Abstract
The application of hypervalent iodine species generated in situ in organic transformations has emerged as a useful and powerful tool in organic synthesis, allowing for the construction of a series of bond formats via oxidative coupling. Among these transformations, the catalytic aryl iodide can be oxidized to hypervalent iodine species, which then undergoes oxidative reaction with the substrates and the aryl iodine regenerated again once the first cyclic cycle of the reaction is completed. This review aims to systematically summarize and discuss the main progress in the application of in situ-generated hypervalent iodine species, providing references and highlights for synthetic chemists who might be interested in this field of hypervalent iodine chemistry.
Funding source: National Natural Science Foundation of China
Award Identifier / Grant number: 22071175
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: This work was supported by the National Natural Science Foundation of China (#22071175).
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Yoshimura, A, Zhdankin, VV. Advances in synthetic applications of hypervalent iodine compounds. Chem Rev 2016;116:3328–435. https://doi.org/10.1021/acs.chemrev.5b00547.Search in Google Scholar PubMed
2. Zhdankin, VV, Stang, PJ. Chemistry of polyvalent iodine. Chem Rev 2008;108:5299–358. https://doi.org/10.1021/cr800332c.Search in Google Scholar PubMed PubMed Central
3. Brand, JP, González, DF, Nicolai, S, Waser, J. Benziodoxole-based hypervalent iodine reagents for atom-transfer reactions. Chem Commun 2011;47:102–15. https://doi.org/10.1039/c0cc02265a.Search in Google Scholar PubMed
4. Yoshimura, A, Yusubov, MS, Zhdankin, VV. Synthetic applications of pseudocyclic hypervalent iodine compounds. Org Biomol Chem 2016;14:4771–81. https://doi.org/10.1039/c6ob00773b.Search in Google Scholar PubMed
5. Yoshimura, A, Saito, A, Zhdankin, VV, Yusubov, MS. Synthesis of oxazoline and oxazole derivatives by hypervalent-iodine-mediated oxidative cycloaddition reactions. Synthesis 2020;52:2299–310. https://doi.org/10.1055/s-0040-1707122.Search in Google Scholar
6. Zhdankin, VV, Stang, PJ. Recent developments in the chemistry of polyvalent iodine compounds. Chem Rev 2002;102:2523–84. https://doi.org/10.1021/cr010003+.10.1021/cr010003+Search in Google Scholar PubMed
7. Mekhman, SY, Viktor, VZ. Hypervalent iodine reagents and green chemistry. Curr Org Synth 2012;9:247–72. https://doi.org/10.2174/157017912799829021.Search in Google Scholar
8. Uyanik, M, Ishihara, K. Catalysis with in situ-generated (hypo)iodite ions for oxidative coupling reactions. ChemCatChem 2012;4:177–85. https://doi.org/10.1002/cctc.201100352.Search in Google Scholar
9. Stang, PJ, Zhdankin, VV. Organic polyvalent iodine compounds. Chem Rev 1996;96:1123–78. https://doi.org/10.1021/cr940424+.10.1021/cr940424+Search in Google Scholar PubMed
10. Parra, A, Reboredo, S. Chiral hypervalent iodine reagents: synthesis and reactivity. Chem Eur J 2013;19:17244–60. https://doi.org/10.1002/chem.201302220.Search in Google Scholar PubMed
11. Cui, LQ, Liu, K, Zhang, C. Effective oxidation of benzylic and alkane C–H bonds catalyzed by sodium o-iodobenzenesulfonate with oxone as a terminal oxidant under phase-transfer conditions. Org Biomol Chem 2011;9:2258. https://doi.org/10.1039/c0ob00722f.Search in Google Scholar PubMed
12. Fuchigami, T, Fujita, T. Electrolytic partial fluorination of organic compounds. 14. The first electrosynthesis of hypervalent iodobenzene difluoride derivatives and its application to indirect anodic gem-difluorination. J Org Chem 1994;59:7190–2. https://doi.org/10.1021/jo00103a003.Search in Google Scholar
13. Ochiai, M, Miyamoto, K. Catalytic version of and reuse in hypervalent organo‐λ3‐and‐λ5‐iodane oxidation. Eur J Org Chem 2008;2008:4229–39. https://doi.org/10.1002/ejoc.200800416.Search in Google Scholar
14. Dohi, T, Kita, Y. Hypervalent iodine reagents as a new entrance to organocatalysts. Chem Commun 2009;2073–85. https://doi.org/10.1039/b821747e.Search in Google Scholar PubMed
15. Richardson, RD, Wirth, T. Hypervalent iodine goes catalytic. Angew Chem Int Ed 2006;45:4402–4. https://doi.org/10.1002/anie.200601817.Search in Google Scholar PubMed
16. Li, X, Chen, P, Liu, G. Recent advances in hypervalent iodine(III)-catalyzed functionalization of alkenes. Beilstein J Org Chem 2018;14:1813–25. https://doi.org/10.3762/bjoc.14.154.Search in Google Scholar PubMed PubMed Central
