis, SJ, Stuart, DI, Jones, EY. The ligand-binding face of the semaphorins revealed by the high-resolution crystal structure of SEMA4D. Nat Struct Biol 2003;10:843–8.10.1038/nsb977Search in Google Scholar PubMed
84. Xiong, JP, Stehle, T, Diefenbach, B, Zhang, R, Dunker, R, Scott, DL. Crystal structure of the extracellular segment of integrin alpha Vbeta3. Science 2001;294:339–45.10.1126/science.1064535Search in Google Scholar PubMed PubMed Central
85. Gorrell, MD, Wang, XM, Park, J, Ajami, K, Yu, DM, Knott, H. Structure and function in dipeptidyl peptidase IV and related proteins. Adv Exp Med Biol 2006;575:45–54.10.1007/0-387-32824-6_5Search in Google Scholar PubMed
86. Gorrell, MD. Dipeptidyl peptidase IV and related enzymes in cell biology and liver disorders. Clin Sci (Lond) 2005;108:277–92.10.1042/CS20040302Search in Google Scholar PubMed
87. Hiramatsu, H, Yamamoto, A, Kyono, K, Higashiyama, Y, Fukushima, C, Shima, H. The crystal structure of human dipeptidyl peptidase IV (DPPIV) complex with diprotin A. Biol Chem 2004;385:561–4.10.1515/BC.2004.068Search in Google Scholar PubMed
88. Oefner, C, D’Arcy, A, Mac Sweeney, A, Pierau, S, Gardiner, R, Dale, GE. High-resolution structure of human apo dipeptidyl peptidase IV/CD26 and its complex with 1-[([2-[(5-iodopyridin-2-yl)amino]-ethyl]amino)-acetyl]-2-cyano-(S)-pyrrolidine. Acta Crystallogr D Biol Crystallogr 2003;59:1206–12.10.1107/S0907444903010059Search in Google Scholar PubMed
89. Weihofen, WA, Liu, J, Reutter, W, Saenger, W, Fan, H. Crystal structure of CD26 dipeptidyl-peptidase IV in complex with adenosine deaminase reveals a highly amphiphilic interface. J Biol Chem 2004;279:43330–5.10.1074/jbc.M405001200Search in Google Scholar PubMed
90. Abbott, CA, Gorrell, MD. The family of CD26/DPP-IV and related ectopeptidases. In: Langner, J, Ansorge, S, editors. Ectopeptidases. CD13/aminopeptidase N and CD26/dipeptidylpeptidase IV in medicine and biology. New York: Kluwer Academic/Plenum Publishers; 2002. pp. 171–95.10.1007/978-1-4615-0619-5_7Search in Google Scholar
91. Yoshimoto, T, Tsuru, D. Proline-specifc dipeptidyl aminopeptidase from Flavobacterium meningosepticum. J. Biochem 1982;91:1899–906.10.1093/oxfordjournals.jbchem.a133884Search in Google Scholar PubMed
92. Cox, SW, Eley, BM. Detection of cathepsin B- and L-, elastase-, tryptase-, trypsin-, and dipeptidyl peptidase IV-like activities in crevicular fuid from gingivitis and periodontitis patients with peptidyl derivatives of 7-amino-4-trifuoromethyl coumarin. J Periodontal Res 1989;24:353–61.10.1111/j.1600-0765.1989.tb00882.xSearch in Google Scholar PubMed
93. Mayo, B. Molecular cloning and sequence analysis of the X-prolyl dipeptidyl aminopeptidase gene from Lactococcus lactis subsp. cremoris. Appl Environ Microbiol 1991;57:38–44.10.1128/aem.57.1.38-44.1991Search in Google Scholar PubMed PubMed Central
94. Kabashima, T, Ito, K, Yoshimoto, T. Dipeptidyl peptidase IV from Xanthomonas maltophilia: sequencing and expression of the enzyme gene and characterization of the expressed enzyme. J Biochem 1996;120:1111–7.10.1093/oxfordjournals.jbchem.a021529Search in Google Scholar PubMed
95. Ogasawara, W, Ogawa, Y, Yano, K, Okada, H, Morikawa, Y. Dipeptidyl aminopeptidase IV from Pseudomonas sp. WO24. Biosci. Biotechnol. Biochem 1996;60:2032–7.10.1271/bbb.60.2032Search in Google Scholar PubMed
96. Shibata, Y, Miwa, Y, Hirai, K, Fujimura, S. Purification and partial characterization of a dipeptidyl peptidase from Prevotella intermedia. Oral Microbiol Immunol 2003;18:196–8.10.1034/j.1399-302X.2003.00057.xSearch in Google Scholar
97. Kuwahara, T. Genomic analysis of Bacteroides fragilisreveals extensive DNA inversions regulating cell surface adaptation. Proc Natl Acad Sci USA 2004;101:14919–24.10.1073/pnas.0404172101Search in Google Scholar PubMed PubMed Central
98. Monod, M. Aminopeptidases and dipeptidyl-peptidases secreted by the dermatophyte Trichophyton rubrum. Microbiology 2005;151:145–55.10.1099/mic.0.27484-0Search in Google Scholar PubMed
99. Ogasawara, W. Isoforms of dipeptidyl aminopeptidase IV from Pseudomonassp. WO24: role of the signal sequence and overexpression in Escherichia coli. Protein Expr Purif 2005;41:241–51.10.1016/j.pep.2004.10.027Search in Google Scholar PubMed
100. Tachi, H, Ito, H, Ichishima, E. An X-prolyl dipeptidyl-aminopeptidase from Aspergillus oryzae. Phytochemistry 1992;31:3707–9.10.1016/S0031-9422(00)97513-7Search in Google Scholar
101. Beauvais, A. Dipeptidylpeptidase IV secreted by Aspergillus fumigatus, a fungus pathogenic to humans. Infect Immun 1997;65:3042–7.10.1128/iai.65.8.3042-3047.1997Search in Google Scholar PubMed PubMed Central
102. Oya, H, Nagatsu, I, Nagatsu, T. Purifcation and properties ofglycylprolyl-b-naphthylamidase in human submaxillary gland. Biochim Biophys Acta 1972;258:591–9.10.1016/0005-2744(72)90251-3Search in Google Scholar PubMed
103. Barth, A, Schulz, H, Neubert, K. Studies on the purifcation and characterization of dipeptidyl aminopeptidase IV. Acta Biol Med Ger 1974;32:157–74.Search in Google Scholar
104. Yoshimoto, T, Walter, R. Post-proline dipeptidyl aminopeptidase (dipeptidyl aminopeptidase IV) from lamb kidney. Biochim Biophys Acta 1977;485:391–401.10.1016/0005-2744(77)90174-7Search in Google Scholar PubMed
105. Yoshimoto, T, Kita, T, Ichinose, M, Tsuru, D. Dipeptidyl aminopeptidase IV from porcine pancreas. J Biochem 1982;92:275–82.10.1093/oxfordjournals.jbchem.a133924Search in Google Scholar PubMed
106. Wilson, MJ, Ruhland, AR, Pryor, JL. Prostate specific origin of dipeptidylpeptidase IV (CD26) in human malignant phenotype of melanocytic cells. J Exp Med 1998;190:311–22.10.1097/00005392-199811000-00081Search in Google Scholar
107. The Human Protein Atlas; 2003. Available from: http://www.proteinatlas.org/ENSG00000197635-DPP4/tissue+cell+type [Accessed Sep 11 2022].Search in Google Scholar
108. Savino, W, Villa-Verde, DM, Lannes-Vieira, J. Extracellular matrix proteins in intrathymic T-cell migration and differentiation? Immunol Today 1993;14:158–61.10.1016/0167-5699(93)90278-SSearch in Google Scholar PubMed
109. Zhong, J, Maiseyeu, A, Davis, SN, Rajagopalan, S. DPP4 in cardiometabolic disease: recent insights from the laboratory and clinical trials of DPP4 inhibition. Circ Res 2015;116:1491–504.Search in Google Scholar
110. Gorrell, MD, Gysbers, V, McCaughan, GW. CD26: a multifunctional integral membrane and secreted protein glucagon-like peptide-1 secretion from the GLUTag cell line. Diabetes 2011;52:1147–54.Search in Google Scholar
111. Girardi, ACC, Degray, BC, Nagy, T, Biemesderfer, D, Aronson, PS. Association of Na+-H+ exchanger isoform NHE3 and dipeptidyl peptidase IV in the renal proximal tubule. J Biol Chem 2001;276:46671–7.10.1074/jbc.M106897200Search in Google Scholar PubMed
112. Cheng, HC, Abdel-Ghany, M, Pauli, BU. A novel consensus motif in fibronectin mediates dipeptidyl peptidase IV adhesion and metastasis. J Biol Chem 2003;278:24600–7.10.1074/jbc.M303424200Search in Google Scholar PubMed
113. Ohnuma, K, Yamochi, T, Uchiyama, M, Nishibashi, K, Yoshikawa, N, Shimizu, N, et al.. CD26 up-regulates expression of CD86 on antigenpresenting cells by means of caveolin-1. Proc Natl Acad Sci USA 2004;101:14186–91.10.1073/pnas.0405266101Search in Google Scholar PubMed PubMed Central
114. Pascual, I, López, A, Gómez, H, Chappé, M, Saroyán, A, Gonzáles, Y. Screening of inhibitors of porcine dipeptidyl peptidase IV activity in aqueous extracts from marine organisms. Enzym Microb Technol 2007;40:414–9.Search in Google Scholar
115. González, L, Sánchez, RE, Rojas, L, Pascual, I, García-Fernández, R, Chávez, MA, et al.. Screening of protease inhibitory activity in aqueous extracts of marine invertebrates from Cuban coast. Am J Anal Chem 2016;7:319–31.10.4236/ajac.2016.74030Search in Google Scholar
116. Pascual, I, Arrebola, Y, Almeida, F, Valdés, ME, Rivera, L, Hernández, A, et al.. Marine and coastal organisms: a source of biomedically relevant dipeptidyl peptidase IV inhibitors. Rev. Cuba Cienc biol 2020;8:1–16.Search in Google Scholar
117. Maslov, I, Zinevich, TV, Kirichenko, OG, Trukhan, MV, Shorshnev, SV, Tuaeva, NO, et al.. Synthesis and Biological Evaluation of Neogliptin, a Novel 2 Azabicyclo[2.2.1]heptane-Based Inhibitor of Dipeptidyl Peptidase-4 (DPP-4). Pharmaceuticals (Basel) 2022;15:273.10.3390/ph15030273Search in Google Scholar PubMed PubMed Central
118. Itou, M, Kawaguchi, T, Taniguchi, E, Sata, M. Dipeptidyl peptidase-4: a key player in chronic liver disease. World J Gastroenterol 2013;19:2298–306.10.3748/wjg.v19.i15.2298Search in Google Scholar PubMed PubMed Central
119. Anderluh, M, Kocic, G, Tomovic, K, Kocic, R, Deljanin-Ilic, M, Smelcerovic, A. Cross-talk between the dipeptidyl peptidase-4 and stromal CellDerived factor-1 in stem cell homing and myocardial repair: potential impact of dipeptidyl peptidase-4 inhibitors. Pharmacol Ther 2016;167:100–7.10.1016/j.pharmthera.2016.07.009Search in Google Scholar PubMed
120. Beckers, PAJ, Gielis, JF, Van Schil, PE, Adriaensen, D. Lung ischemia reperfusion injury: the therapeutic role of dipeptidyl peptidase 4 inhibition. Ann Transl Med 2017;5:129.10.21037/atm.2017.01.41Search in Google Scholar PubMed PubMed Central
121. Nausch, I, Mentlein, R, Heymann, E. The degradation of bioactive peptides and proteins by dipeptidil peptidase IV from human placenta. Biol Chem 1990;371:113–8.10.1515/bchm3.1990.371.2.1113Search in Google Scholar PubMed
122. Ahrén, B, Hughes, T. IInhibition of dipeptidil peptidase-4 augments insulin secretion in response to exogenously administrated glucagon-like peptide-1, glucose-dependent insulinotropic polypeptide, PItuitary adenylate cyclase-activating polipeptide, and gastrin-releasing peptide in mice. Endocrinology 2004;146:2055–9.10.1210/en.2004-1174Search in Google Scholar PubMed
123. Hu, CX, Huang, H, Zhang, L, Huang, Y, Shen, ZF, Cheng, KD. A new screening method based on yeast-expressed human dipeptidyl peptidase IV and discovery of novel inhibitors. Biotechnol Lett 2009;31:979–84.10.1007/s10529-009-9963-ySearch in Google Scholar PubMed
124. Durinx, C, Lambeir, AM, Bosmans, E, Falmagne, JB, Berghmans, R, Haemers, A. Molecular characterization of dipeptidyl peptidase activity in serum: soluble CD26/dipeptidyl peptidase IV is responsible for the release of X-Pro dipeptides. Eur J Biochem 2000;267:5608–13.10.1046/j.1432-1327.2000.01634.xSearch in Google Scholar PubMed
125. Bermpohl, F, Loster, K, Reutter, W, Baum, O. Rat dipeptidyl peptidase IV (DPP IV) exhibits endopeptidase activity with specificity for denatured fibrillar collagens. FEBS Lett 1998;428:152–6.10.1016/S0014-5793(98)00515-8Search in Google Scholar
