Home The aryl iodine-catalyzed organic transformation via hypervalent iodine species generated in situ
Article
Licensed
Unlicensed Requires Authentication

The aryl iodine-catalyzed organic transformation via hypervalent iodine species generated in situ

  • Xuemin Li , Guangchen Li , Yifu Cheng and Yunfei Du EMAIL logo
Published/Copyright: October 18, 2021
Become an author with De Gruyter Brill

Abstract

The application of hypervalent iodine species generated in situ in organic transformations has emerged as a useful and powerful tool in organic synthesis, allowing for the construction of a series of bond formats via oxidative coupling. Among these transformations, the catalytic aryl iodide can be oxidized to hypervalent iodine species, which then undergoes oxidative reaction with the substrates and the aryl iodine regenerated again once the first cyclic cycle of the reaction is completed. This review aims to systematically summarize and discuss the main progress in the application of in situ-generated hypervalent iodine species, providing references and highlights for synthetic chemists who might be interested in this field of hypervalent iodine chemistry.


Corresponding author: Yunfei Du, Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China, E-mail:

Funding source: National Natural Science Foundation of China

Award Identifier / Grant number: 22071175

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was supported by the National Natural Science Foundation of China (#22071175).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Yoshimura, A, Zhdankin, VV. Advances in synthetic applications of hypervalent iodine compounds. Chem Rev 2016;116:3328–435. https://doi.org/10.1021/acs.chemrev.5b00547.Search in Google Scholar PubMed

2. Zhdankin, VV, Stang, PJ. Chemistry of polyvalent iodine. Chem Rev 2008;108:5299–358. https://doi.org/10.1021/cr800332c.Search in Google Scholar PubMed PubMed Central

3. Brand, JP, González, DF, Nicolai, S, Waser, J. Benziodoxole-based hypervalent iodine reagents for atom-transfer reactions. Chem Commun 2011;47:102–15. https://doi.org/10.1039/c0cc02265a.Search in Google Scholar PubMed

4. Yoshimura, A, Yusubov, MS, Zhdankin, VV. Synthetic applications of pseudocyclic hypervalent iodine compounds. Org Biomol Chem 2016;14:4771–81. https://doi.org/10.1039/c6ob00773b.Search in Google Scholar PubMed

5. Yoshimura, A, Saito, A, Zhdankin, VV, Yusubov, MS. Synthesis of oxazoline and oxazole derivatives by hypervalent-iodine-mediated oxidative cycloaddition reactions. Synthesis 2020;52:2299–310. https://doi.org/10.1055/s-0040-1707122.Search in Google Scholar

6. Zhdankin, VV, Stang, PJ. Recent developments in the chemistry of polyvalent iodine compounds. Chem Rev 2002;102:2523–84. https://doi.org/10.1021/cr010003+.10.1021/cr010003+Search in Google Scholar PubMed

7. Mekhman, SY, Viktor, VZ. Hypervalent iodine reagents and green chemistry. Curr Org Synth 2012;9:247–72. https://doi.org/10.2174/157017912799829021.Search in Google Scholar

8. Uyanik, M, Ishihara, K. Catalysis with in situ-generated (hypo)iodite ions for oxidative coupling reactions. ChemCatChem 2012;4:177–85. https://doi.org/10.1002/cctc.201100352.Search in Google Scholar

9. Stang, PJ, Zhdankin, VV. Organic polyvalent iodine compounds. Chem Rev 1996;96:1123–78. https://doi.org/10.1021/cr940424+.10.1021/cr940424+Search in Google Scholar PubMed

10. Parra, A, Reboredo, S. Chiral hypervalent iodine reagents: synthesis and reactivity. Chem Eur J 2013;19:17244–60. https://doi.org/10.1002/chem.201302220.Search in Google Scholar PubMed

11. Cui, LQ, Liu, K, Zhang, C. Effective oxidation of benzylic and alkane C–H bonds catalyzed by sodium o-iodobenzenesulfonate with oxone as a terminal oxidant under phase-transfer conditions. Org Biomol Chem 2011;9:2258. https://doi.org/10.1039/c0ob00722f.Search in Google Scholar PubMed