17. Flores, A, Cots, E, Bergès, J, Muñiz, K. Enantioselective iodine(I/III) catalysis in organic synthesis. Adv Synth Catal 2019;361:2–25. https://doi.org/10.1002/adsc.201800521.Search in Google Scholar
18. Yusubov, MS, Zhdankin, VV. Development of new recyclable reagents and catalytic systems based on hypervalent iodine compounds. Mendeleev Commun 2010;20:185–91. https://doi.org/10.1016/j.mencom.2010.06.001.Search in Google Scholar
19. Parra, A. Chiral hypervalent iodines: active players in asymmetric synthesis. Chem Rev 2019;119:12033–88. https://doi.org/10.1021/acs.chemrev.9b00338.Search in Google Scholar PubMed
20. Zheng, Z, Zhang-Negrerie, D, Du, Y, Zhao, K. The applications of hypervalent iodine(III) reagents in the constructions of heterocyclic compounds through oxidative coupling reactions. Sci China Chem 2014;57:189–214. https://doi.org/10.1007/s11426-013-5043-1.Search in Google Scholar
21. Liang, H, Ciufolini, MA. Chiral hypervalent iodine reagents in asymmetric reactions. Angew Chem Int Ed 2011;50:11849–51. https://doi.org/10.1002/anie.201106127.Search in Google Scholar PubMed
22. Wirth, T, Brown, M, Farid, U. Hypervalent iodine reagents as powerful electrophiles. Synlett 2013;24:424–31. https://doi.org/10.1055/s-0032-1318103.Search in Google Scholar
23. Singh, FV, Wirth, T. Hypervalent iodine-catalyzed oxidative functionalizations including stereoselective reactions. Chem Asian J 2014;9:950–71. https://doi.org/10.1002/asia.201301582.Search in Google Scholar PubMed
24. Romero, RM, Wöste, TH, Muñiz, K. Vicinal difunctionalization of alkenes with iodine(III) reagents and catalysts. Chem Asian J 2014;9:972–83. https://doi.org/10.1002/asia.201301637.Search in Google Scholar PubMed
25. Fujita, M. Enantioselective heterocycle formation using chiral hypervalent iodine (III). Heterocycles 2018;96:563–94. https://doi.org/10.3987/rev-17-877.Search in Google Scholar
26. Claraz, A, Masson, G. Asymmetric iodine catalysis-mediated enantioselective oxidative transformations. Org Biomol Chem 2018;16:5386–402. https://doi.org/10.1039/c8ob01378k.Search in Google Scholar PubMed
27. Richardson, RD, Wirth, T. Hypervalente iodreagentien: jetzt katalytisch. Angew Chem 2006;118:4510–2. https://doi.org/10.1002/ange.200601817.Search in Google Scholar
28. Yang, L, Xu, G, Ma, J, Yang, Q, Feng, A, Cui, J. Recent advances in the application of in situ generated hypervalent iodine reagents in organic synthesis. Chin J Org Chem 2020;40:28. https://doi.org/10.6023/cjoc201906023.Search in Google Scholar
29. Uyanik, M, Ishihara, K. Hypervalent iodine-mediated oxidation of alcohols. Chem Commun 2009:2086–99. https://doi.org/10.1039/b823399c.Search in Google Scholar PubMed
30. Manna, S, Antonchick, AP. Organocatalytic oxidative annulation of benzamide derivatives with alkynes. Angew Chem Int Ed 2014;53:7324–7. https://doi.org/10.1002/anie.201404222.Search in Google Scholar PubMed
31. Dohi, T, Minamitsuji, Y, Maruyama, A, Hirose, S, Kita, Y. A new H2O2/acid anhydride system for the iodoarene-catalyzed C–C bond-forming reactions of phenols. Org Lett 2008;10:3559–62. https://doi.org/10.1021/ol801321f.Search in Google Scholar PubMed
32. Zhang, DY, Xu, L, Wu, H, Gong, LZ. Chiral iodine-catalyzed dearomatizative spirocyclization for the enantioselective construction of an all-carbon stereogenic center. Chem Eur J 2015;21:10314–7. https://doi.org/10.1002/chem.201501583.Search in Google Scholar PubMed
33. Wang, SE, He, QQ, Fan, RH. Iodobenzene-catalyzed ortho-dearomatization and aromatization-triggered rearrangement of 2-allylanilines: construction of indolin-3-ylmethanols with high diastereoselectivities. Org Lett 2017;19:6478–81. https://doi.org/10.1021/acs.orglett.7b02986.Search in Google Scholar PubMed
34. Hori, M, Guo, JD, Yanagi, T, Nogi, K, Sasamori, T, Yorimitsu, H. Sigmatropic rearrangements of hypervalent-iodine-tethered intermediates for the synthesis of biaryls. Angew Chem Int Ed 2018;57:4663–7. https://doi.org/10.1002/anie.201801132.Search in Google Scholar PubMed
35. Zhao, Z, Britt, LH, Murphy, GK. Oxidative, iodoarene‐catalyzed intramolecular alkene arylation for the synthesis of polycyclic aromatic hydrocarbons. Chem Eur J 2018;24:17002–5. https://doi.org/10.1002/chem.201804786.Search in Google Scholar PubMed
36. Wu, H, He, YP, Xu, L, Zhang, DY, Gong, LZ. Asymmetric organocatalytic direct C(sp2)–H/C(sp3)–H oxidative cross-coupling by chiral iodine reagents. Angew Chem Int Ed 2014;53:3466–9. https://doi.org/10.1002/anie.201309967.Search in Google Scholar PubMed