126. Lambeir, A, Paul, P, Durinx, C, Bal, G, Senten, K, Augustyns, K, et al.. Kinetic Investigation of chemokine truncation by CD26/dipeptidyl peptidase IV reveals a striking selectivity within the chemokine family. J Biol Chem 2001;276:29839–45.10.1074/jbc.M103106200Search in Google Scholar PubMed
127. Orskov, C, Bersanis, M, Johnsen, AH, Hajrupll, P, Holst, J. Complete sequences of glucagon-like peptide-1 from human and pig small intestine. J Biol Chem 1989;264:12826–9.10.1016/S0021-9258(18)51561-1Search in Google Scholar
128. Pauly, R, Rosche, F, Wermann, M, McIntosh, CHS, Pederson, RA, Demuth, HU. Investigation of glucose-dependent insulinotropic polypeptide-(1– 42) and glucagon-like peptide-1-(7–36) degradation in vitro by dipeptidyl peptidase IV using matrix-assisted laser desorption/ionization-time of flight mass spectrometry. J Biol Chem 1996;271:23222–9.10.1074/jbc.271.38.23222Search in Google Scholar PubMed
129. Hui, H, Farilla, L, Merkel, P, Perfetti, R. The short half-life of glucagón-like paptide-1 in plasma does not reflect its long-lasting beneficial effects. Eur J Endocrinol 2002;146:863–9.10.1530/eje.0.1460863Search in Google Scholar PubMed
130. Zhu, L, Tamvakopoulos, C, Xie, D, Dragovic, J, Shen, X, Fenyk-Melody, JE, et al.. The role of dipeptidyl peptidase IV in the cleavage of glucagon family peptides. J Biol Chem 2003;278:22418–23.10.1074/jbc.M212355200Search in Google Scholar PubMed
131. Alters, S, McLaughlin, B, Spink, B, Lachiyan, T, Wang, C, Podust, V, et al.. Correction: GLP2-2G-XTEN: a pharmaceutical protein with improved serum half-life and efficacy in rats Crohn’s disease model. PLoS One 2013;8:1371.10.1371/annotation/5c7138bd-5602-466d-8daf-e75e0b7d7fdbSearch in Google Scholar PubMed PubMed Central
132. Irwin, N, Flatt, P. Chapter gastric inhibitory polipeptide. In: Williams Textbook of Endocrinology, 12th ed. Philadelphia, United States: Saunders; 2012. pp. 1697–716.Search in Google Scholar
133. Birk, S, Sitarz, J, Petersen, K, Oturai, P, Kruuse, C, Fahrenkrug, J, et al.. The effect of interavenous PACAP38 on cerebral hemodynamics in healthy volunteers. Regul Pept 2007;140:185–91.10.1016/j.regpep.2006.12.010Search in Google Scholar PubMed
134. Bourgault, S, Vaudry, D, Botia, B, Couvineau, A, Laburthe, M, Vaudry, H, et al.. Nobel stable PACAP analogs with potent activity towards the PAC1 receptor. Peptides 2008;29:919–32.10.1016/j.peptides.2008.01.022Search in Google Scholar PubMed
135. Pocai, A. Action and therapeutic potential of oxytomodulin. Mol Metab 2013;3:241–51.10.1016/j.molmet.2013.12.001Search in Google Scholar PubMed PubMed Central
136. Kolts, B, McGuian, J. Radioimmunoassay measurement of secretin half-life time in man. Gastroenterology 1977;72:55–70.10.1016/S0016-5085(77)80303-XSearch in Google Scholar
137. Boissard, C, Marie, J, Hejblum, G, Gespach, C, Rosselin, G. Vasoactive intestinal peptide receptor regulation and reversible desensibilization in human colonic carcinoma cells in culture. Cancer Res 1986;46:4406–13.Search in Google Scholar
138. Frohman, L, Downs, T, Williams, T, Heimer, E, Pan, Y, Felix, A. Rapid enzymatic degradation of growth hormone-relasing hormone by plasma in vitro and in vivo to a biologically inactive, N-terminally cleaved product. J Clin Invest 1986;78:906–13.10.1172/JCI112679Search in Google Scholar PubMed PubMed Central
139. Wojcik, E, Kulpa, J. Pro-gastrin-releasing peptide (ProGRP) as a biomarker in small-cell lung cancer diagnosis, monitoring and evaluation of treatment response. Lung Cancer 2017;8:231–40.10.2147/LCTT.S149516Search in Google Scholar PubMed PubMed Central
140. Mashaghi, A, Marmalidou, A, Mohsen, T, Grace, P, Pothoulakis, C, Dana, R. Neuropeptide substance P and the immune response. Cell Mol Life Sci 2016;73:4249–64.10.1007/s00018-016-2293-zSearch in Google Scholar PubMed PubMed Central
141. Takemoto, K, Neuropeptide, Y. Complete amino acid sequence of the brain peptide. Proc Natl Acad Sci USA 1982;79:5485–9.10.1073/pnas.79.18.5485Search in Google Scholar PubMed PubMed Central
142. Ahlborg, G, Weitzberg, E, Sollevi, A, Lundberg, J. Splanchnic and renal vasoconstrictor and metabolic responses to neuropeptide Y in resting and exercising man. Acta Physiol Scand 1992;145:139–49.10.1111/j.1748-1716.1992.tb09349.xSearch in Google Scholar PubMed
143. Takemoto, K. Isolation and characterization of peptide YY (PYY), a candidate gut hormone that inhibits pancreatic exocrine secretion. Proc Natl Acad Sci USA 1982;79:2514–8.10.1073/pnas.79.8.2514Search in Google Scholar PubMed PubMed Central
144. Adrian, T, Sagor, G, Savage, A, Bacarese-Hamilton, A, Hall, G, Bloom, S. Peptide YY kinetics and effects on blood pressure and circulating pancreatic and gastrointestinal hormones and metabolites in man. J Clin Endocrinol Metab 1986;63:803–7.10.1210/jcem-63-4-803Search in Google Scholar PubMed
145. Uniprot. The amino acid sequence of human chorionic gonadotropin the alpha subunit and the beta subunit; 2022. Available from: http://uniprot.org/citations/1150658 [Accessed 14 Oct 2022].Search in Google Scholar
146. Tan, E, Hershman, J. Chapter hyperthyroidism and trophoblastic disease. In: Frederic, E, Radovick, S, editors. Clinical management of thyroid disease. Amsterdam, Netherlands: Elsevier B.V; 2009. pp. 407–23.10.1016/B978-1-4160-4745-2.00016-XSearch in Google Scholar
147. Genscript. Human pancreatic polipeptide; 2022. Available from: http://www.genscript.com/peptide/RP10398-Pancreatic_Polypeptide_human.html [Accessed 14 Oct 2022].Search in Google Scholar
148. Cuenco, J, Minnion, J, Tan, T, Scott, R, Germain, N, Ling, Y, et al.. Degradation paradigm of the gut hormone, pancreatic polipetide, by hepatic and renal peptidases. Endocrinology 2017;158:1755–65.10.1210/en.2016-1827Search in Google Scholar PubMed PubMed Central
149. Gianoulakis, C, Seidah, N, Routhier, R, Chrétien, M. Biosynthesis and characterization of adenocorticotropic hormone, alpha-melanocite-stimulating hormone, and NH2-terminal fragment of the adenocorticotropic hormone/beta-lipoprotein precursor from rats pars intermedia. J Biol Chem 1979;254:1903–6.10.1016/S0021-9258(19)86402-5Search in Google Scholar
150. Veldhuis, J, Iranmanesh, A, Naftolowitz, D, Tathan, N, Cassidy, F, Carroll, B. Corticotropin secretory dynamics in humans under low glucocorticoid feedbac. J Clin Endocrinol Metab 2001;86:5554–63.10.1210/jcem.86.11.8046Search in Google Scholar PubMed
151. Mentlein, R, Gallwits, B, Schmidt, WE. Dipeptidyl-peptidase IV hydrolyses gastric inhibitory polypeptide, glucagons-like peptide-1(7–36)amide, peptide histidine methionine and is responsible for their degradation in human serum. Eur J Biochem 1993;213:829–35.10.1111/j.1432-1033.1993.tb17986.xSearch in Google Scholar PubMed
152. Kiefer, TJ, McIntosh, CH, Pederson, RA. Degradation of glucose-dependent insulinotropic polypeptide and truncated glucagons-like peptide 1 in vitroand in vivoby dipeptidyl peptidase IV. Endocrinology 1995;136:3585–96.10.1210/endo.136.8.7628397Search in Google Scholar PubMed
153. Combettes, M. GLP-1 and type 2 diabetes: physiology and new clinical advances. Curr Opin Pharmacol 2006;6:598–605.10.1016/j.coph.2006.08.003Search in Google Scholar PubMed
154. ChemSpider; 2022. Available from: http://chemispider.com/Chemical-Structure.sitagliptin.html [Accessed 14 Oct 2022].Search in Google Scholar
155. Zhou, ST, Cui, W, Kong, L, Yang, X. Efficacy of sitagliptin on Nonalcoholic fatty liver disease in high-fat-diet-fed diabetic mice. Curr Med Sci 2022;42:513–9.10.1007/s11596-022-2573-9Search in Google Scholar PubMed
156. Trocha, M, Fleszar, MG, Fortuna, P, Lewandowski, L, Gostomska-Pampuch, K, Sozanski, T, et al.. Sitagliptin modulates oxidative, nitrative and halogenative stress and inflammatory response in rat model of hepatic ischemia-reperfusion. Antioxidants 2021;10:1168.10.3390/antiox10081168Search in Google Scholar PubMed PubMed Central
157. Prakash, S, Rai, U, Kosuru, R, Tiwari, V, Singh, S. Amelioration of diet-induced metabolic syndrome and fatty liver with sitagliptin via regulation of adipose tissue inflammation and hepatic Adiponectin/AMPK levels in mice. Biochimie 2020;168:198–209.10.1016/j.biochi.2019.11.005Search in Google Scholar PubMed
158. ChemSpider; 2022. Available from: http://chemispider.com/Chemical-Structure.alogliptin.html [Accessed 14 Oct 2022].Search in Google Scholar
159. White, JR. Alogliptin for the treatment of type 2 diabetes. Drugs Today 2011;47:99–107.10.1358/dot.2011.47.2.1583163Search in Google Scholar PubMed
160. Agency, E.M.: summary of product characteristics; 2022. Available from: https://www.ema.europa.eu/en/documents/productinformation/vipidia-eparproductinformation.en.pdf [Accessed 10 Oct 2022].Search in Google Scholar
161. El-Sahar, AE, Shiha, NA, El Sayed, NS, Ahmed, LA. Alogliptin attenuates lipopolysaccharide-induced neuroinflammation in mice through modulation of TLR4/MYD88/NF-kappaB and miRNA-155/SOCS-1 signaling pathways. Int J Neuropsychopharmacol 2021;24:158–69.10.1093/ijnp/pyaa078Search in Google Scholar PubMed PubMed Central
162. Salama, RM, Nasr, MM, Abdelhakeem, JI, Roshdy, OK, ElGamal, MA. Alogliptin attenuates cyclophosphamide-induced nephrotoxicity: a novel therapeutic approach through modulating MAP3K/JNK/SMAD3 signaling cascade. Drug Chem Toxicol 2022;45:1254–63.10.1080/01480545.2020.1814319Search in Google Scholar PubMed
163. ChemSpider; 2022. Available from: http://chemispider.com/Chemical-Structure.vildaliptin.html [Accessed 14 Oct 2022].Search in Google Scholar
164. Agency, E.M.: summary of product characteristics; 2022. Available from: https://www.ema.europa.eu/en/documents/product-information/galvus-eparproduct-information_en.pdf [Accessed 10 Oct 2022].Search in Google Scholar
165. Yang, M, Chen, X, Chen, X, Liu, H, Zhang, Z. Protective effect of vildagliptin on myocardial injury in septic rats by regulating TLR-4/NF-kappaB pathway. Minerva Med 2021;112:522–4.10.23736/S0026-4806.19.06242-6Search in Google Scholar PubMed
166. Khalil, R, Shata, A, Abd El-Kader, EM, Sharaf, H, Abdo, WS, Amin, NA, et al.. Vildagliptin, a DPP-4 inhibitor, attenuates carbon tetrachloride-induced liver fibrosis by targeting ERK1/2, p38alpha, and NF-kappaB signaling. Toxicol Appl Pharmacol 2020;407:115246.10.1016/j.taap.2020.115246Search in Google Scholar PubMed
167. Liu, Y, Qi, Y. Vildagliptin, a CD26/DPP4 inhibitor, ameliorates bleomycin-induced pulmonary fibrosis via regulating the extracellular matrix. Int Immunopharmacol 2020;87:106774.Search in Google Scholar