12. Fuchigami, T, Fujita, T. Electrolytic partial fluorination of organic compounds. 14. The first electrosynthesis of hypervalent iodobenzene difluoride derivatives and its application to indirect anodic gem-difluorination. J Org Chem 1994;59:7190–2. https://doi.org/10.1021/jo00103a003.Search in Google Scholar

13. Ochiai, M, Miyamoto, K. Catalytic version of and reuse in hypervalent organo‐λ3‐and‐λ5‐iodane oxidation. Eur J Org Chem 2008;2008:4229–39. https://doi.org/10.1002/ejoc.200800416.Search in Google Scholar

14. Dohi, T, Kita, Y. Hypervalent iodine reagents as a new entrance to organocatalysts. Chem Commun 2009;2073–85. https://doi.org/10.1039/b821747e.Search in Google Scholar PubMed

15. Richardson, RD, Wirth, T. Hypervalent iodine goes catalytic. Angew Chem Int Ed 2006;45:4402–4. https://doi.org/10.1002/anie.200601817.Search in Google Scholar PubMed

16. Li, X, Chen, P, Liu, G. Recent advances in hypervalent iodine(III)-catalyzed functionalization of alkenes. Beilstein J Org Chem 2018;14:1813–25. https://doi.org/10.3762/bjoc.14.154.Search in Google Scholar PubMed PubMed Central

17. Flores, A, Cots, E, Bergès, J, Muñiz, K. Enantioselective iodine(I/III) catalysis in organic synthesis. Adv Synth Catal 2019;361:2–25. https://doi.org/10.1002/adsc.201800521.Search in Google Scholar

18. Yusubov, MS, Zhdankin, VV. Development of new recyclable reagents and catalytic systems based on hypervalent iodine compounds. Mendeleev Commun 2010;20:185–91. https://doi.org/10.1016/j.mencom.2010.06.001.Search in Google Scholar

19. Parra, A. Chiral hypervalent iodines: active players in asymmetric synthesis. Chem Rev 2019;119:12033–88. https://doi.org/10.1021/acs.chemrev.9b00338.Search in Google Scholar PubMed

20. Zheng, Z, Zhang-Negrerie, D, Du, Y, Zhao, K. The applications of hypervalent iodine(III) reagents in the constructions of heterocyclic compounds through oxidative coupling reactions. Sci China Chem 2014;57:189–214. https://doi.org/10.1007/s11426-013-5043-1.Search in Google Scholar

21. Liang, H, Ciufolini, MA. Chiral hypervalent iodine reagents in asymmetric reactions. Angew Chem Int Ed 2011;50:11849–51. https://doi.org/10.1002/anie.201106127.Search in Google Scholar PubMed

22. Wirth, T, Brown, M, Farid, U. Hypervalent iodine reagents as powerful electrophiles. Synlett 2013;24:424–31. https://doi.org/10.1055/s-0032-1318103.Search in Google Scholar

23. Singh, FV, Wirth, T. Hypervalent iodine-catalyzed oxidative functionalizations including stereoselective reactions. Chem Asian J 2014;9:950–71. https://doi.org/10.1002/asia.201301582.Search in Google Scholar PubMed

24. Romero, RM, Wöste, TH, Muñiz, K. Vicinal difunctionalization of alkenes with iodine(III) reagents and catalysts. Chem Asian J 2014;9:972–83. https://doi.org/10.1002/asia.201301637.Search in Google Scholar PubMed

25. Fujita, M. Enantioselective heterocycle formation using chiral hypervalent iodine (III). Heterocycles 2018;96:563–94. https://doi.org/10.3987/rev-17-877.Search in Google Scholar

26. Claraz, A, Masson, G. Asymmetric iodine catalysis-mediated enantioselective oxidative transformations. Org Biomol Chem 2018;16:5386–402. https://doi.org/10.1039/c8ob01378k.Search in Google Scholar PubMed