37. Cao, Y, Zhang, X, Lin, GY, Zhang-Negrerie, D, Du, YF. Chiral aryliodine-mediated enantioselective organocatalytic spirocyclization: synthesis of spirofurooxindoles via cascade oxidative C–O and C–C bond formation. Org Lett 2016;18:5580–3. https://doi.org/10.1021/acs.orglett.6b02816.Search in Google Scholar PubMed
38. Wu, YC, Arenas, I, Broomfield, LM, Martin, E, Shafir, A. Hypervalent activation as a key step for dehydrogenative ortho C–C coupling of iodoarenes. Chem Eur J 2015;21:18779–84. https://doi.org/10.1002/chem.201503987.Search in Google Scholar PubMed
39. Jia, Z, Gálvez, E, Sebastián, RM, Pleixats, R, Álvarez-Larena, Á, Martin, E, et al.. An alternative to the classical α-arylation: the transfer of an intact 2-iodoaryl from ArI(O2CCF3)2. Angew Chem Int Ed 2014;53:11298–301. https://doi.org/10.1002/anie.201405982.Search in Google Scholar PubMed
40. Zhen, XH, Wan, XT, Zhang, W, Li, Q, Zhang-Negrerie, D, Du, YF. Synthesis of spirooxindoles from N-arylamide derivatives via oxidative C(sp2)–C(sp3) bond formation mediated by PhI(OMe)2 generated in situ. Org Lett 2019;21:890–4. https://doi.org/10.1021/acs.orglett.8b03741.Search in Google Scholar PubMed
41. Dohi, T, Maruyama, A, Yoshimura, M, Morimoto, K, Tohma, H, Kita, Y. Versatile hypervalent‐iodine(III)‐catalyzed oxidations with m‐chloroperbenzoic acid as a cooxidant. Angew Chem Int Ed 2005;44:6193–6. https://doi.org/10.1002/anie.200501688.Search in Google Scholar PubMed
42. Dohi, T, Maruyama, A, Takenaga, N, Senami, K, Minamitsuji, Y, Fujioka, H, et al.. A chiral hypervalent iodine(III) reagent for enantioselective dearomatization of phenols. Angew Chem Int Ed 2008;47:3787–90. https://doi.org/10.1002/anie.200800464.Search in Google Scholar PubMed
43. Dohi, T, Takenaga, N, Nakae, T, Toyoda, Y, Yamasaki, M, Shiro, M, et al.. Asymmetric dearomatizing spirolactonization of naphthols catalyzed by spirobiindane-based chiral hypervalent iodine species. J Am Chem Soc 2013;135:4558–66. https://doi.org/10.1021/ja401074u.Search in Google Scholar PubMed
44. Dohi, T, Sasa, H, Miyazaki, K, Fujitake, M, Takenaga, N, Kita, Y. Chiral atropisomeric 8,8′-diiodobinaphthalene for asymmetric dearomatizing spirolactonizations in hypervalent iodine oxidations. J Org Chem 2017;82:11954–60. https://doi.org/10.1021/acs.joc.7b02037.Search in Google Scholar PubMed
45. Uyanik, M, Yasui, T, Ishihara, K. Enantioselective kita oxidative spirolactonization catalyzed by in situ generated chiral hypervalent iodine(III) species. Angew Chem Int Ed 2010;49:2175–7. https://doi.org/10.1002/anie.200907352.Search in Google Scholar PubMed
46. Uyanik, M, Yasui, T, Ishihara, K. Chiral hypervalent organoiodine-catalyzed enantioselective oxidative spirolactonization of naphthol derivatives. J Org Chem 2017;82:11946–53. https://doi.org/10.1021/acs.joc.7b01941.Search in Google Scholar PubMed
47. Murray, SJ, Ibrahim, H. Asymmetric kita spirolactonisation catalysed by anti-dimethanoanthracene-based iodoarenes. Chem Commun 2015;51:2376–9. https://doi.org/10.1039/c4cc09724f.Search in Google Scholar PubMed
48. Bekkaye, M, Masson, G. Synthesis of new axially chiral iodoarenes. Synthesis 2016;48:302–12.10.1055/s-0035-1560512Search in Google Scholar
49. Hempel, C, Maichle‐Mössmer, C, Pericàs Miquel, A, Nachtsheim Boris, J. Modular synthesis of triazole‐based chiral iodoarenes for enantioselective spirocyclizations. Adv Synth Catal 2017;359:2931–41. https://doi.org/10.1002/adsc.201700246.Search in Google Scholar
50. Wang, Y, Zhao, CY, Wang, YP, Zheng, WH. Enantioselective intramolecular dearomative lactonization of naphthols catalyzed by planar chiral iodoarene. Synthesis 2019;51:3675–82. https://doi.org/10.1055/s-0037-1611902.Search in Google Scholar
51. Imrich, MR, Ziegler, T. Carbohydrate based chiral iodoarene catalysts for enantioselective dearomative spirocyclization. Tetrahedron Lett 2019;60:150954. https://doi.org/10.1016/j.tetlet.2019.150954.Search in Google Scholar
52. Antien, K, Pouységu, L, Deffieux, D, Massip, S, Peixoto, PA, Quideau, S. Synthesis of [7]helicene enantiomers and exploratory study of their conversion into helically chiral iodoarenes and iodanes. Chem Eur J 2019;25:2852–8. https://doi.org/10.1002/chem.201805761.Search in Google Scholar PubMed
53. Tariq, MU, Moran, WJ. Design and synthesis of chiral urea-derived iodoarenes and their assessment in the enantioselective dearomatizing cyclization of a naphthyl amide. Tetrahedron 2020;76:131634. https://doi.org/10.1016/j.tet.2020.131634.Search in Google Scholar
54. Uyanik, M, Yasui, T, Ishihara, K. Hypervalent iodine-catalyzed oxylactonization of ketocarboxylic acids to ketolactones. Bioorg Med Chem Lett 2009;19:3848–51. https://doi.org/10.1016/j.bmcl.2009.03.148.Search in Google Scholar PubMed