168. ChemSpider; 2022. Available from: http://chemispider.com/Chemical-Structure.saxagliptin.html [Accessed 14 Oct 2022].Search in Google Scholar
169. Mulvihill, EE, Drucker, DJ. Pharmacology, physiology, and mechanisms of action of dipeptidyl peptidase-4 inhibitors. Endocr Rev 2014;35:992–1019.10.1210/er.2014-1035Search in Google Scholar PubMed PubMed Central
170. Chen, Z, Yu, J, Fu, M, Dong, R, Yang, Y, Luo, J, et al.. Dipeptidyl peptidase-4 inhibition improves endothelial senescence by activating AMPK/SIRT1/Nrf2 signaling pathway. Biochem Pharmacol 2020;177:113951.Search in Google Scholar
171. ChemSpider; 2022. Available from: http://chemispider.com/Chemical-Structure.linagliptin.html [Accessed 14 Oct 2022].Search in Google Scholar
172. Graefe-Mody, U, Retlich, S, Friedrich, C. Clinical pharmacokinetics and pharmacodynamics of linagliptin. Clin Pharmacokinet 2012;51:411–27.10.2165/11630900-000000000-00000Search in Google Scholar PubMed
173. Baranov, O, Kahle, M, Deacon, CF, Holst, JJ, Nauck, MA. Feedback suppression of meal-induced glucagon-like peptide-1 (GLP-1) secretion mediated through elevations in intact GLP-1 caused by dipeptidyl peptidase-4 inhibition: a randomized, prospective comparison of sitagliptin and vildagliptin treatment. Diabetes Obes Metab 2016;18:1100–9.10.1111/dom.12706Search in Google Scholar PubMed
174. Mayer, AL, Scheitacker, I, Ebert, N, Klein, T, Amann, K, Daniel, C. The dipeptidyl peptidase 4 inhibitor linagliptin ameliorates renal injury and accelerated resolution in a rat model of crescentic nephritis. Br J Pharmacol 2021;178:878–95.10.1111/bph.15320Search in Google Scholar PubMed
175. Zhang, G, Kim, S, Gu, X, Yu, SP, Wei, L. DPP-4 inhibitor linagliptin is neuroprotective in hyperglycemic mice with stroke via the AKT/mTOR pathway and anti-apoptotic effects. Neurosci Bull 2020;36:407–18.10.1007/s12264-019-00446-wSearch in Google Scholar PubMed PubMed Central
176. Aboulmagd, YM, El-Bahy, AAZ, Menze, ET, Azab, SS, El-Demerdash, E. Role of linagliptin in preventing the pathological progression of hepatic fibrosis in high fat diet and streptozotocin-induced diabetic obese rats. Eur J Pharmacol 2020;881:173224.10.1016/j.ejphar.2020.173224Search in Google Scholar PubMed
177. Schwehm, C, Li, J, Song, H, Hu, X, Kellam, B, Stocks, MJ. Synthesis of new DPP-4 inhibitors based on a novel tricyclic scaffold. ACS Med Chem Lett 2015;6:324–8.10.1021/ml500503nSearch in Google Scholar PubMed PubMed Central
178. Berger, JP, SinhaRoy, R, Pocai, A, Kelly, TM, Scapin, G, Gao, YD, et al.. A comparative study of the binding properties, dipeptidyl peptidase-4 (DPP-4) inhibitory activity and glucose-lowering efficacy of the DPP-4 inhibitors alogliptin, linagliptin, saxagliptin, sitagliptin and vildagliptin in mice. Endocrinol Diabetes Metab 2018;1:e00002.10.1002/edm2.2Search in Google Scholar PubMed PubMed Central
179. Stano, J, Kovacs, P, Kakoniova, D, Kirilova, ND, Komov, VP. Activity of dipeptidyl peptidase IV in gingseng callus culture. Biologia 1994;49:353–7.Search in Google Scholar
180. Pérez-Macedonio, CP, Flores-Alfaro, E, Alarcón-Romero, LC, Vences-Velázquez, A, Castro-Alarcón, N, MartínezMartínez, E, et al.. CD14 and CD26 from serum exosomes are associated with type 2 diabetes, exosomal Cystatin C and CD14 are associated with metabolic syndrome and atherogenic index of plasma. PeerJ 2022;10:e13656.10.7717/peerj.13656Search in Google Scholar PubMed PubMed Central
181. Bo, L, Yan, R, Quian, Z, Shi, H, Yun, D, Jing, W, et al.. Sitagliptin, a dipeptidyl peptidase-4 inhibitor, attenuates apoptosis of vascular smooth muscle cells and reduces atherosclerosis in diabetic apolipoprotein E-deficient mice. Vasc Pharmacol 2021;140:106854.10.1016/j.vph.2021.106854Search in Google Scholar PubMed
182. Conarello, S, Li, Z, Ronan, J. Mice lacking dipeptidyl peptidase IV are protected against obesity and insulin resistance. Proc Natl Acad Sci USA 2003;100:6825–30.10.1073/pnas.0631828100Search in Google Scholar PubMed PubMed Central
183. Tremblay, AJ, Lamarche, B, Deacon, CF, Weisnagel, SJ, Couture, P. Effect of sitagliptin therapy on postprandial lipoprotein levels in patients with type 2 diabetes. Diabetes Obes Metab 2011;13:366–73.10.1111/j.1463-1326.2011.01362.xSearch in Google Scholar PubMed
184. Rohmann, N, Schlicht, K, Geisler, C, Hollstein, T, Knappe, C, Krause, L. Circulating sDPP-4 is increased in obesity and insulin resistance but is not related to systemic metabolic inflammation. J Clin Endocrinol Metab 2021;106:e592–e601.10.1210/clinem/dgaa758Search in Google Scholar PubMed
185. Barchetta, I, Ceccarelli, V, Cimini, FA, Barone, E, Sentinelli, F, Coluzzi, M. Circulating dipeptidyl peptidase-4 is independently associated with the presence and severity of NAFLD/NASH in individuals with and without obesity and metabolic disease. J Endocrinol Invest 2021;44:979–88.10.1007/s40618-020-01392-5Search in Google Scholar PubMed PubMed Central
186. Christopherson, KW, Cooper, S, Broxmeyer, HE. Cell surface peptidase CD26/DPPIV mediates G-CSF mobilization of mouse progenitor cells. Blood 2003;101:4680–6.10.1182/blood-2002-12-3893Search in Google Scholar PubMed
187. Chistopherson, KW, Cooper, S, Hangoc, G, Broxmeyer, HE. CD26 isessential for normal G-CSF-induced progenitor cell mobilization as determined by CD26−/− mice. Exp Hematol 2003;31:1126–34.10.1016/S0301-472X(03)00256-XSearch in Google Scholar
188. Morimoto, C, Torimoto, Y, Levinson, G, Rudd, CE, Schrieber, M, Dang, NH, et al.. 1F7, a novel cell surface molecule, involved in helper function of CD4 cells. J Immunol 1989;143:3430–9.10.4049/jimmunol.143.11.3430Search in Google Scholar
189. Waumans, Y, Baerts, L, Kehoe, K, Lambeir, AM, De Meester, I. The dipeptidyl peptidase family, prolyl oligopeptidase, and prolyl carboxypeptidase in the immune system and inflammatory disease, including atherosclerosis. Front Immunol 2015;6:387.10.3389/fimmu.2015.00387Search in Google Scholar PubMed PubMed Central
190. Bengsch, B, Seigel, B, Flecken, T, Wolanski, J, Blum, HE, Thimme, R. Human Th17 cells express high levels of enzymatically active dipeptidylpeptidase IV (CD26). J Immunol 2012;188:5438–47.Search in Google Scholar
191. Dang, NH, Hafler, DA, Schlossman, SF, Breitmeyer, JB. FcR-mediated crosslinking of Ta1 (CDw26) induces human T lymphocyte activation. Cell Immunol 1990;125:42–57.10.1016/0008-8749(90)90061-USearch in Google Scholar PubMed
192. Dang, NH, Torimoto, Y, Deusch, K, Schlossman, SF, Morimoto, C. Comitogenic effect of solid-phase immobilized anti-1F7 on human CD4 T cell activation via CD3 and CD2 pathways. J Immunol 1990;144:4092–100.10.4049/jimmunol.144.11.4092Search in Google Scholar
193. Dang, NH, Torimoto, Y, Sugita, K, Daley, JF, Schow, P, Prado, C, et al.. Cell surface modulation of CD26 by anti-1F7 monclonal antibody: analysis of surface expression and human T cell activation. J Immunol 1990;145:3963–71.10.4049/jimmunol.145.12.3963Search in Google Scholar
194. Torimoto, Y, Dang, NH, Tanaka, T, Prado, C, Schlossman, SF, Morimoto, C. Biochemical characterization of CD26 (dipeptidyl peptidase IV): functional comparison of distinct epitopes recognized by various anti-CD26 monoclonal antibodies. Mol Immunol 1992;29:183–92.10.1016/0161-5890(92)90099-JSearch in Google Scholar
195. Torimoto, Y, Dang, NH, Vivier, E, Tanaka, T, Schlossman, SF, Morimoto, C. Coassociation of CD26 (dipeptidyl peptidase IV) with CD45 on the surface of human T lymphocytes. J Immunol 1991;147:2514–7.10.4049/jimmunol.147.8.2514Search in Google Scholar
196. Ishii, T, Ohnuma, K, Marakami, A, Takasawa, N, Kobayashi, S, Dang, NH, et al.. CD26-mediated signaling for T cell activation occurs in lipid rafts through its association with CD45RO. Proc Natl Acad Sci USA 2001;98:12138–43.10.1073/pnas.211439098Search in Google Scholar PubMed PubMed Central
197. Kobayashi, S, Ohnuma, K, Uchiyama, M, Iino, K, Iwata, S, Dang, NH, et al.. Association of CD26 with CD45RA outside lipid rafts attenuates cord blood T-cell activation. Blood 2004;103:1002–10.10.1182/blood-2003-08-2691Search in Google Scholar PubMed
198. Hatano, R, Ohnuma, K, Yamamoto, J, Dang, NH, Morimoto, C. CD26-mediated Co-stimulation in human CD8(+) T cells provokes effector function via pro-inflammatory cytokine production. Immunology 2013;138:165–72.10.1111/imm.12028Search in Google Scholar PubMed PubMed Central
199. Green, H, Chan, T. Pyrimidine starvation induced by adenosine infibroblasts and lymphoid cells: role of adenosine deaminase. Science 1973;182:836–7.10.1126/science.182.4114.836Search in Google Scholar PubMed
200. Brezinschek, RI, Lipsky, PE, Galea, P, Vita, R, Oppenheimer-Marks, N. Phenotypic characterization of CD4+ T cells that exhibit a transendothelial migratory capacity. J Immunol 1995;154:3062–77.10.4049/jimmunol.154.7.3062Search in Google Scholar
201. Willheim, M, Ebner, C, Baier, K, Kern, W, Schrattbauer, K, Thien, R. Cell surface characterization of T lymphocytes and allergen-specific t cell clones: correlation of CD26 expression with T(H1) subsets. J Allergy Clin Immunol 1997;100:348–55.10.1016/S0091-6749(97)70248-3Search in Google Scholar PubMed
202. Pacheco, R, Martinez-Navio, JM, Lejeune, M, Climent, N, Oliva, H, Gatell, JM, et al.. CD26, adenosine deaminase, and adenosine receptors mediate costimulatory signals in the immunological synapse. Proc Natl Acad Sci USA 2005;102:9583–8.10.1073/pnas.0501050102Search in Google Scholar PubMed PubMed Central
203. Bengsch, B, Seigel, B, Flecken, T, Wolanski, J, Blum, HE, Thimme, R. Human Th17 cells express high levels of enzymatically active dipeptidylpeptidase IV (CD26). J Immunol 2012;188:5438–47.10.4049/jimmunol.1103801Search in Google Scholar PubMed
204. Yamada, Y, Jang, JH, De Meester, I, Baerts, L, Vliegen, G, Inci, I, et al.. CD26 costimulatory blockade improves lung allograft rejection and is associated with enhanced interleukin-10 expression. J Heart Lung Transplant 2016;35:508–17.10.1016/j.healun.2015.11.002Search in Google Scholar PubMed
205. Pinheiro, MM, Stoppa, CL, Valduga, CJ, Okuyama, CE, Gorjao, R, Pereira, RM, et al.. Sitagliptin inhibit human lymphocytes proliferation and Th1/Th17 differentiation in vitro. Eur J Pharmaceut Sci 2017;100:17–24.10.1016/j.ejps.2016.12.040Search in Google Scholar PubMed
206. Ghorpade, DS, Ozcan, L, Zheng, Z, Nicoloro, SM, Shen, Y, Chen, E, et al.. Hepatocyte-secreted DPP4 in obesity promotes adipose inflammation and insulin resistance. Nature 2018;555:673–7.10.1038/nature26138Search in Google Scholar PubMed PubMed Central
207. Nieto-Fontarigo, JJ, González-Barcala, FJ, San José, E, Arias, P, Nogueira, M, Salgado, FJ. CD26 and asthma: a comprehensive review. Clin Rev Allergy Immunol 2019;56:139–60.10.1007/s12016-016-8578-zSearch in Google Scholar PubMed PubMed Central