27. Richardson, RD, Wirth, T. Hypervalente iodreagentien: jetzt katalytisch. Angew Chem 2006;118:4510–2. https://doi.org/10.1002/ange.200601817.Search in Google Scholar

28. Yang, L, Xu, G, Ma, J, Yang, Q, Feng, A, Cui, J. Recent advances in the application of in situ generated hypervalent iodine reagents in organic synthesis. Chin J Org Chem 2020;40:28. https://doi.org/10.6023/cjoc201906023.Search in Google Scholar

29. Uyanik, M, Ishihara, K. Hypervalent iodine-mediated oxidation of alcohols. Chem Commun 2009:2086–99. https://doi.org/10.1039/b823399c.Search in Google Scholar PubMed

30. Manna, S, Antonchick, AP. Organocatalytic oxidative annulation of benzamide derivatives with alkynes. Angew Chem Int Ed 2014;53:7324–7. https://doi.org/10.1002/anie.201404222.Search in Google Scholar PubMed

31. Dohi, T, Minamitsuji, Y, Maruyama, A, Hirose, S, Kita, Y. A new H2O2/acid anhydride system for the iodoarene-catalyzed C–C bond-forming reactions of phenols. Org Lett 2008;10:3559–62. https://doi.org/10.1021/ol801321f.Search in Google Scholar PubMed

32. Zhang, DY, Xu, L, Wu, H, Gong, LZ. Chiral iodine-catalyzed dearomatizative spirocyclization for the enantioselective construction of an all-carbon stereogenic center. Chem Eur J 2015;21:10314–7. https://doi.org/10.1002/chem.201501583.Search in Google Scholar PubMed

33. Wang, SE, He, QQ, Fan, RH. Iodobenzene-catalyzed ortho-dearomatization and aromatization-triggered rearrangement of 2-allylanilines: construction of indolin-3-ylmethanols with high diastereoselectivities. Org Lett 2017;19:6478–81. https://doi.org/10.1021/acs.orglett.7b02986.Search in Google Scholar PubMed

34. Hori, M, Guo, JD, Yanagi, T, Nogi, K, Sasamori, T, Yorimitsu, H. Sigmatropic rearrangements of hypervalent-iodine-tethered intermediates for the synthesis of biaryls. Angew Chem Int Ed 2018;57:4663–7. https://doi.org/10.1002/anie.201801132.Search in Google Scholar PubMed

35. Zhao, Z, Britt, LH, Murphy, GK. Oxidative, iodoarene‐catalyzed intramolecular alkene arylation for the synthesis of polycyclic aromatic hydrocarbons. Chem Eur J 2018;24:17002–5. https://doi.org/10.1002/chem.201804786.Search in Google Scholar PubMed

36. Wu, H, He, YP, Xu, L, Zhang, DY, Gong, LZ. Asymmetric organocatalytic direct C(sp2)–H/C(sp3)–H oxidative cross-coupling by chiral iodine reagents. Angew Chem Int Ed 2014;53:3466–9. https://doi.org/10.1002/anie.201309967.Search in Google Scholar PubMed

37. Cao, Y, Zhang, X, Lin, GY, Zhang-Negrerie, D, Du, YF. Chiral aryliodine-mediated enantioselective organocatalytic spirocyclization: synthesis of spirofurooxindoles via cascade oxidative C–O and C–C bond formation. Org Lett 2016;18:5580–3. https://doi.org/10.1021/acs.orglett.6b02816.Search in Google Scholar PubMed

38. Wu, YC, Arenas, I, Broomfield, LM, Martin, E, Shafir, A. Hypervalent activation as a key step for dehydrogenative ortho C–C coupling of iodoarenes. Chem Eur J 2015;21:18779–84. https://doi.org/10.1002/chem.201503987.Search in Google Scholar PubMed

39. Jia, Z, Gálvez, E, Sebastián, RM, Pleixats, R, Álvarez-Larena, Á, Martin, E, et al.. An alternative to the classical α-arylation: the transfer of an intact 2-iodoaryl from ArI(O2CCF3)2. Angew Chem Int Ed 2014;53:11298–301. https://doi.org/10.1002/anie.201405982.Search in Google Scholar PubMed