55. Wang, X, Gallardo-Donaire, J, Martin, R. Mild arI-catalyzed C(sp2)–H or C(sp3)–H functionalization/C–O formation: an intriguing catalyst-controlled selectivity switch. Angew Chem Int Ed 2014;53:11084–7. https://doi.org/10.1002/anie.201407011.Search in Google Scholar PubMed
56. Gao, WC, Xiong, ZY, Pirhaghani, S, Wirth, T. Enantioselective electrochemical lactonization using chiral iodoarenes as mediators. Synthesis 2019;51:276–84. https://doi.org/10.1055/s-0037-1610373.Search in Google Scholar
57. Ngatimin, M, Frey, R, Andrews, C, Lupton, DW, Hutt, OE. Iodobenzene catalysed synthesis of spirofurans and benzopyrans by oxidative cyclisation of vinylogous esters. Chem Commun 2011;47:11778–80. https://doi.org/10.1039/c1cc15015d.Search in Google Scholar PubMed
58. Ngatimin, M, Frey, R, Levens, A, Nakano, Y, Kowalczyk, M, Konstas, K, et al.. Iodobenzene-catalyzed oxabicyclo[3.2.1]octane and [4.2.1]nonane synthesis via cascade C–O/C–C formation. Org Lett 2013;15:5858–61. https://doi.org/10.1021/ol4029308.Search in Google Scholar PubMed
59. Volp, KA, Harned, AM. Chiral aryl iodide catalysts for the enantioselective synthesis of para-quinols. Chem Commun 2013;49:3001–3. https://doi.org/10.1039/c3cc00013c.Search in Google Scholar PubMed
60. China, H, Tanihara, K, Sasa, H, Kikushima, K, Dohi, T. Regiodivergent oxidation of alkoxyarenes by hypervalent iodine/oxone® system. Catal Today 2020;348:2–8. https://doi.org/10.1016/j.cattod.2019.08.060.Search in Google Scholar
61. Uyanik, M, Sasakura, N, Mizuno, M, Ishihara, K. Enantioselective synthesis of masked benzoquinones using designer chiral hypervalent organoiodine(III) catalysis. ACS Catal 2017;7:872–6. https://doi.org/10.1021/acscatal.6b03380.Search in Google Scholar
62. Panda, N, Mattan, I. One-pot two-step synthesis of 3-iodo-4-aryloxy coumarins and their Pd/C-catalyzed annulation to coumestans. RSC Adv 2018;8:7716–25. https://doi.org/10.1039/c7ra12419h.Search in Google Scholar PubMed PubMed Central
63. Shimogaki, M, Fujita, M, Sugimura, T. Enantioselective oxidation of alkenylbenzoates catalyzed by chiral hypervalent iodine(III) to yield 4-hydroxyisochroman-1-ones. Eur J Org Chem 2013;2013:7128–38. https://doi.org/10.1002/ejoc.201300959.Search in Google Scholar
64. Deng, Q, Xia, W, Hussain, MI, Zhang, X, Hu, W, Xiong, Y. Synthesis of polycyclic cyclohexadienone through alkoxy-oxylactonization and dearomatization of 3′-hydroxy-[1,1′-biphenyl]-2-carboxylic acids promoted by hypervalent iodine. J Org Chem 2020;85:3125–33. https://doi.org/10.1021/acs.joc.9b03012.Search in Google Scholar PubMed
65. Du, Y, Zhang, J, Jalil, A, He, J, Yu, Z, Cheng, Y, et al.. Lactonization with concomitant 1,2-aryl migration and alkoxylation mediated by dialkoxyphenyl iodides generated in situ. Chem Commun 2021;57:7426–9. https://doi.org/10.1039/D1CC03110D.Search in Google Scholar
66. Zhang, DY, Zhang, Y, Wu, H, Gong, L-Z. Organoiodine-catalyzed enantioselective alkoxylation/oxidative rearrangement of allylic alcohols. Angew Chem Int Ed 2019;58:7450–3. https://doi.org/10.1002/anie.201903007.Search in Google Scholar PubMed
67. Kawano, Y, Togo, H. Iodoarene-mediated one-pot preparation of 2,4,5-trisubstituted oxazoles from ketones. Synlett 2008;2008:217–20.10.1055/s-2007-1000871Search in Google Scholar
68. Ishiwata, Y, Togo, H. Iodoarene-mediated one-pot preparation of 2,5-disubstituted and 2,4,5-trisubstituted oxazoles from alkyl aryl ketones with oxone in nitriles. Tetrahedron 2009;65:10720–4. https://doi.org/10.1016/j.tet.2009.09.109.Search in Google Scholar
69. Kawano, Y, Togo, H. Iodoarene-catalyzed one-pot preparation of 2,4,5-trisubstituted oxazoles from alkyl aryl ketones with mCPBA in nitriles. Tetrahedron 2009;65:6251–6. https://doi.org/10.1016/j.tet.2009.05.003.Search in Google Scholar
70. Yoshimura, A, Middleton, KR, Todora, AD, Kastern, BJ, Koski, SR, Maskaev, AV, et al.. Hypervalent iodine catalyzed generation of nitrile oxides from oximes and their cycloaddition with alkenes or alkynes. Org Lett 2013;15:4010–3. https://doi.org/10.1021/ol401815n.Search in Google Scholar PubMed
71. Alhalib, A, Kamouka, S, Moran, WJ. Iodoarene-catalyzed cyclizations of unsaturated amides. Org Lett 2015;17:1453–6. https://doi.org/10.1021/acs.orglett.5b00333.Search in Google Scholar PubMed
72. Yagyu, T, Takemoto, Y, Yoshimura, A, Zhdankin, VV, Saito, A. Iodine(III)-catalyzed formal [2 + 2 + 1] cycloaddition reaction for metal-free construction of oxazoles. Org Lett 2017;19:2506–9. https://doi.org/10.1021/acs.orglett.7b00742.Search in Google Scholar PubMed