208. Christopherson, KW, Hangoc, G, Mantel, CR, Broxmeyer, HE. Modulation of hematopoietic stem cell homing and engraftment by CD26. Science 2004;305:1000–3.10.1126/science.1097071Search in Google Scholar PubMed
209. Lee, DS, Lee, ES, Alam, MM, Jang, JH, Lee, HS, Oh, H. Soluble DPP-4 up-regulates toll-like receptors and augments inflammatory reactions, which are ameliorated by vildagliptin or mannose-6-phosphate. Metabolism 2016;65:89–101.10.1016/j.metabol.2015.10.002Search in Google Scholar PubMed
210. Wronkowitz, N, Görgens, SW, Romacho, T, Villalobos, LA, Sánchez-Ferrer, CF, Peiró, C. Soluble DPP4 induces inflammation and proliferation of human smooth muscle cells via protease-activated receptor 2. Biochim Biophys Acta 2014;1842:1613–21.10.1016/j.bbadis.2014.06.004Search in Google Scholar PubMed
211. Kawasaki, T, Chen, W, Htwe, YM, Tatsumi, K, Dudek, SM. DPP4 inhibition by sitagliptin attenuates LPS-induced lung injury in mice. Am J Physiol Lung Cell Mol Physiol 2018;315:L834–l845.10.1152/ajplung.00031.2018Search in Google Scholar PubMed
212. Zhao, X, Zhang, K, Daniel, P, Wisbrun, N, Fuchs, H, Fan, H. Delayed allogeneic skin graft rejection in CD26-deficient mice. Cell Mol Immunol 2019;16:557–67.10.1038/s41423-018-0009-zSearch in Google Scholar PubMed PubMed Central
213. Bauvois, B, Dauzonne, D. Aminopeptidase-N/CD13 (EC 3.4.11.2) inhibitors: chemistry, biological evaluations, and therapeutic prospects. Med Res Rev 2006;26:88–130.10.1002/med.20044Search in Google Scholar PubMed PubMed Central
214. Wang, Q, Wong, G, Lu, G. MERS-CoV spike protein: targets for vaccines and therapeutics. Antiviral Res 2016;133:165–77.10.1016/j.antiviral.2016.07.015Search in Google Scholar PubMed PubMed Central
215. Mucha, A, Drag, M, Dalton, JP, Kafarski, P. Metallo-aminopeptidase inhibitors. Biochimie 2010;92:1509–29.10.1016/j.biochi.2010.04.026Search in Google Scholar PubMed PubMed Central
216. Raj, VS, Mou, H, Smits, SL, Dekkers, DH, Müller, MA, Dijkman, R. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature 2013;495:251–4.10.1038/nature12005Search in Google Scholar PubMed PubMed Central
217. Ohnuma, K, Haagmans, BL, Hatano, R, Raj, VS, Mou, H, Iwata, S. Inhibition of Middle East respiratory syndrome coronavirus infection by anti-CD26 monoclonal antibody. J Virol 2013;87:13892–9.10.1128/JVI.02448-13Search in Google Scholar PubMed PubMed Central
218. Inn, KS, Kim, Y, Aigerim, A, Park, U, Hwang, ES, Choi, MS. Reduction of soluble dipeptidyl peptidase 4 levels in plasma of patients infected with Middle East respiratory syndrome coronavirus. Virology 2018;518:324–7.10.1016/j.virol.2018.03.015Search in Google Scholar PubMed PubMed Central
219. Algaissi, A, Agrawal, AS, Han, S, Peng, BH, Luo, C, Li, F. Elevated human dipeptidyl-peptidase 4 expression reduces the susceptibility of hDPP4 transgenic mice to Middle East respiratory syndrome coronavirus infection and disease. J Infect Dis 2019;219:829–35.10.1093/infdis/jiy574Search in Google Scholar PubMed PubMed Central
220. Vankadari, N, Wilce, JA. Emerging WuHan (COVID-19) coronavirus: glycan shield and structure prediction of spike glycoprotein and its interaction with human CD26. Emerg Microbes Infect 2020;9:601–4.10.1080/22221751.2020.1739565Search in Google Scholar PubMed PubMed Central
221. Tai, W, He, L, Zhang, X, Pu, J, Voronin, D, Jiang, S. Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: implication for development of RBD protein as a viral Attachment inhibitor and vaccine. Cell Mol Immunol 2020;17:613–20.10.1038/s41423-020-0400-4Search in Google Scholar PubMed PubMed Central
222. Zhou, F, Yu, T, Du, R, Fan, G, Liu, Y, Liu, Z. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 2020;395:1054–62.10.1016/S0140-6736(20)30566-3Search in Google Scholar PubMed PubMed Central
223. Solerte, SB, D’addio, F, Trevisan, R, Lovati, E, Rossi, A, Pastore, I. Sitagliptin treatment at the time of hospitalization was associated with reduced mortality in patients with type 2 diabetes and COVID-19: a multicenter, case-control, retrospective, observational study. Diabetes Care 2020;43:2999–3006.10.2337/dc20-1521Search in Google Scholar PubMed PubMed Central
224. Solerte, SB, Di Sabatino, A, Galli, M, Fiorina, P. Dipeptidyl peptidase-4 (DPP4) inhibition in COVID-19. Acta Diabeto 2020;57:779–83.10.1007/s00592-020-01539-zSearch in Google Scholar PubMed PubMed Central
225. Pal, R, Banerjee, M, Mukherjee, S, Bhogal, RS, Kaur, A, Bhadada, SK. Dipeptidyl peptidase-4 inhibitor use and mortality in COVID-19 patients with diabetes mellitus: an updated systematic review and MetaAnalysis. Ther Adv Endocrinol Metab 2021;12:2042018821996482.10.1177/2042018821996482Search in Google Scholar PubMed PubMed Central
226. Rakhmat, II, Kusmala, YY, Handayani, DR, Juliastuti, H, Nawangsih, EN, Wibowo, A. Dipeptidyl peptidase-4 (DPP-4) inhibitor and mortality in coronavirus disease 2019 (COVID-19) – a systematic review, meta-analysis, and meta-regression. Diabetes Metab Syndr 2021;15:777–82.10.1016/j.dsx.2021.03.027Search in Google Scholar PubMed PubMed Central
227. Zhou, JH, Wu, B, Wang, WX, Lei, F, Cheng, X, Qin, JJ. No significant association between dipeptidyl peptidase-4 inhibitors and adverse outcomes of COVID-19. World J Clin Cases 2020;8:5576–88.10.12998/wjcc.v8.i22.5576Search in Google Scholar PubMed PubMed Central
228. Roussel, R, Darmon, P, Pichelin, M, Goronflot, T, Abouleka, Y, Ait Bachir, L. Use of dipeptidyl peptidase-4 inhibitors and prognosis of COVID-19 in hospitalized patients with type 2 diabetes: a propensity score analysis from the CORONADO study. Diabetes Obes Metab 2021;23:1162–72.10.1111/dom.14324Search in Google Scholar PubMed PubMed Central
229. Strollo, R, Maddaloni, E, Dauriz, M, Pedone, C, Buzzetti, R, Pozzilli, P. Use of DPP4 inhibitors in Italy does not correlate with diabetes prevalence among COVID-19 deaths. Diabetes Res Clin Pract 2021;171:108444.10.1016/j.diabres.2020.108444Search in Google Scholar PubMed PubMed Central
230. Hariyanto, TI, Kurniawan, A. Dipeptidyl peptidase 4 (DPP4) inhibitor and outcome from coronavirus disease 2019 (COVID-19) in diabetic patients: a systematic review, meta-analysis, and meta-regression. J Diabetes Metab Disord 2021;20:1–8.10.1007/s40200-021-00777-4Search in Google Scholar PubMed PubMed Central
231. Shiobara, T, Chibana, K, Watanabe, T, Arai, R, Horigane, Y, Nakamura, Y. Dipeptidyl peptidase-4 is highly expressed in bronchial epithelial cells of untreated asthma and it increases cell proliferation along with fibronectin production in airway constitutive cells. Respir Res 2016;17:28.10.1186/s12931-016-0342-7Search in Google Scholar PubMed PubMed Central
232. Poole, A, Urbanek, C, Eng, C, Schageman, J, Jacobson, S, O’connor, BP. Dissecting childhood asthma with nasal transcriptomics distinguishes subphenotypes of disease. J Allergy Clin Immunol 2014;133:670–8.10.1016/j.jaci.2013.11.025Search in Google Scholar PubMed PubMed Central
233. Ranade, K, Pham, TH, Damera, G, Brohawn, PZ, Pilataxi, F, Kuziora, M. Dipeptidyl peptidase-4 (DPP-4) is a novel predictive biomarker for the investigational anti-IL-13 targeted therapy Tralokinumab. Am J Respir Crit Care Med 2016;193:A4332.Search in Google Scholar
234. Mitchell, J, Dimov, V, Townley, RG. IL-13 and the IL-13 receptor as therapeutic targets for asthma and allergic disease. Curr Opin Investig Drugs 2010;11:527–34.Search in Google Scholar
235. Nader, MA. Inhibition of airway inflammation and remodeling by sitagliptin in murine chronic asthma. Int Immunopharmacol 2015;29:761–9.10.1016/j.intimp.2015.08.043Search in Google Scholar PubMed
236. Helal, MG, Megahed, NA, Abd Elhameed, AG. Saxagliptin Mitigates airway inflammation in a mouse model of acute asthma via modulation of NF-kB and TLR4. Life Sci 2019;239:117017.10.1016/j.lfs.2019.117017Search in Google Scholar PubMed
237. Anderluh, M, Kocic, G, Tomovic, K, Kocic, H, Smelcerovic, A. DPP-4 inhibition: a novel therapeutic approach to the treatment of pulmonary hypertension. Pharmacol Ther 2019;201:1–7.10.1016/j.pharmthera.2019.05.007Search in Google Scholar PubMed
238. Li, Y, Yang, L, Dong, L, Yang, ZW, Zhang, J, Zhang, SL. Crosstalk between the Akt/mTORC1 and NF-Κb signaling pathways promotes hypoxia-induced pulmonary hypertension by increasing DPP4 expression in PASMCs. Acta Pharmacol Sin 2019;40:1322–33.10.1038/s41401-019-0272-2Search in Google Scholar PubMed PubMed Central
239. Xu, J, Wang, J, He, M, Han, H, Xie, W, Wang, H. Dipeptidyl peptidase IV (DPP-4) inhibition alleviates pulmonary arterial remodeling in experimental pulmonary hypertension. Lab Invest 2018;98:1333–46.10.1038/s41374-018-0080-1Search in Google Scholar PubMed
240. Wang, J, Yu, M, Xu, J, Cheng, Y, Li, X, Wei, G. Glucagon-like peptide-1 (GLP-1) mediates the protective effects of dipeptidyl peptidase IV inhibition on pulmonary hypertension. J Biomed Sci 2019;26:6.10.1186/s12929-019-0496-ySearch in Google Scholar PubMed PubMed Central
241. Deacon, CF. Physiology and pharmacology of DPP-4 in glucose homeostasis and the treatment of type 2 diabetes. Front Endocrinol 2019;10:80.10.3389/fendo.2019.00080Search in Google Scholar PubMed PubMed Central
242. Gangadharan Komala, M, Gross, S, Zaky, A, Pollock, C, Panchapakesan, U. Saxagliptin reduces renal tubulointerstitial inflammation, hypertrophy and fibrosis in diabetes. Nephrology 2016;21:423–31.10.1111/nep.12618Search in Google Scholar PubMed
243. Lay, AJ, Zhang, HE, Mccaughan, GW, Gorrell, MD. Fibroblast activation protein in liver fibrosis. Front Biosci Landmark 2019;24:1–17.10.2741/4706Search in Google Scholar PubMed
244. Soare, A, Györfi, HA, Matei, AE, Dees, C, Rauber, S, Wohlfahrt, T. Dipeptidylpeptidase 4 as a marker of activated fibroblasts and a potential target for the treatment of fibrosis in systemic sclerosis. Arthritis Rheumatol 2020;72:137–49.10.1002/art.41058Search in Google Scholar PubMed
245. Lee, SY, Wu, ST, Liang, YJ, Su, MJ, Huang, CW, Jao, YH. Soluble dipeptidyl peptidase-4 induces fibroblast activation through proteinase-activated receptor-2. Front Pharmacol 2020;11: 552818.10.3389/fphar.2020.552818Search in Google Scholar PubMed PubMed Central
246. Suzuki, T, Tada, Y, Gladson, S, Nishimura, R, Shimomura, I, Karasawa, S. Vildagliptin ameliorates pulmonary fibrosis in lipopolysaccharide induced lung injury by inhibiting endothelial-to-mesenchymal transition. Respir Res 2017;18:177.10.1186/s12931-017-0660-4Search in Google Scholar PubMed PubMed Central