40. Zhen, XH, Wan, XT, Zhang, W, Li, Q, Zhang-Negrerie, D, Du, YF. Synthesis of spirooxindoles from N-arylamide derivatives via oxidative C(sp2)–C(sp3) bond formation mediated by PhI(OMe)2 generated in situ. Org Lett 2019;21:890–4. https://doi.org/10.1021/acs.orglett.8b03741.Search in Google Scholar PubMed

41. Dohi, T, Maruyama, A, Yoshimura, M, Morimoto, K, Tohma, H, Kita, Y. Versatile hypervalent‐iodine(III)‐catalyzed oxidations with m‐chloroperbenzoic acid as a cooxidant. Angew Chem Int Ed 2005;44:6193–6. https://doi.org/10.1002/anie.200501688.Search in Google Scholar PubMed

42. Dohi, T, Maruyama, A, Takenaga, N, Senami, K, Minamitsuji, Y, Fujioka, H, et al.. A chiral hypervalent iodine(III) reagent for enantioselective dearomatization of phenols. Angew Chem Int Ed 2008;47:3787–90. https://doi.org/10.1002/anie.200800464.Search in Google Scholar PubMed

43. Dohi, T, Takenaga, N, Nakae, T, Toyoda, Y, Yamasaki, M, Shiro, M, et al.. Asymmetric dearomatizing spirolactonization of naphthols catalyzed by spirobiindane-based chiral hypervalent iodine species. J Am Chem Soc 2013;135:4558–66. https://doi.org/10.1021/ja401074u.Search in Google Scholar PubMed

44. Dohi, T, Sasa, H, Miyazaki, K, Fujitake, M, Takenaga, N, Kita, Y. Chiral atropisomeric 8,8′-diiodobinaphthalene for asymmetric dearomatizing spirolactonizations in hypervalent iodine oxidations. J Org Chem 2017;82:11954–60. https://doi.org/10.1021/acs.joc.7b02037.Search in Google Scholar PubMed

45. Uyanik, M, Yasui, T, Ishihara, K. Enantioselective kita oxidative spirolactonization catalyzed by in situ generated chiral hypervalent iodine(III) species. Angew Chem Int Ed 2010;49:2175–7. https://doi.org/10.1002/anie.200907352.Search in Google Scholar PubMed

46. Uyanik, M, Yasui, T, Ishihara, K. Chiral hypervalent organoiodine-catalyzed enantioselective oxidative spirolactonization of naphthol derivatives. J Org Chem 2017;82:11946–53. https://doi.org/10.1021/acs.joc.7b01941.Search in Google Scholar PubMed

47. Murray, SJ, Ibrahim, H. Asymmetric kita spirolactonisation catalysed by anti-dimethanoanthracene-based iodoarenes. Chem Commun 2015;51:2376–9. https://doi.org/10.1039/c4cc09724f.Search in Google Scholar PubMed

48. Bekkaye, M, Masson, G. Synthesis of new axially chiral iodoarenes. Synthesis 2016;48:302–12.10.1055/s-0035-1560512Search in Google Scholar

49. Hempel, C, Maichle‐Mössmer, C, Pericàs Miquel, A, Nachtsheim Boris, J. Modular synthesis of triazole‐based chiral iodoarenes for enantioselective spirocyclizations. Adv Synth Catal 2017;359:2931–41. https://doi.org/10.1002/adsc.201700246.Search in Google Scholar

50. Wang, Y, Zhao, CY, Wang, YP, Zheng, WH. Enantioselective intramolecular dearomative lactonization of naphthols catalyzed by planar chiral iodoarene. Synthesis 2019;51:3675–82. https://doi.org/10.1055/s-0037-1611902.Search in Google Scholar

51. Imrich, MR, Ziegler, T. Carbohydrate based chiral iodoarene catalysts for enantioselective dearomative spirocyclization. Tetrahedron Lett 2019;60:150954. https://doi.org/10.1016/j.tetlet.2019.150954.Search in Google Scholar