73. Kamouka, S, Moran, WJ. Iodoarene-catalyzed cyclizations of N-propargylamides and β-amidoketones: synthesis of 2-oxazolines. Beilstein J Org Chem 2017;13:1823–7. https://doi.org/10.3762/bjoc.13.177.Search in Google Scholar PubMed PubMed Central
74. Butt, SE, Das, M, Sotiropoulos, J-M, Moran, WJ. Computationally assisted mechanistic investigation into hypervalent iodine catalysis: cyclization of N-allylbenzamide. J Org Chem 2019;84:15605–13. https://doi.org/10.1021/acs.joc.9b02623.Search in Google Scholar PubMed
75. Abazid, AH, Hollwedel, T-N, Nachtsheim, BJ. Stereoselective oxidative cyclization of N-allyl benzamides to oxaz(ol)ines. Org Lett 2021;23:5076–80. https://doi.org/10.1021/acs.orglett.1c01607.Search in Google Scholar PubMed
76. Asari, N, Takemoto, Y, Shinomoto, Y, Yagyu, T, Yoshimura, A, Zhdankin, VV, et al.. Catalytic cycloisomerization–fluorination sequence of N-propargyl amides by iodoarene/HF⋅pyridine/selectfluor systems. Asian J Org Chem 2016;5:1314–7. https://doi.org/10.1002/ajoc.201600383.Search in Google Scholar
77. Scheidt, F, Thiehoff, C, Yilmaz, G, Meyer, S, Daniliuc, CG, Kehr, G, et al.. Fluorocyclisation via I(I)/I(III) catalysis: a concise route to fluorinated oxazolines. Beilstein J Org Chem 2018;14:1021–7. https://doi.org/10.3762/bjoc.14.88.Search in Google Scholar PubMed PubMed Central
78. Haupt, JD, Berger, M, Waldvogel, SR. Electrochemical fluorocyclization of N-allylcarboxamides to 2-oxazolines by hypervalent iodine mediator. Org Lett 2019;21:242–5. https://doi.org/10.1021/acs.orglett.8b03682.Search in Google Scholar PubMed
79. Herszman, JD, Berger, M, Waldvogel, SR. Fluorocyclization of N-propargylamides to oxazoles by electrochemically generated ArIF2. Org Lett 2019;21:7893–6. https://doi.org/10.1021/acs.orglett.9b02884.Search in Google Scholar PubMed
80. Takahashi, S, Umakoshi, Y, Nakayama, K, Okada, Y, Zhdankin, VV, Yoshimura, A, et al.. Fluorocyclization of N‐propargyl carboxamides by λ3‐iodane catalysts with coordinating substituents. Adv Synth Catal 2020;362:2997–3003. https://doi.org/10.1002/adsc.202000381.Search in Google Scholar
81. Mangaonkar, SR, Singh, FV. Hypervalent iodine(III)-catalyzed epoxidation of β-cyanostyrenes. Synthesis 2019;51:4473–86. https://doi.org/10.1055/s-0039-1690621.Search in Google Scholar
82. Ochiai, M, Takeuchi, Y, Katayama, T, Sueda, T, Miyamoto, K. Iodobenzene-catalyzed α-acetoxylation of ketones. In situ generation of hypervalent (diacyloxyiodo)benzenes using m-chloroperbenzoic acid. J Am Chem Soc 2005;127:12244–5. https://doi.org/10.1021/ja0542800.Search in Google Scholar PubMed
83. Hokamp, T, Wirth, T. Hypervalent iodine(III)‐catalysed enantioselective α‐acetoxylation of ketones. Chem Eur J 2020;26:10417–21. https://doi.org/10.1002/chem.202000927.Search in Google Scholar PubMed PubMed Central
84. Zhong, W, Liu, S, Yang, J, Meng, X, Li, Z. Metal-Free, organocatalytic syn diacetoxylation of alkenes. Org Lett 2012;14:3336–9. https://doi.org/10.1021/ol301311e.Search in Google Scholar PubMed
85. Haubenreisser, S, Wöste, TH, Martínez, C, Ishihara, K, Muñiz, K. Structurally defined molecular hypervalent iodine catalysts for intermolecular enantioselective reactions. Angew Chem Int Ed 2016;55:413–7. https://doi.org/10.1002/anie.201507180.Search in Google Scholar PubMed PubMed Central
86. Altermann, SM, Richardson, RD, Page, TK, Schmidt, RK, Holland, E, Mohammed, U, et al.. Catalytic enantioselective α-oxysulfonylation of ketones mediated by iodoarenes. Eur J Org Chem 2008;2008:5315–28. https://doi.org/10.1002/ejoc.200800741.Search in Google Scholar
87. Yu, J, Cui, J, Hou, XS, Liu, SS, Gao, WC, Jiang, S, et al.. Enantioselective α-tosyloxylation of ketones catalyzed by spirobiindane scaffold-based chiral iodoarenes. Tetrahedron: Asymmetry 2011;22:2039–55. https://doi.org/10.1016/j.tetasy.2011.12.003.Search in Google Scholar
88. Levitre, G, Dumoulin, A, Retailleau, P, Panossian, A, Leroux, FR, Masson, G. Asymmetric α-sulfonyl- and α-phosphoryl-oxylation of ketones by a chiral hypervalent iodine(III). J Org Chem 2017;82:11877–83. https://doi.org/10.1021/acs.joc.7b01597.Search in Google Scholar PubMed
89. Xiong, Y, Coeffard, V, Feng, Y, Huang, R, Hu, L. Chiral C2-symmetric iodoarene-catalyzed asymmetric α-oxidation of β-keto esters. Synthesis 2016;48:2637–44. https://doi.org/10.1055/s-0035-1561442.Search in Google Scholar