247. Liu, Y, Qi, Y. Vildagliptin, a CD26/DPP4 inhibitor, ameliorates bleomycin-induced pulmonary fibrosis via regulating the extracellular matrix. Int Immunopharmacol 2020;87:106774.10.1016/j.intimp.2020.106774Search in Google Scholar PubMed
248. Kim, KM, Noh, JH, Bodogai, M, Martindale, JL, Yang, X, Indig, FE. Identification of senescent cell surface targetable protein DPP4. Genes Dev 2017;31:1529–34.10.1101/gad.302570.117Search in Google Scholar PubMed PubMed Central
249. Chen, Z, Yu, J, Fu, M, Dong, R, Yang, Y, Luo, J. Dipeptidyl peptidase-4 inhibition improves endothelial senescence by activating AMPK/SIRT1/Nrf2 signaling pathway. Biochem Pharmacol 2020;177:113951.10.1016/j.bcp.2020.113951Search in Google Scholar PubMed
250. Schafer, MJ, White, TA, Iijima, K, Haak, AJ, Ligresti, G, Atkinson, EJ. Cellular senescence mediates fibrotic pulmonary disease. Nat Commun 2017;8:14532.10.1038/ncomms14532Search in Google Scholar PubMed PubMed Central
251. Yao, C, Guan, X, Carraro, G, Parimon, T, Liu, X, Huang, G. Senescence of alveolar type 2 cells drives progressive pulmonary fibrosis. Am J Respir Crit Care Med 2021;203:707–17.10.1164/rccm.202004-1274OCSearch in Google Scholar PubMed PubMed Central
252. Zhong, J, Maiseyeu, A, Davis, SN, Rajagopalan, S. DPP4 in cardiometabolic disease: recent insights from the laboratory and clinical trials of DPP4 inhibition. Circ Res 2015;116:1491–504.10.1161/CIRCRESAHA.116.305665Search in Google Scholar PubMed PubMed Central
253. Kadoglou, N, Korakas, E, Lampropoulos, S, Maratou, E, Kassimis, G, Patsourakos, N, et al.. Plasma nesfatin-1 and DDP-4 levels in patients with coronary artery disease: Kozani study. Cardiovasc Diabetol 2021;20:166.10.1186/s12933-021-01355-xSearch in Google Scholar PubMed PubMed Central
254. Batchu, SN, Yerra, VG, Liu, Y, Advani, SL, Klein, T, Advani, A. The dipeptidyl peptidase-4 inhibitor linagliptin directly enhances the contractile recovery of mouse hearts at a concentration equivalent to that achieved with standard dosing in humans. Int J Mol Sci 2020;21:5756.10.3390/ijms21165756Search in Google Scholar PubMed PubMed Central
255. Fadini, P, Avogaro, A. Cardiovascular effects of DPP-IV inhibition: beyond GLP-1. Vasc Pharmacol 2011;55:10–6.10.1016/j.vph.2011.05.001Search in Google Scholar PubMed
256. Murgai, M, Giles, A, Kaplan, R. Physiological, tumour, and metastatic niches: opportunities and challenges for targeting the tumour microenvironment. Crit Rev Oncog 2015;20:301–14.10.1615/CritRevOncog.2015013668Search in Google Scholar
257. Busek, P, Duke-Cohan, JS, Sedo, A. Does DPP-IV inhibition offer new avenues for therapeutic intervention in malignant disease. Cancers 2022;14:2072.10.3390/cancers14092072Search in Google Scholar PubMed PubMed Central
258. Iwata, S, Morimoto, C. CD26/dipeptidyl peptidase IV in context. The different roles of a multifunctional ectoenzyme in malignant transformation. J Exp Med 1999, 190, 301-6.10.1084/jem.190.3.301Search in Google Scholar PubMed PubMed Central
259. Wesley, UV, Albino, AP, Tiwari, S, Houghton, AN. A role for dipeptidyl peptidase IV in suppressing the malignant phenotype of melanocytic cells. J Exp Med 1999;190:311–22.10.1084/jem.190.3.311Search in Google Scholar PubMed PubMed Central
260. Asada, Y, Aratake, Y, Kotani, T, Marutsuka, K, Araki, Y, Ohtaki, S. Expression of dipeptidyl aminopeptidase IV activity in human lung carcinoma. Histopathology 1993;23:265–70.10.1111/j.1365-2559.1993.tb01199.xSearch in Google Scholar PubMed
261. Wesley, UV, Tiwari, S, Houghton, AN. Role for dipeptidyl peptidase IV in tumour suppression of human non small cell lung carcinoma cells. Int J Cancer 2004;109:855–66.10.1002/ijc.20091Search in Google Scholar PubMed
262. Dimitrova, M, Ivanov, I, Todorova, R, Stefanova, N, Moskova-Doumanova, V, Topouzova-Hristova, T. Comparison of the activity levels and localization of dipeptidyl peptidase IV in normal and tumour human lung cells. Tissue Cell 2012;44:74–9.Search in Google Scholar
263. Khin, EE, Kikkawa, F, Ino, K, Kajiyama, H, Suzuki, T, Shibata, K. Dipeptidyl peptidase IV expression in endometrial endometrioid adenocarcinoma and its inverse correlation with tumour grade. Am J Obstet Gynecol 2003;188:670–6.10.1067/mob.2003.169Search in Google Scholar
264. Bogenrieder, T, Finstad, CL, Freeman, RH, Papandreou, CN, Scher, HI, Albino, AP. Expression and localization of aminopeptidase A, aminopeptidase N, and dipeptidyl peptidase IV in benign and malignant human prostate tissue. Prostate 1997;33:225–32.10.1002/(SICI)1097-0045(19971201)33:4<225::AID-PROS1>3.3.CO;2-QSearch in Google Scholar
265. Dinjens, WN, Ten Kate, J, Kirch, JA, Tanke, HJ, Van der Linden, EP, Van den Ingh, HF. Adenosine deaminase complexing protein (ADCP) expression and metastatic potential in prostatic adenocarcinomas. J Pathol 1990;160:195–20.10.1002/path.1711600303Search in Google Scholar
266. Wesley, UV, McGroarty, M, Homoyouni, A. Dipeptidyl peptidase inhibits malignant phenotype of prostate cancer cells by blocking basic fibroblast growth factor signaling pathway. Cancer Res 2005;65:1325–34.10.1158/0008-5472.CAN-04-1852Search in Google Scholar
267. Urade, M, Komatsu, M, Yamaoka, M, Fukasawa, K, Harada, M, Mima, T. Serum dipeptidyl peptidase activities as a possible marker of oral cancer. Cancer 1989;64:1274–80.10.1002/1097-0142(19890915)64:6<1274::AID-CNCR2820640618>3.0.CO;2-2Search in Google Scholar
268. de la Haba-Rodriguez, J, Macho, A, Calzado, MA, Blazquez, MV, Gomez, MA, Munoz, EE. Soluble dipeptidyl peptidase IV (CD-26) in serum of patients with colorectal carcinoma. Neoplasma 2002;49:307–11.Search in Google Scholar
269. Cordero, OJ, Imbernon, M, Chiara, LD, Martinez-Zorzano, VS, Ayude, D, de la Cadena, MP. Potential of soluble CD26 as a serum marker for colorectal cancer detection. World J Clin Oncol 2011;2:245–61.10.5306/wjco.v2.i6.245Search in Google Scholar
270. Sedo, A, Krepela, E, Kasafirek, E. Dipeptidyl peptidase IV, prolyl endopeptidase and cathepsin B activities in primary human lung tumours and lung parenchyma. J Cancer Res Clin Oncol 1991;117:249–53.10.1007/BF01625433Search in Google Scholar
271. Frohlich, E, Maier, E, Wahl, R. Interspecies differences in membrane-associated protease activities of thyrocytes and their relevance for thyroid cancer studies. J Exp Clin Cancer Res 2012;31:45.10.1186/1756-9966-31-45Search in Google Scholar
272. Pro, B, Dang, NH. CD26/dipeptidyl peptidase IV and its role in cancer. Histol Histopathol 2004, 19, 1345–51.Search in Google Scholar
273. Goscinski, MA, Suo, ZH, Nesland, JM, Florenes, VA, Giercksky, KE. Dipeptidyl peptidase IV expression in cancer and stromal cells of human esophageal squamous cell carcinomas, adenocarcinomas and squamous cell carcinoma cell lines. APMIS 2008;116:823–31.10.1111/j.1600-0463.2008.01029.xSearch in Google Scholar
274. Kikkawa, F, Kajiyama, H, Ino, K, Shibata, K, Mizutani, S. Increased adhesion potency of ovarian carcinoma cells to mesothelial cells by overexpression of dipeptidyl peptidase IV. Int J Cancer 2003;105:779–83.10.1002/ijc.11177Search in Google Scholar
275. Jiang, YX, Yang, SW, Li, PA, Luo, X, Li, ZY, Hao, YX, et al.. The promotion of the transformation of quiescent gastric cancer stem cells by IL-17 and the underlying mechanisms. Oncogene 2017;36:1256–64.10.1038/onc.2016.291Search in Google Scholar PubMed PubMed Central
276. Bauvois, B, De Meester, I, Dumont, J, Rouillard, D, Zhao, HX, Bosmans, E. Constitutive expression of CD26/dipeptidylpeptidase IV on peripheral blood B lymphocytes of patients with B chronic lymphocytic leukaemia. Br J Cancer 1999;79:1042–8.10.1038/sj.bjc.6690167Search in Google Scholar PubMed PubMed Central
277. Cro, L, Morabito, F, Zucal, N, Fabris, S, Lionetti, M, Cutrona, G. CD26 expression in mature B-cell neoplasia: its possible role as a new prognostic marker in B-CLL. Hematol Oncol 2009;27:140–7.10.1002/hon.888Search in Google Scholar PubMed
278. Havre, PA, Dang, LH, Ohnuma, K, Iwata, S, Morimoto, C, Dang, NH. CD26 expression on T-anaplastic large cell lymphoma (ALCL) line Karpas 299 is associated with increased expression of versican and MT1-MMP and enhanced adhesion. BMC Cancer 2013;13:517.10.1186/1471-2407-13-517Search in Google Scholar PubMed PubMed Central
279. Carbone, A, Cozzi, M, Gloghini, A, Pinto, A. CD26/dipeptidylpeptidase IV expression in human lymphomas is restricted to CD30-positive anaplastic large cell and a subset of Tcell non-Hodgkin’s lymphomas. Human Pathol 1994;25:1360–5.10.1016/0046-8177(94)90098-1Search in Google Scholar PubMed
280. Carbone, A, Gloghini, A, Zagonel, V, Aldinucci, D, Gattei, V, Degan, M, et al.. The expression of CD26 and CD40 ligand is mutually exclusive in human T-cell non-Hodgkin’s lymphomas/leukemias. Blood 1995;86:4617–26.10.1182/blood.V86.12.4617.bloodjournal86124617Search in Google Scholar
281. Dang, NH, Aytac, U, Sato, K, O’Brien, S, Melenhorst, J, Morimoto, C, et al.. T-large granular lymphocyte lymphoproliferative disorder: expression of CD26 as a marker of clinically aggressive disease and characterization of marrow inhibition. Br J Haematol 2003;121:857–65.10.1046/j.1365-2141.2003.04365.xSearch in Google Scholar PubMed
282. Pethiyagoda, CL, Welch, DR, Fleming, TP. Dipeptidyl peptidase IV (DPPIV) inhibits cellular invasion of melanoma cells. Clin Exp Metast 2001;18:391–400.10.1023/A:1010930918055Search in Google Scholar
283. Novelli, M, Savoia, P, Fierro, MT, Verrone, A, Quaglino, P, BernengoMG. Keratinocytes express dipeptidyl-peptidase IV (CD26) in benign and malignant skin diseases. Br J Dermatol 1996;134:1052–6.10.1111/j.1365-2133.1996.tb07941.xSearch in Google Scholar
284. Ansorge, S, Bank, U, Heimburg, A, Helmuth, M, Koch, G, Tadje, J. Recent insights into the role of dipeptidyl aminopeptidase IV (DPIV) and aminopeptidase N (APN) families in immune functions. Clin Chem Lab Med 2009;47:253–61.10.1515/CCLM.2009.063Search in Google Scholar PubMed
285. Van Der Velden, VH, Hulsmann, AR. Peptidases: structure, function and modulation of peptide-mediated effects in the human lung. Clin Exp Allergy 1999;29:445–56.10.1046/j.1365-2222.1999.00462.xSearch in Google Scholar
286. Mentlein, R, Dahms, P, Grandt, D, Kruger, R. Proteolytic processing of neuropeptide Y and peptide YY by dipeptidyl peptidase IV. Regul Pept 1993;49:133–44.10.1016/0167-0115(93)90435-BSearch in Google Scholar
287. Ghersi, G, Chen, W, Lee, EW, Zukowska, Z. Critical role of dipeptidyl peptidase IV in neuropeptide Y-mediated endothelial cell migration in response to wounding. Peptides 2001;22:453–8.10.1016/S0196-9781(01)00340-0Search in Google Scholar
288. Jang, JH, Janker, F, De Meester, I, Arni, S, Borgeaud, N, Yamada, Y. The CD26/DPP4-inhibitor vildagliptin suppresses lung cancer growth via macrophage-mediated NK cell activity. Carcinogenesis 2019;40:324–34.10.1093/carcin/bgz009Search in Google Scholar