52. Antien, K, Pouységu, L, Deffieux, D, Massip, S, Peixoto, PA, Quideau, S. Synthesis of [7]helicene enantiomers and exploratory study of their conversion into helically chiral iodoarenes and iodanes. Chem Eur J 2019;25:2852–8. https://doi.org/10.1002/chem.201805761.Search in Google Scholar PubMed

53. Tariq, MU, Moran, WJ. Design and synthesis of chiral urea-derived iodoarenes and their assessment in the enantioselective dearomatizing cyclization of a naphthyl amide. Tetrahedron 2020;76:131634. https://doi.org/10.1016/j.tet.2020.131634.Search in Google Scholar

54. Uyanik, M, Yasui, T, Ishihara, K. Hypervalent iodine-catalyzed oxylactonization of ketocarboxylic acids to ketolactones. Bioorg Med Chem Lett 2009;19:3848–51. https://doi.org/10.1016/j.bmcl.2009.03.148.Search in Google Scholar PubMed

55. Wang, X, Gallardo-Donaire, J, Martin, R. Mild arI-catalyzed C(sp2)–H or C(sp3)–H functionalization/C–O formation: an intriguing catalyst-controlled selectivity switch. Angew Chem Int Ed 2014;53:11084–7. https://doi.org/10.1002/anie.201407011.Search in Google Scholar PubMed

56. Gao, WC, Xiong, ZY, Pirhaghani, S, Wirth, T. Enantioselective electrochemical lactonization using chiral iodoarenes as mediators. Synthesis 2019;51:276–84. https://doi.org/10.1055/s-0037-1610373.Search in Google Scholar

57. Ngatimin, M, Frey, R, Andrews, C, Lupton, DW, Hutt, OE. Iodobenzene catalysed synthesis of spirofurans and benzopyrans by oxidative cyclisation of vinylogous esters. Chem Commun 2011;47:11778–80. https://doi.org/10.1039/c1cc15015d.Search in Google Scholar PubMed

58. Ngatimin, M, Frey, R, Levens, A, Nakano, Y, Kowalczyk, M, Konstas, K, et al.. Iodobenzene-catalyzed oxabicyclo[3.2.1]octane and [4.2.1]nonane synthesis via cascade C–O/C–C formation. Org Lett 2013;15:5858–61. https://doi.org/10.1021/ol4029308.Search in Google Scholar PubMed

59. Volp, KA, Harned, AM. Chiral aryl iodide catalysts for the enantioselective synthesis of para-quinols. Chem Commun 2013;49:3001–3. https://doi.org/10.1039/c3cc00013c.Search in Google Scholar PubMed

60. China, H, Tanihara, K, Sasa, H, Kikushima, K, Dohi, T. Regiodivergent oxidation of alkoxyarenes by hypervalent iodine/oxone® system. Catal Today 2020;348:2–8. https://doi.org/10.1016/j.cattod.2019.08.060.Search in Google Scholar

61. Uyanik, M, Sasakura, N, Mizuno, M, Ishihara, K. Enantioselective synthesis of masked benzoquinones using designer chiral hypervalent organoiodine(III) catalysis. ACS Catal 2017;7:872–6. https://doi.org/10.1021/acscatal.6b03380.Search in Google Scholar

62. Panda, N, Mattan, I. One-pot two-step synthesis of 3-iodo-4-aryloxy coumarins and their Pd/C-catalyzed annulation to coumestans. RSC Adv 2018;8:7716–25. https://doi.org/10.1039/c7ra12419h.Search in Google Scholar PubMed PubMed Central

63. Shimogaki, M, Fujita, M, Sugimura, T. Enantioselective oxidation of alkenylbenzoates catalyzed by chiral hypervalent iodine(III) to yield 4-hydroxyisochroman-1-ones. Eur J Org Chem 2013;2013:7128–38. https://doi.org/10.1002/ejoc.201300959.Search in Google Scholar