90. Alharbi, H, Elsherbini, M, Qurban, J, Wirth, T. C–N axial chiral hypervalent iodine reagents: catalytic stereoselective α‐oxytosylation of ketones. Chem Eur J 2021;27:4317–21. https://doi.org/10.1002/chem.202005253.Search in Google Scholar PubMed PubMed Central
91. Lex, TR, Swasy, MI, Whitehead, DC. Relative rate profiles of functionalized iodoarene catalysts for iodine(III) oxidations. J Org Chem 2015;80:12234–43. https://doi.org/10.1021/acs.joc.5b02129.Search in Google Scholar PubMed
92. Boelke, A, Nachtsheim, BJ. Evolution of N-heterocycle-substituted iodoarenes (NHIAs) to efficient organocatalysts in iodine(I/III)-mediated oxidative transformations. Adv Synth Catal 2020;362:184–91. https://doi.org/10.1002/adsc.201901356.Search in Google Scholar
93. Abazid, AH, Clamor, N, Nachtsheim, BJ. An enantioconvergent benzylic hydroxylation using a chiral aryl iodide in a dual activation mode. ACS Catal 2020;10:8042–8. https://doi.org/10.1021/acscatal.0c02321.Search in Google Scholar
94. Quideau, S, Lyvinec, G, Marguerit, M, Bathany, K, Ozanne-Beaudenon, A, Buffeteau, T, et al.. Asymmetric hydroxylative phenol dearomatization through in situ generation of iodanes from chiral iodoarenes and mCPBA. Angew Chem Int Ed 2009;48:4605–9. https://doi.org/10.1002/anie.200901039.Search in Google Scholar PubMed
95. Dohi, T, Maruyama, A, Minamitsuji, Y, Takenaga, N, Kita, Y. First hypervalent iodine(III)-catalyzed C–N bond forming reaction: catalytic spirocyclization of amides to N-fused spirolactams. Chem Commun 2007:1224–6. https://doi.org/10.1039/b616510a.Search in Google Scholar PubMed
96. Dohi, T, Takenaga, N, Fukushima, KI, Uchiyama, T, Kato, D, Motoo, S, et al.. Designer μ-oxo-bridged hypervalent iodine(III) organocatalysts for greener oxidations. Chem Commun 2010;46:7697. https://doi.org/10.1039/c0cc03213a.Search in Google Scholar PubMed
97. Dohi, T, Nakae, T, Ishikado, Y, Kato, D, Kita, Y. New synthesis of spirocycles by utilizing in situ forming hypervalent iodine species. Org Biomol Chem 2011;9:6899. https://doi.org/10.1039/c1ob06199b.Search in Google Scholar PubMed
98. Jain, N, Hein, JE, Ciufolini, MA. Oxidative cyclization of naphtholic sulfonamides mediated by a chiral hypervalent iodine reagent: asymmetric synthesis versus resolution. Synlett 2019;30:1222–7. https://doi.org/10.1055/s-0037-1611831.Search in Google Scholar
99. Ishiwata, Y, Togo, H. Ion-supported PhI-catalyzed cyclization of N-methoxy-2-arylethanesulfonamides with mCPBA. Tetrahedron Lett 2009;50:5354–7. https://doi.org/10.1016/j.tetlet.2009.07.034.Search in Google Scholar
100. Mizar, P, Laverny, A, El-Sherbini, M, Farid, U, Brown, M, Malmedy, F, et al.. Enantioselective diamination with novel chiral hypervalent iodine catalysts. Chem Eur J 2014;20:9910–3. https://doi.org/10.1002/chem.201403891.Search in Google Scholar PubMed PubMed Central
101. Zhu, C, Liang, Y, Hong, X, Sun, H, Sun, WY, Houk, KN, et al.. Iodoarene-catalyzed stereospecific intramolecular sp3 C–H amination: reaction development and mechanistic insights. J Am Chem Soc 2015;137:7564–7. https://doi.org/10.1021/jacs.5b03488.Search in Google Scholar PubMed
102. Bal, A, Maiti, S, Mal, P. Iodine(III)-enabled distal C–H functionalization of biarylsulfonanilides. J Org Chem 2018;83:11278–87. https://doi.org/10.1021/acs.joc.8b01857.Search in Google Scholar PubMed
103. Ding, Q, He, H, Cai, Q. Chiral aryliodine-catalyzed asymmetric oxidative C–N bond formation via desymmetrization strategy. Org Lett 2018;20:4554–7. https://doi.org/10.1021/acs.orglett.8b01849.Search in Google Scholar PubMed
104. Mennie, KM, Banik, SM, Reichert, EC, Jacobsen, EN. Catalytic diastereo- and enantioselective fluoroamination of alkenes. J Am Chem Soc 2018;140:4797–802. https://doi.org/10.1021/jacs.8b02143.Search in Google Scholar PubMed PubMed Central
105. Maity, A, Frey, BL, Hoskinson, ND, Powers, DC. Electrocatalytic C–N coupling via anodically generated hypervalent iodine intermediates. J Am Chem Soc 2020;142:4990–5. https://doi.org/10.1021/jacs.9b13918.Search in Google Scholar PubMed
106. Deng, T, Shi, E, Thomas, E, Driver, TG. I(III)-catalyzed oxidative cyclization–migration tandem reactions of unactivated anilines. Org Lett 2020;22:9102–6. https://doi.org/10.1021/acs.orglett.0c03497.Search in Google Scholar PubMed PubMed Central
107. Maiti, S, Mal, P. Soft–hard acid/base-controlled, oxidative, N-selective arylation of sulfonanilides via a nitrenium Ion. J Org Chem 2018;83:1340–7. https://doi.org/10.1021/acs.joc.7b02841.Search in Google Scholar PubMed
108. Dohi, T, Sasa, H, Dochi, M, Yasui, C, Kita, Y. Oxidative coupling of N-methoxyamides and related compounds toward aromatic hydrocarbons by designer μ-oxo hypervalent iodine catalyst. Synthesis 2019;51:1185–95. https://doi.org/10.1055/s-0037-1611661.Search in Google Scholar