289. Mathew, S, Morrison, ME, Murty, VV, Houghton, AN, Chaganti, RS. Assignment of the DPP4 gene encoding adenosine deaminase binding protein (CD26/dipeptidylpeptidase IV) to 2q23. Genomics 1994;22:211–2.10.1006/geno.1994.1364Search in Google Scholar
290. Otsuka, T, Kohno, T, Mori, M, Noguchi, M, Hirohashi, S, Yokota, J. Deletion mapping of chromosome 2 in human lung carcinoma. Genes Chromosomes Cancer 1996;16:113–9.10.1002/(SICI)1098-2264(199606)16:2<113::AID-GCC5>3.0.CO;2-2Search in Google Scholar
291. Dimitrova, M, Ivanov, I, Todorova, R, Stefanova, N, Moskova-Doumanova, V, Topouzova-Hristova, T. Comparison of the activity levels and localization of dipeptidyl peptidase IV in normal and tumour human lung cells. Tissue Cell 2012;44:74–9.10.1016/j.tice.2011.11.003Search in Google Scholar
292. Morrison, H, Sherman, LS, Legg, J, Banine, F, Isacke, C, Haipek, CA. The NF2 tumour suppressor gene product, merlin, mediates contact inhibition of growth through interactions with CD44. Genes Dev 2001;15:968–80.10.1101/gad.189601Search in Google Scholar
293. Yan, P, Muhlethaler, A, Bourloud, KB, Beck, MN, Gross, N. Hypermethylation-mediated regulation of CD44 gene expression in human neuroblastoma. Genes Chromosomes Cancer 2003;36:129–38.10.1002/gcc.10150Search in Google Scholar
294. Yang, X, Zhang, X, Wu, R, Huang, Q, Jiang, Y, Qin, J, et al.. DPPIV promotes endometrial carcinoma cell proliferation, invasion and tumourigenesis. Oncotarget 2017;8:8679–92.10.18632/oncotarget.14412Search in Google Scholar
295. Kajiyama, H, Kikkawa, F, Maeda, O, Suzuki, T, Ino, K, Mizutani, S. Increased expression of dipeptidyl peptidase IV in human mesothelial cells by malignant ascites from ovarian carcinoma patients. Oncology 2002;63:158–65.10.1159/000063801Search in Google Scholar PubMed
296. Ware, JL. Growth factor network disruption in prostate cancer progression. Cancer Metastasis Rev 1998;17:443–7.10.1023/A:1006114527274Search in Google Scholar
297. Giri, D, Ropiquet, F, Ittmann, M. Alterations in expression of basic fibroblast growth factor (FGF) 2 and its receptor FGFR-1 in human prostate cancer. Clin Cancer Res 1999;5:1063–71.Search in Google Scholar
298. Dow, JK, deVere White, RW. Fibroblast growth factor 2: its structure and property, paracrine function, tumour angiogenesis, and prostate-related mitogenic and oncogenic functions. Urology 2000;55:800–6.10.1016/S0090-4295(00)00457-XSearch in Google Scholar PubMed
299. Feldman, BJ, Feldman, D. The development of androgen-independent prostate cancer. Nat Rev Cancer 2001;1:34–45.10.1038/35094009Search in Google Scholar PubMed
300. Isaacs, JT, Isaacs, WB. Androgen receptor outwits prostate cancer drugs. Nat Med 2004;10:26–7.10.1038/nm0104-26Search in Google Scholar PubMed
301. Nakamoto, T, Chang, CS, Li, AK, Chodak, GW. Basic fibroblast growth factor in human prostate cancer cells. Cancer Res 1992;52:571–7.Search in Google Scholar
302. Gioeli, D, Mandell, JW, Petroni, GR, Frierson, HF, Weber, MJ. Activation of mitogen-activated protein kinase associated with prostate cancer progression. Cancer Res 1999;59:279–84.Search in Google Scholar
303. Pintucci, G, Moscatelli, D, Saponara, F, Biernacki, PR, Baumann, FG, Bizekis, C. Lack of ERK activation and cell migration in FGF-2-deficient endothelial cells. FASEB J 2002;16:598–600.10.1096/fj.01-0815fjeSearch in Google Scholar PubMed
304. Giuliani, R, Bastaki, M, Coltrini, D, Presta, M. Role of endothelial cell extracellular signal-regulated kinase1/2 in urokinase-type plasminogen activator upregulation and in vitro angiogenesis by fibroblast growth factor-2. J Cell Sci 1999;112:2597–606.10.1242/jcs.112.15.2597Search in Google Scholar PubMed
305. Rabbani, SA, Mazar, AP. The role of the plasminogen activation system in angiogenesis and metastasis. Surg Oncol Clin N Am 2001;10:393–415.10.1016/S1055-3207(18)30072-3Search in Google Scholar
306. Bugler, B, Amalric, F, Prats, H. Alternative initiation of translation determines cytoplasmic or nuclear localization of basic fibroblast growth factor. Mol Cell Biol 1991;11:573–7.10.1128/MCB.11.1.573Search in Google Scholar
307. Bikfalvi, A, Klein, S, Pintucci, G, Rifkin, DB. Biological roles of fibroblast growth factor-2. Endocr Rev 1997;18:26–45.10.1210/edrv.18.1.0292Search in Google Scholar PubMed
308. Delrieu, I. The high molecular weight isoforms of basic fibroblast growth factor (FGF-2): an insight into an intracrine mechanism. FEBS Lett 2000;468:6–10.10.1016/S0014-5793(00)01189-3Search in Google Scholar PubMed
309. Wilson, MJ, Ruhland, AR, Quast, BJ, Reddy, PK, Ewing, SL, Sinha, AA. Dipeptidylpeptidase IV activities are elevated in prostate cancers and adjacent benign hyperplastic glands. J Androl 2000;21:220–6.10.1002/j.1939-4640.2000.tb02099.xSearch in Google Scholar
310. Lu, Z, Qi, L, Bo, XJ, Liu, GD, Wang, JM, Li, G. Expression of CD26 and CXCR4 in prostate carcinoma and its relationship with clinical parameters. J Res Med Sci 2013;18:647–52.Search in Google Scholar
311. Boonacker, E, Van Noorden, CJ. The multifunctional or moonlighting protein CD26/DPPIV. Eur J Cell Biol 2003;82:53–73.10.1078/0171-9335-00302Search in Google Scholar PubMed
312. Proost, P, Struyf, S, Schols, D, Opdenakker, G, Sozzani, S, Allavena, P. Truncation of macrophage-derived chemokine by CD26/ipeptidyl-peptidase IV beyond its predicted cleavage site affects chemotactic activity and CC chemokine receptor 4 interaction. J Biol Chem 1999;274:3988–93.10.1074/jbc.274.7.3988Search in Google Scholar PubMed
313. Tang, AC, Raphael, SJ, Lampe, HB, Matthews, TW, Becks, GP. Expression of dipeptidyl aminopeptidase IV activity in thyroid tumours: a possible marker of thyroid malignancy. J Otolaryngol 1996;25:14–9.Search in Google Scholar
314. Lee, JJ, Wang, TY, Liu, CL, Chien, MN, Chen, MJ, Hsu, YC, et al.. Dipeptidyl peptidase IV as a prognostic marker and therapeutic target in papillary thyroid carcinoma. J Clin Endocrinol Metab 2017;102:2930–40.10.1210/jc.2017-00346Search in Google Scholar PubMed
315. Kotani, T, Asada, Y, Aratake, Y, Umeki, K, Yamamoto, I, Tokudome, R. Diagnostic usefulness of dipeptidyl aminopeptidase IV monoclonal antibody in paraffin-embedded thyroid follicular tumours. J Pathol 1992;168:41–5.10.1002/path.1711680108Search in Google Scholar PubMed
316. Maruta, J, Hashimoto, H, Yamashita, H, Yamashita, H, Noguchi, S. Diagnostic applicability of dipeptidyl aminopeptidase IV activity in cytological samples for differentiating follicular thyroid carcinoma from follicular adenoma. Arch Surg 2004;139:83–8.10.1001/archsurg.139.1.83Search in Google Scholar PubMed
317. Stremenova, J, Krepela, E, Mares, V, Trim, J, Dbaly, V, Marek, J. Expression and enzymatic activity of dipeptidyl peptidase-IV in human astrocytic tumours are associated with tumour grade. Int J Oncol 2007;31:785–92.10.3892/ijo.31.4.785Search in Google Scholar
318. Ehtesham, M, Winston, JA, Kabos, P, Thompson, RC. CXCR4 expression mediates glioma cell invasiveness. Oncogene 2006;25:2801–6.Search in Google Scholar
319. Christopherson, KW, Hangoc, G, Broxmeyer, HE. Cell surface peptidase CD26/dipeptidylpeptidase IV regulates CXCL12/stromal cell-derived factor-1 alpha-mediated chemotaxis of human cord blood CD34+ progenitor cells. J Immunol 2002;169:7000–8.10.4049/jimmunol.169.12.7000Search in Google Scholar PubMed
320. Stremenova, J, Mares, V, Lisa, V, Hilser, M, Krepela, E, Vanickova, Z. Expression of dipeptidyl peptidase-IV activity and/or structure homologs in human meningiomas. Int J Oncol 2010;36:351–8.10.3892/ijo_00000506Search in Google Scholar
321. Arscott, WT, LaBauve, AE, May, V, Wesley, UV. Suppression of neuroblastoma growth by dipeptidyl peptidase IV: relevance of chemokine regulation and caspase activation. Oncogene 2009;28:479–91.10.1038/onc.2008.402Search in Google Scholar PubMed PubMed Central
322. Pass, H, Vogelzang, N, Hahn, S, Carbone, M. Malignant pleural mesothelioma. Curr Proble Cancer 2004;28:93–104.10.1016/j.currproblcancer.2004.04.001Search in Google Scholar PubMed
323. Amatya, V, Takeshima, Y, Kushitani, K, Yamada, T, Morimoto, C. Overexpression of CD26/DPPIV in mesothelioma tissue and mesothelioma cell lines. Oncol Rep 2011;26:1369–75.10.3892/or.2011.1449Search in Google Scholar PubMed
324. Angevin, E, Isambert, N, Trillet-Lenoir, V, You, B, Alexandre, J, Zalcman, G, et al.. First-in-human phase 1 of YS110, a monoclonal antibody directed against CD26 in advanced CD26-expressing cancers. Br J Cancer 2017;116:1126–34.10.1038/bjc.2017.62Search in Google Scholar PubMed PubMed Central
325. Ghani, FI, Yamazaki, H, Iwata, S, Okamoto, K, Okabe, K, Mimura, Y, et al.. Identification of cancer stem cell markers in human malignant mesothelioma cells. Biochem Biophys Res Commun 2011;404:735–42.10.1016/j.bbrc.2010.12.054Search in Google Scholar PubMed
326. Dietrich, P, Wormser, L, Fritz, V, Seitz, T, De Maria, M, Schambony, A, et al.. Molecular crosstalk between Y5 receptor and neuropeptide Y drives liver cancer. J Clin Investig 2020;130:2509–26.10.1172/JCI131919Search in Google Scholar PubMed PubMed Central
327. Stecca, BA, Nardo, B, Chieco, P, Mazziotti, A, Bolondi, L, Cavallari, A. Aberrant dipeptidyl peptidase IV (DPP IV/CD26) expression in human hepatocellular carcinoma. J Hepatol 1997;27:337–45.10.1016/S0168-8278(97)80180-8Search in Google Scholar
328. Hollande, C, Boussier, J, Ziai, J, Nozawa, T, Bondet, V, Phung, W, et al.. Inhibition of the dipeptidyl peptidase DPP4 (CD26) reveals IL-33-dependent eosinophil-mediated control of tumour growth. Nat Immunol 2019;20:257–64.10.1038/s41590-019-0321-5Search in Google Scholar PubMed
329. Nishina, S, Yamauchi, A, Kawaguchi, T, Kaku, K, Goto, M, Sasaki, K, et al.. Dipeptidyl peptidase 4 inhibitors reduce hepatocellular carcinoma by activating lymphocyte chemotaxis in mice. Cell Mol Gastroenterol Hepatol 2019;7:115–34.10.1016/j.jcmgh.2018.08.008Search in Google Scholar PubMed PubMed Central
330. Henderson, JM, Xiang, MS, Huang, JC, Wetzel, S, Jiang, L, Lai, JH, et al.. Dipeptidyl peptidase inhibition enhances CD8 T cell recruitment and activates Intrahepatic inflammasome in a murine model of hepatocellular carcinoma. Cancers 2021;13:5495.10.3390/cancers13215495Search in Google Scholar PubMed PubMed Central
331. Gaetaniello, L, Fiore, M, de Filippo, S, Pozzi, N, Tamasi, S, Pignata, C. Occupancy of dipeptidyl peptidase IV activates an associated tyrosine kinase and triggers an apoptotic signal in human hepatocarcinoma cells. Hepatology 1998;27:934–42.10.1002/hep.510270407Search in Google Scholar PubMed
332. Itou, M, Kawaguchi, T, Taniguchi, E, Sumie, S, Oriishi, T, Mitsuyama, K, et al.. Altered expression of glucagon-like peptide-1 and dipeptidyl peptidase IV in patients with HCV-related glucose intolerance. J Gastroenterol Hepatol 2008;23:244–51.10.1111/j.1440-1746.2007.05183.xSearch in Google Scholar PubMed
333. Kaji, K, Yoshiji, H, Ikenaka, Y, Noguchi, R, Aihara, Y, Douhara, A, et al.. Dipeptidyl peptidase-4 inhibitor attenuates hepatic fibrosis via suppression of activated hepatic stellate cell in rats. J Gastroenterol 2014;49:481–91.10.1007/s00535-013-0783-4Search in Google Scholar PubMed
334. Abd Elmaaboud, M, Khattab, H, Shalaby, S. Hepatoprotective effect of linagliptin against liver fibrosis induced by carbon tetrachloride in mice. Can J Physiol Pharmacol 2021;99:294–302.10.1139/cjpp-2020-0049Search in Google Scholar PubMed
335. Sokar, SS, El-Sayad, ME, Ghoneim, ME, Shebl, AM. Combination of Sitagliptin and Silymarin ameliorates liver fibrosis induced by carbon tetrachloride in rats. Biomed Pharmacother 2017;89:98–107.10.1016/j.biopha.2017.02.010Search in Google Scholar PubMed
336. Wang, XM, Holz, LE, Chowdhury, S, Cordoba, SP, Evans, KA, Gall, MG, et al.. The pro-fibrotic role of dipeptidyl peptidase 4 in carbon tetrachloride-induced experimental liver injury. Immunol Cell Biol 2017;95:443–53.10.1038/icb.2016.116Search in Google Scholar PubMed
337. Nagami, Y, Ominami, M, Otani, K, Tanaka, F, Taira, K, Yamagami, H. Endoscopic submucosal dissection for adenocarcinomas of the esophagogastric junction. Digestion 2018;97:38–44.10.1159/000484111Search in Google Scholar PubMed
338. Sharman, P, Sidorenko, EI. Are screening and surveillance for Barrett’s oesophagus really worthwhile. Gut 2005;54:27–31.10.1136/gut.2004.041566Search in Google Scholar PubMed PubMed Central
339. Omae, M, Fujisaki, J, Shimizu, T, Igarashi, M, Yamamoto, N. Magnifying endoscopy with narrow-band imaging finding in the diagnosis of Barrett’s esophageal adenocarcinoma spreading below squamous epithelium. Dig Endosc 2013;225:162–7.10.1111/den.12077Search in Google Scholar PubMed
340. Yamamoto, K, Ohnishi, S, Mizushima, T, Kodaira, J, Ono, M, Hatanaka, Y, et al.. Detection of early adenocarcinoma of the esophagogastric junction by spraying an enzyme-activatable fluorescent probe targeting Dipeptidyl peptidase-IV. BMC Cancer 2020;20:64.10.1186/s12885-020-6537-9Search in Google Scholar PubMed PubMed Central
341. Onoyama, H, Kamiya, M, Kuriki, Y, Komatsu, T, Abe, H, Tsuji, Y. Rapid and sensitive detection of early esophageal squamous cell carcinoma with fluorescence probe targeting dipeptidylpeptidase IV. Sci Rep 2016;6:26399.10.1038/srep26399Search in Google Scholar PubMed PubMed Central
342. Larrinaga, G, Perez, I, Sanz, B, Beitia, M, Errarte, P, Fernandez, A, et al.. Dipeptidylpeptidase IV activity is correlated with colorectal cancer prognosis. PLoS One 2015;10:e0119436.10.1371/journal.pone.0119436Search in Google Scholar PubMed PubMed Central
343. Pang, R, Law, WL, Chu, AC, Poon, JT, Lam, CS, Chow, AK, et al.. A subpopulation of CD26+ cancer stem cells with metastatic capacity in human colorectal cancer. Cell Stem Cell 2010;6:603–15.10.1016/j.stem.2010.04.001Search in Google Scholar PubMed
344. Kumaravelu, P, Chellathai, D. Evaluation of anti cancer effects of DPP-4Inhibitors in colon cancer- an Invitro study. J Clin Diagn Res 2015;9:14–6.Search in Google Scholar
345. Gorrell, MD, Gysbers, V, McCaughan, GW. CD26: a multifunctional integral membrane and secreted protein of activated lymphocytes. Scand J Immunol 2001;54:249–64.10.1046/j.1365-3083.2001.00984.xSearch in Google Scholar PubMed
346. Gonzalez-Gronow, M, Misra, UK, Gawdi, G, Pizzo, SV. Association of plasminogen with dipeptidyl peptidase IV and Na+/H+ exchanger isoform NHE3 regulates invasion of human 1-LN prostate tumour cells. J Biol Chem 2005;280:27173–8.10.1074/jbc.M500383200Search in Google Scholar PubMed
347. Cheng, HC, Abdel-Ghany, M, Elble, RC, Pauli, BU. Lung endothelial dipeptidyl peptidase IV promotes adhesion and metastasis of rat breast cancer cells via tumour cell surface-associated fibronectin. J Biol Chem 1998;273:24207–15.10.1074/jbc.273.37.24207Search in Google Scholar PubMed
348. Korach, S, Poupon, MF, Du Villard, JA, Becker, M. Differential adhesiveness of rhabdomyosarcoma-derived cloned metastatic cell lines to vascular endothelial monolayers. Cancer Res 1986;46:3624–9.Search in Google Scholar
349. Kato, Y, Saijo, N. Developed new agents for lung cancer. Nihon Geka Gakkai Zasshi 2002;103:218–23.Search in Google Scholar
350. Beckenkamp, A, Davies, S, Willig, JB, Buffon, A. DPPIV/CD26: a tumour suppressor or a marker of malignancy. Tumour Biol 2016;37:7059–73.10.1007/s13277-016-5005-2Search in Google Scholar PubMed
351. Ehtesham, M, Winston, JA, Kabos, P, Thompson, RC. CXCR4 expression mediates glioma cell invasiveness. Oncogene 2006;25:2801–6.10.1038/sj.onc.1209302Search in Google Scholar PubMed
352. Vangoitsenhoven, R, Mathieu, C, Van der Schueren, B. GLP1 and cancer: friend or foe? Endocr Relat Cancer 2012;19:F77–88.10.1530/ERC-12-0111Search in Google Scholar PubMed
353. Korner, M, Stockli, M, Waser, B, Reubi, JC. GLP-1 receptor expression in human tumours and human normal tissues: potential for in vivo targeting. J Nucl Med 2007;48:736–43.10.2967/jnumed.106.038679Search in Google Scholar PubMed
354. Koehler, JA, Drucker, DJ. Activation of glucagon-like peptide-1 receptor signaling does not modify the growth or apoptosis of human pancreatic cancer cells. Diabetes 2006;55:1369–79.10.2337/db05-1145Search in Google Scholar PubMed
355. Girman, CJ, Kou, TD, Cai, B, Alexander, CM, O’Neill, EA, Williams-Herman, DE. Patients with type 2 diabetes mellitus have higher risk for acute pancreatitis compared with those without diabetes. Diabetes Obes Metab 2010;2:766–71.10.1111/j.1463-1326.2010.01231.xSearch in Google Scholar PubMed
356. Garg, R, Chen, W, Pendergrass, M. Acute pancreatitis in type 2 diabetes treated with exenatide or sitagliptin: a retrospective observational pharmacy claims analysis. Diabetes Care 2010;33:2349–54.10.2337/dc10-0482Search in Google Scholar PubMed PubMed Central
357. Dore, DD, Bloomgren, GL, Wenten, M, Hoffman, C, Clifford, CR, Quinn, SG, et al.. A cohort study of acute pancreatitis in relation to exenatide use. Diabetes Obes Metab 2011;13:559–66.10.1111/j.1463-1326.2011.01376.xSearch in Google Scholar PubMed
358. Ueberberg, S, Jutte, H, Uhl, W, Schmidt, W, Nauck, M, Montanya, E, et al.. Histological changes in endocrine and exocrine pancreatic tissue from patients exposed to incretin-based therapies. Diabetes Obes Metab 2016;18:1253–62.10.1111/dom.12766Search in Google Scholar PubMed
359. Aston-Mourney, K, Subramanian, SL, Zraika, S, Samarasekera, T, Meier, DT, Goldstein, LC, et al.. One year of sitagliptin treatment protects against islet amyloid-associated beta-cell loss and does not induce pancreatitis or pancreatic neoplasia in mice. Am J Physiol Endocrinol Metab 2013;305:E475–E484.10.1152/ajpendo.00025.2013Search in Google Scholar PubMed PubMed Central
360. Cox, AR, Lam, CJ, Rankin, MM, Rios, JS, Chavez, J, Bonnyman, CW, et al.. Incretin therapies do not expand beta-cell mass or alter pancreatic histology in young male mice. Endocrinology 2017;158:1701–14.10.1210/en.2017-00027Search in Google Scholar PubMed PubMed Central
361. Busch, SJ, Hoffmann, P, Sahota, P, Johnson, R, Kothny, W, Meyer, F, et al.. Studies in rodents with the dipeptidyl peptidase-4 inhibitor vildagliptin to evaluate possible drug-induced pancreatic histological changes that are predictive of pancreatitis and cancer development in man. Diabetes Obes Metab 2013;15:72–6.10.1111/j.1463-1326.2012.01678.xSearch in Google Scholar PubMed
362. Bjerre Knudsen, L, Madsen, LW, Andersen, S, Almholt, K, de Boer, AS, Drucker, DJ. Glucagon-like Peptide-1 receptor agonists activate rodent thyroid C-cells causing calcitonin release and C-cell proliferation. Endocrinology 2010;151:1473–86.10.1210/en.2009-1272Search in Google Scholar PubMed
363. Waser, B, Beetschen, K, Pellegata, NS, Reubi, JC. Incretin receptors in non-neoplastic and neoplastic thyroid C cells in rodents and humans: relevance for incretin-based diabetes therapy. Neuroendocrinology 2011;94:291–301.10.1159/000330447Search in Google Scholar PubMed
364. Roman, S, Lin, R, Sosa, JA. Prognosis of medullary thyroid carcinoma: demographic, clinical, and pathologic predictors of survival in 1252 cases. Cancer 2006;107:2134–42.10.1002/cncr.22244Search in Google Scholar PubMed
365. Koehler, JA, Kain, T, Drucker, DJ. Glucagon-like peptide-1 receptor activation inhibits growth and augments apoptosis in murine CT26 colon cancer cells. Endocrinology 2011;152:3362–72.10.1210/en.2011-1201Search in Google Scholar PubMed
366. Greenberg, ME. Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 1995;270:1326–31.10.1126/science.270.5240.1326Search in Google Scholar PubMed
367. Arrebola, Y, Díaz, L, García, G, Pascual, I. Dipeptidil peptidasa IV: inhibidores y sus potenciales aplicaciones biomédicas. Rev Cuba Cien Biol 2014;3:14–26.Search in Google Scholar
368. Pascual, I, Arrebola, Y, Almeida, F, Valdés, ME, Rivera, L, Hernández-Zanuy, A, et al.. Marine and coastal organisms: a source of biomedically relevant dipeptidyl peptidase IV inhibitors. Rev Cuba Cien Biol 2020;8:1–16.Search in Google Scholar
369. Lu, Y, Lu, P, Wang, Y, Fang, X. A novel dipeptidyl peptidase IV inhibitory tea peptide improves pancreatic β-cell function and reduces α-cell proliferation in StreptozotocinInduced diabetic mice. Int J Mol Sci 2019;20:322.10.3390/ijms20020322Search in Google Scholar PubMed PubMed Central
370. Lin, SR, Chang, CH, Tsai, MJ, Cheng, H. The perceptions of natural compounds against dipeptidyl peptidase 4 in diabetes: from in silico to in vivo. Thera Adv Chron Dis 2019;10:2040622319875305.10.1177/2040622319875305Search in Google Scholar PubMed PubMed Central
371. Pascual, I, Lopéz, A, Gómez, H, Chappé, M. Screening of inhibitors of porcine dipeptidyl peptidase IV activity in aqueous extracts from marine organisms. Enz Microb Tech 2007;40:414–9.10.1016/j.enzmictec.2006.07.012Search in Google Scholar
372. Turdu, G, Gao, H, Jiang, Y, Kabas, M. Plant dipeptidyl peptidase-iv inhibitors as antidiabetic agents: a brief review. Future Med Chem 2018;10:1229–39.10.4155/fmc-2017-0235Search in Google Scholar PubMed
373. Singh, AK, Patel, PK, Choudhary, K, Joshi, J. Quercetin and coumarin inhibit dipeptidyl peptidase-IV and exhibits antioxidant properties: in silico, in vitro, ex vivo. Biomolecules 2020;10:207.10.3390/biom10020207Search in Google Scholar PubMed PubMed Central