109. Yang, P, Wang, X, Wang, L, He, J, Zhang, Q, Li, D. Oxidative cross-dehydrogenative coupling between iodoarenes and acylanilides for C–N bond formation under metal-free conditions. Org Chem Front 2021;8:2556–62. https://doi.org/10.1039/d1qo00225b.Search in Google Scholar
110. Kiyokawa, K, Yahata, S, Kojima, T, Minakata, S. Hypervalent iodine(III)-mediated oxidative decarboxylation of β,γ-unsaturated carboxylic acids. Org Lett 2014;16:4646–9. https://doi.org/10.1021/ol5022433.Search in Google Scholar PubMed
111. Zheng, G, Ma, X, Li, J, Zhu, D, Wang, M. Electrophilic N-trifluoromethylation of N–H ketimines. J Org Chem 2015;80:8910–5. https://doi.org/10.1021/acs.joc.5b01468.Search in Google Scholar PubMed
112. Muñiz, K, Barreiro, L, Romero, RM, Martínez, C. Catalytic asymmetric diamination of styrenes. J Am Chem Soc 2017;139:4354–7. https://doi.org/10.1021/jacs.7b01443.Search in Google Scholar PubMed
113. Cots, E, Flores, A, Romero, RM, Muñiz, K. A practical aryliodine(I/III) catalysis for the vicinal diamination of styrenes. ChemSusChem 2019;12:3028–31. https://doi.org/10.1002/cssc.201900360.Search in Google Scholar PubMed
114. Zhang, LW, Deng, XJ, Zhang, DX, Tian, QQ, He, W. Aminolactonization of unactivated alkenes catalyzed by aryl iodine. J Org Chem 2021;86:5152–65. https://doi.org/10.1021/acs.joc.1c00074.Search in Google Scholar PubMed
115. Deng, XJ, Liu, HX, Zhang, LW, Zhang, GY, Yu, ZX, He, W. Iodoarene-catalyzed oxyamination of unactivated alkenes to synthesize 5-imino-2-tetrahydrofuranyl methanamine derivatives. J Org Chem 2021;86:235–53. https://doi.org/10.1021/acs.joc.0c02047.Search in Google Scholar PubMed
116. Suzuki, S, Kamo, T, Fukushi, K, Hiramatsu, T, Tokunaga, E, Dohi, T, et al.. Iodoarene-catalyzed fluorination and aminofluorination by an Ar-I/HF·pyridine/mCPBA system. Chem Sci 2014;5:2754–60. https://doi.org/10.1039/c3sc53107d.Search in Google Scholar
117. Kitamura, T, Muta, K, Oyamada, J. Hypervalent iodine-mediated fluorination of styrene derivatives: stoichiometric and catalytic transformation to 2,2-difluoroethylarenes. J Org Chem 2015;80:10431–6. https://doi.org/10.1021/acs.joc.5b01929.Search in Google Scholar PubMed
118. Banik, SM, Medley, JW, Jacobsen, EN. Catalytic, asymmetric difluorination of alkenes to generate difluoromethylated stereocenters. Science 2016;353:51. https://doi.org/10.1126/science.aaf8078.Search in Google Scholar PubMed PubMed Central
119. Zhou, B, Haj, MK, Jacobsen, EN, Houk, KN, Xue, XS. Mechanism and origins of chemo- and stereoselectivities of aryl iodide-catalyzed asymmetric difluorinations of β-substituted styrenes. J Am Chem Soc 2018;140:15206–18. https://doi.org/10.1021/jacs.8b05935.Search in Google Scholar PubMed PubMed Central
120. Molnár, IG, Gilmour, R. Catalytic difluorination of olefins. J Am Chem Soc 2016;138:5004–7. https://doi.org/10.1021/jacs.6b01183.Search in Google Scholar PubMed
121. Banik, SM, Medley, JW, Jacobsen, EN. Catalytic, diastereoselective 1,2-difluorination of alkenes. J Am Chem Soc 2016;138:5000–3. https://doi.org/10.1021/jacs.6b02391.Search in Google Scholar PubMed PubMed Central
122. Haj, MK, Banik, SM, Jacobsen, EN. Catalytic, enantioselective 1,2-difluorination of cinnamamides. Org Lett 2019;21:4919–23. https://doi.org/10.1021/acs.orglett.9b00938.Search in Google Scholar PubMed PubMed Central
123. Woerly, EM, Banik, SM, Jacobsen, EN. Enantioselective, catalytic fluorolactonization reactions with a nucleophilic fluoride source. J Am Chem Soc 2016;138:13858–61. https://doi.org/10.1021/jacs.6b09499.Search in Google Scholar PubMed PubMed Central
124. Kitamura, T, Miyake, A, Muta, K, Oyamada, J. Hypervalent iodine/HF reagents for the synthesis of 3-fluoropyrrolidines. J Org Chem 2017;82:11721–6. https://doi.org/10.1021/acs.joc.7b01266.Search in Google Scholar PubMed
125. Wang, Y, Yuan, H, Lu, H, Zheng, WH. Development of planar chiral iodoarenes based on [2.2]paracyclophane and their application in catalytic enantioselective fluorination of β-ketoesters. Org Lett 2018;20:2555–8. https://doi.org/10.1021/acs.orglett.8b00711.Search in Google Scholar PubMed
126. Neufeld, J, Daniliuc, CG, Gilmour, R. Fluorohydration of alkynes via I(I)/I(III) catalysis. Beilstein J Org Chem 2020;16:1627–35. https://doi.org/10.3762/bjoc.16.135.Search in Google Scholar PubMed PubMed Central
127. Sarie, JC, Neufeld, J, Daniliuc, CG, Gilmour, R. Catalytic vicinal dichlorination of unactivated alkenes. ACS Catal 2019;9:7232–7. https://doi.org/10.1021/acscatal.9b02313.Search in Google Scholar