374. Liu, R, Cheng, J, Wu, H. Discovery of food-derived dipeptidyl peptidase IV inhibitory peptides: a review. Int J Mol Sci 2019;20:3463.10.3390/ijms20030463Search in Google Scholar PubMed PubMed Central
375. Gomez, HL, Peralta, JP, Tejano, LA, Chang, YW. In silico and in vitro assessment of Portuguese oyster (Crassostrea angulata) proteins as precursor of bioactive peptides. Int J Mol Sci 2019, 20, 5191.10.3390/ijms20205191Search in Google Scholar PubMed PubMed Central
376. Chakraborty, K, Joy, M. Anti-diabetic and anti-inflammatory activities of commonly available cephalopods. Int J Food Prop 2017;20:1655–65.10.1080/10942912.2016.1217008Search in Google Scholar
377. Lauritano, C, Ianora, A. Marine organisms with anti-diabetes properties. Mar Drugs 2016;14:220.10.3390/md14120220Search in Google Scholar PubMed PubMed Central
378. Nongonierma, A, Mooney, C, Shields, D, FitzGerald, R. Inhibition of dipeptidyl peptidase IV and xanthine oxidase by amino acids and dipeptides. Food Chem 2013;141:644–53.10.1016/j.foodchem.2013.02.115Search in Google Scholar PubMed
379. Kelly, TA, Adams, J, Bachovchin, WW, Barton, RW, Campbell, SJ, Coutts, SJ, et al.. Immunosuppressive boronic acid dipeptides: correlation between conformation and activity. J Am Chem Soc 1993;115:12637–8.10.1021/ja00079a074Search in Google Scholar
380. Lam, B, Zhang, Z, Stafford, J, Skene, R, Shi, L, Gwaltney, S. Structure-based design of pyridopyrimidinediones as dipeptidyl peptidase IV inhibitors. Bioorg Med Chem Lett 2012;22:6628–31.10.1016/j.bmcl.2012.08.110Search in Google Scholar PubMed
381. Motoshima, K, Sugita, K, Hashimoto, Y, Ishikawa, M. Non-competitive and selective dipeptidyl peptidase IV inhibitors with phenethylphenylphthalimide skeleton derived from thalidomide-related a-glucosidase inhibitors and liver X receptor antagonists. Bioorg Med Chem Lett 2011;21:3041–5.10.1016/j.bmcl.2011.03.026Search in Google Scholar PubMed
382. Gómez, H, Chappé, M, Valiente, P, Pons, T. Effect of zinc and calcium ions on the rat kidney membrane-bound form of dipeptidyl peptidase IV. J Biosci 2013;38:1–9.10.1007/s12038-013-9333-8Search in Google Scholar PubMed
383. Pascual, I, Gómez, H, Pons, T, Chappé, M. Effect of divalent cations on the porcine kidney cortex membrane-bound form of dipeptidyl peptidase IV. Int J Biochem Cell Biol 2011;4:2–16.10.1016/j.biocel.2010.11.006Search in Google Scholar PubMed
384. Pascual, I, Valiente, P, Valdés-Tresanco, ME, Arrebola, Y, Almeida, F, Díaz, L, et al.. Int J Biol Macromol 2022;196:120–30.10.1016/j.ijbiomac.2021.12.056Search in Google Scholar PubMed
385. Wang, H, Liu, X, Long, M, Huang, Y, Zhang, L, Zhang, R, et al.. NRF2 activation by antioxidant antidiabetic agents accelerates tumour metastasis. Sci Transl Med 2016;8:334–51.10.1126/scitranslmed.aad6095Search in Google Scholar PubMed
386. Russo, JW, Gao, C, Bhasin, SS, Voznesensky, OS, Calagua, C, Arai, S, et al.. Downregulation of dipeptidyl peptidase 4 accelerates progression to castration-resistant prostate cancer. Cancer Res 2018;78:6354–62.10.1158/0008-5472.CAN-18-0687Search in Google Scholar PubMed PubMed Central
387. Yang, F, Takagaki, Y, Yoshitomi, Y, Ikeda, T, Li, J, Kitada, M, et al.. Inhibition of dipeptidyl peptidase-4 accelerates epithelial-mesenchymal transition and breast cancer metastasis via the CXCL12/CXCR4/mTOR Axis. Cancer Res 2019;79:735–46.10.1158/0008-5472.CAN-18-0620Search in Google Scholar PubMed
388. Pech, V, Abusaada, K, Alemany, C. Dipeptidyl peptidase-4 inhibition may stimulate progression of carcinoid tumour. Case Rep Endocrinol 2015;2015:952019.10.1155/2015/952019Search in Google Scholar PubMed PubMed Central
389. Ali, A, Fuentes, A, Skelton, WP, Wang, Y, Mcgorray, S, Shah, C. A multi-center retrospective analysis of the effect of DPP4 inhibitors on progression-free survival in advanced airway and colorectal cancers. Mol Clin Oncol 2019;10:118–24.10.3892/mco.2018.1766Search in Google Scholar PubMed PubMed Central
390. Bishnoi, R, Hong, YR, Shah, C, Ali, A, Skelton, WP, Huo, J. Dipeptidyl peptidase 4 inhibitors as novel agents in improving survival in diabetic patients with colorectal cancer and lung cancer: a surveillance epidemiology and endpoint research medicare study. Cancer Med 2019;8:3918–27.10.1002/cam4.2278Search in Google Scholar PubMed PubMed Central
391. Tseng, CH. Sitagliptin may reduce breast cancer risk in women with type 2 diabetes. Clin Breast Cancer 2017;17:211–8.10.1016/j.clbc.2016.11.002Search in Google Scholar PubMed
392. Tseng, CH. Sitagliptin may reduce prostate cancer risk in male patients with type 2 diabetes. Oncotarget 2017;8:19057–64.10.18632/oncotarget.12137Search in Google Scholar PubMed PubMed Central
393. Hsu, WH, Sue, SP, Liang, HL, Tseng, CW, Lin, HC, Wen, WL, et al.. Dipeptidyl peptidase 4 inhibitors decrease the risk of hepatocellular carcinoma in patients with chronic hepatitis C infection and type 2 diabetes mellitus: a Nationwide study in Taiwan. Front Public Health 2021;9:711723.10.3389/fpubh.2021.711723Search in Google Scholar PubMed PubMed Central
394. Kamada, S, Namekawa, T, Ikeda, K, Suzuki, T, Kagawa, M, Takeshita, H, et al.. Functional inhibition of cancer stemness-related protein DPP4 rescues tyrosine kinase inhibitor resistance in renal cell carcinoma. Oncogene 2021;40:3899–913.10.1038/s41388-021-01822-5Search in Google Scholar PubMed
395. Kabel, AM, Atef, A, Estfanous, RS. Ameliorative potential of sitagliptin and/or resveratrol on experimentally-induced clear cell renal cell carcinoma. Biomed Pharmacother 2018;97:667–74.10.1016/j.biopha.2017.10.149Search in Google Scholar PubMed
396. Arwert, EN, Mentink, RA, Driskell, RR, Hoste, E, Goldie, SJ, Quist, WFM. Upregulation of CD26 expression in epithelial cells and stromal cells during wound-induced skin tumour formation. Oncogene 2012;31:992–1000.10.1038/onc.2011.298Search in Google Scholar PubMed
397. Choi, HJ, Kim, JY, Lim, SC, Kim, G, Yun, HJ, Choi, HS. Dipeptidyl peptidase 4 promotes epithelial cell transformation and breast tumourigenesis via induction of PIN1 gene expression. Br J Pharmacol 2015;172:5096–109.10.1111/bph.13274Search in Google Scholar PubMed PubMed Central
398. Wang, Q, Lu, P, Wang, T, Zheng, Q, Li, Y, Leng, SX, et al.. Sitagliptin affects gastric cancer cells proliferation by suppressing Melanoma-associated antigen-A3 expression through Yes-associated protein inactivation. Cancer Med 2020;9:3816–28.10.1002/cam4.3024Search in Google Scholar PubMed PubMed Central
399. Sliwinska, A, Rogalska, A, Marczak, A, Kasznicki, J, Drzewoski, J. Metformin, but not sitagliptin, enhances WP 631-induced apoptotic HepG2 cell death. Toxicol Vitr 2015;29:1116–23.10.1016/j.tiv.2015.04.019Search in Google Scholar PubMed
400. Beckenkamp, A, Willig, JB, Santana, DB, Nascimento, J, Paccez, JD, Zerbini, LF, et al.. Differential expression and enzymatic activity of DPPIV/CD26 affects migration ability of cervical carcinoma cells. PLoS One 2015;10:e0134305.10.1371/journal.pone.0134305Search in Google Scholar PubMed PubMed Central
401. Herrmann, H, Sadovnik, I, Cerny-Reiterer, S, Rulicke, T, Stefanzl, G, Willmann, M, et al.. Dipeptidylpeptidase IV (CD26) defines leukemic stem cells (LSC) in chronic myeloid leukemia. Blood 2014;123:3951–62.10.1182/blood-2013-10-536078Search in Google Scholar PubMed
402. Spagnuolo, PA, Hurren, R, Gronda, M, MacLean, N, Datti, A, Basheer, A, et al.. Inhibition of intracellular dipeptidyl peptidases 8 and 9 enhances parthenolide’s anti-leukemic activity. Leukemia 2013;27:1236–44.10.1038/leu.2013.9Search in Google Scholar PubMed
403. Sato, T, Tatekoshi, A, Takada, K, Iyama, S, Kamihara, Y, Jawaid, P, et al.. DPP8 is a novel therapeutic target for multiple myeloma. Sci Rep 2019;9:18094.10.1038/s41598-019-54695-wSearch in Google Scholar PubMed PubMed Central
404. Nabeno, M, Akahoshi, F, Kishida, H, Miyaguchi, I, Tanaka, Y, Ishii, S, et al.. A comparative study of the binding modes of recently launched dipeptidyl peptidase IV inhibitors in the active site. Biochem Biophys Res Commun 2013;434:191–6.10.1016/j.bbrc.2013.03.010Search in Google Scholar PubMed
405. Roppongi, S, Suzuki, Y, Tateoka, C, Fujimoto, M, Morisawa, S, Iizuka, I, et al.. Crystal structures of a bacterial dipeptidyl peptidase IV reveal a novel substrate recognition mechanism distinct from that of mammalian orthologues. Sci Rep, 2018, 8:2714, 1–18.10.1038/s41598-018-21056-ySearch in Google Scholar PubMed PubMed Central
406. Yoshida, T, Akahoshi, F, Sakashita, H, Kitajima, H, Nakamura, M, Sonda, S, et al.. Discovery and preclinical profile of teneleglptin (3-[(2S,4S)-4[4-(3-methyl-1-phenyl-1H-pyrazol-5yl)piperazin-1yl]pyrrolidin-2-ylcarbonyl]thiazolidyne): a highly potent, selective, longlasting and orally active dipeptidyl peptidase IV inhibitor for the treatment of type 2 diabetes. Bioorg Med Chem 2012;20:5705–19.10.1016/j.bmc.2012.08.012Search in Google Scholar PubMed
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Reviews
- Dipeptidyl peptidase IV: a multifunctional enzyme with implications in several pathologies including cancer
- Structural peculiarities? Aperiodic crystals, modulated phases, composite structures
- Crystalline materials in art and conservation: verdigris pigments – what we know and what we still don’t know
- Corn starch nanocomposite films reinforced with nanocellulose
- Cassava starch nanocomposite films reinforced with nanocellulose
- Regulations for food packaging materials
- Process intensification using immobilized enzymes
- Succinic acid: applications and microbial production using organic wastes as low cost substrates
- Microbial electrotechnology – Intensification of bioprocesses through the combination of electrochemistry and biotechnology
- Biopolymer conjugation with phytochemicals and applications
Articles in the same Issue
- Frontmatter
- Reviews
- Dipeptidyl peptidase IV: a multifunctional enzyme with implications in several pathologies including cancer
- Structural peculiarities? Aperiodic crystals, modulated phases, composite structures
- Crystalline materials in art and conservation: verdigris pigments – what we know and what we still don’t know
- Corn starch nanocomposite films reinforced with nanocellulose
- Cassava starch nanocomposite films reinforced with nanocellulose
- Regulations for food packaging materials
- Process intensification using immobilized enzymes
- Succinic acid: applications and microbial production using organic wastes as low cost substrates
- Microbial electrotechnology – Intensification of bioprocesses through the combination of electrochemistry and biotechnology
- Biopolymer conjugation with phytochemicals and applications