128. Braddock, DC, Cansell, G, Hermitage, SA. Ortho-substituted iodobenzenes as novel organocatalysts for bromination of alkenes. Chem Commun 2006:2483. https://doi.org/10.1039/b604130b.Search in Google Scholar PubMed
129. Fabry, DC, Stodulski, M, Hoerner, S, Gulder, T. Metal-free synthesis of 3,3-disubstituted oxoindoles by iodine(III)-catalyzed bromocarbocyclizations. Chem Eur J 2012;18:10834–8. https://doi.org/10.1002/chem.201201232.Search in Google Scholar PubMed
130. Stodulski, M, Goetzinger, A, Kohlhepp, SV, Gulder, T. Halocarbocyclization versus dihalogenation: substituent directed iodine(III) catalyzed halogenations. Chem Commun 2014;50:3435–8. https://doi.org/10.1039/c3cc49850f.Search in Google Scholar PubMed
131. Granados, A, Shafir, A, Arrieta, A, Cossío, FP, Vallribera, A. Stepwise mechanism for the bromination of arenes by a hypervalent iodine reagent. J Org Chem 2020;85:2142–50. https://doi.org/10.1021/acs.joc.9b02784.Search in Google Scholar PubMed
132. Yoshimura, A, Middleton, KR, Luedtke, MW, Zhu, C, Zhdankin, VV. Hypervalent iodine catalyzed Hofmann rearrangement of carboxamides using oxone as terminal oxidant. J Org Chem 2012;77:11399–404. https://doi.org/10.1021/jo302375m.Search in Google Scholar PubMed
133. Purohit, VC, Allwein, SP, Bakale, RP. Catalytic oxidative 1,2-shift in 1,1′-disubstituted olefins using arene(iodo)sulfonic acid as the precatalyst and oxone as the oxidant. Org Lett 2013;15:1650–3. https://doi.org/10.1021/ol400432x.Search in Google Scholar PubMed
134. Sun, Y, Huang, X, Li, X, Luo, F, Zhang, L, Chen, M, et al.. Mild ring contractions of cyclobutanols to cyclopropyl ketones via hypervalent iodine oxidation. Adv Synth Catal 2018;360:1082–7. https://doi.org/10.1002/adsc.201701237.Search in Google Scholar
135. Moriyama, K, Ishida, K, Togo, H. Regioselective Csp2–H dual functionalization of indoles using hypervalent iodine(III): bromo-amination via 1,3-migration of imides on indolyl(phenyl)iodonium imides. Chem Commun 2015;51:2273–6. https://doi.org/10.1039/c4cc09077b.Search in Google Scholar PubMed
© 2021 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Editorial
- Organocatalysis: a green tool for sustainable developments
- Reviews
- Zwitterionic imidazolium salt: an effective green organocatalyst in synthetic chemistry
- The aryl iodine-catalyzed organic transformation via hypervalent iodine species generated in situ
- Baker’s yeast (Saccharomyces cerevisiae) catalyzed synthesis of bioactive heterocycles and some stereoselective reactions
- Critical trends in synthetic organic chemistry in terms of organocatalysis
- Organo-catalysis as emerging tools in organic synthesis: aldol and Michael reactions
- Synthetic drives for useful drug molecules through organocatalytic methods
- Organocatalytic total synthesis of bioactive compounds based on one-pot methodologies
- Organocatalysts based on natural and modified amino acids for asymmetric reactions
- Bronsted acidic surfactants: efficient organocatalysts for diverse organic transformations
- Microwave-induced biocatalytic reactions toward medicinally important compounds
- Sulfonated β-cyclodextrins: efficient supramolecular organocatalysts for diverse organic transformations
- Enzyme-catalyzed synthesis of bioactive heterocycles
Articles in the same Issue
- Frontmatter
- Editorial
- Organocatalysis: a green tool for sustainable developments
- Reviews
- Zwitterionic imidazolium salt: an effective green organocatalyst in synthetic chemistry
- The aryl iodine-catalyzed organic transformation via hypervalent iodine species generated in situ
- Baker’s yeast (Saccharomyces cerevisiae) catalyzed synthesis of bioactive heterocycles and some stereoselective reactions
- Critical trends in synthetic organic chemistry in terms of organocatalysis
- Organo-catalysis as emerging tools in organic synthesis: aldol and Michael reactions
- Synthetic drives for useful drug molecules through organocatalytic methods
- Organocatalytic total synthesis of bioactive compounds based on one-pot methodologies
- Organocatalysts based on natural and modified amino acids for asymmetric reactions
- Bronsted acidic surfactants: efficient organocatalysts for diverse organic transformations
- Microwave-induced biocatalytic reactions toward medicinally important compounds
- Sulfonated β-cyclodextrins: efficient supramolecular organocatalysts for diverse organic transformations
- Enzyme-catalyzed synthesis of bioactive heterocycles