64. Deng, Q, Xia, W, Hussain, MI, Zhang, X, Hu, W, Xiong, Y. Synthesis of polycyclic cyclohexadienone through alkoxy-oxylactonization and dearomatization of 3′-hydroxy-[1,1′-biphenyl]-2-carboxylic acids promoted by hypervalent iodine. J Org Chem 2020;85:3125–33. https://doi.org/10.1021/acs.joc.9b03012.Search in Google Scholar PubMed

65. Du, Y, Zhang, J, Jalil, A, He, J, Yu, Z, Cheng, Y, et al.. Lactonization with concomitant 1,2-aryl migration and alkoxylation mediated by dialkoxyphenyl iodides generated in situ. Chem Commun 2021;57:7426–9. https://doi.org/10.1039/D1CC03110D.Search in Google Scholar

66. Zhang, DY, Zhang, Y, Wu, H, Gong, L-Z. Organoiodine-catalyzed enantioselective alkoxylation/oxidative rearrangement of allylic alcohols. Angew Chem Int Ed 2019;58:7450–3. https://doi.org/10.1002/anie.201903007.Search in Google Scholar PubMed

67. Kawano, Y, Togo, H. Iodoarene-mediated one-pot preparation of 2,4,5-trisubstituted oxazoles from ketones. Synlett 2008;2008:217–20.10.1055/s-2007-1000871Search in Google Scholar

68. Ishiwata, Y, Togo, H. Iodoarene-mediated one-pot preparation of 2,5-disubstituted and 2,4,5-trisubstituted oxazoles from alkyl aryl ketones with oxone in nitriles. Tetrahedron 2009;65:10720–4. https://doi.org/10.1016/j.tet.2009.09.109.Search in Google Scholar

69. Kawano, Y, Togo, H. Iodoarene-catalyzed one-pot preparation of 2,4,5-trisubstituted oxazoles from alkyl aryl ketones with mCPBA in nitriles. Tetrahedron 2009;65:6251–6. https://doi.org/10.1016/j.tet.2009.05.003.Search in Google Scholar

70. Yoshimura, A, Middleton, KR, Todora, AD, Kastern, BJ, Koski, SR, Maskaev, AV, et al.. Hypervalent iodine catalyzed generation of nitrile oxides from oximes and their cycloaddition with alkenes or alkynes. Org Lett 2013;15:4010–3. https://doi.org/10.1021/ol401815n.Search in Google Scholar PubMed

71. Alhalib, A, Kamouka, S, Moran, WJ. Iodoarene-catalyzed cyclizations of unsaturated amides. Org Lett 2015;17:1453–6. https://doi.org/10.1021/acs.orglett.5b00333.Search in Google Scholar PubMed

72. Yagyu, T, Takemoto, Y, Yoshimura, A, Zhdankin, VV, Saito, A. Iodine(III)-catalyzed formal [2 + 2 + 1] cycloaddition reaction for metal-free construction of oxazoles. Org Lett 2017;19:2506–9. https://doi.org/10.1021/acs.orglett.7b00742.Search in Google Scholar PubMed

73. Kamouka, S, Moran, WJ. Iodoarene-catalyzed cyclizations of N-propargylamides and β-amidoketones: synthesis of 2-oxazolines. Beilstein J Org Chem 2017;13:1823–7. https://doi.org/10.3762/bjoc.13.177.Search in Google Scholar PubMed PubMed Central

74. Butt, SE, Das, M, Sotiropoulos, J-M, Moran, WJ. Computationally assisted mechanistic investigation into hypervalent iodine catalysis: cyclization of N-allylbenzamide. J Org Chem 2019;84:15605–13. https://doi.org/10.1021/acs.joc.9b02623.Search in Google Scholar PubMed

75. Abazid, AH, Hollwedel, T-N, Nachtsheim, BJ. Stereoselective oxidative cyclization of N-allyl benzamides to oxaz(ol)ines. Org Lett 2021;23:5076–80. https://doi.org/10.1021/acs.orglett.1c01607.Search in Google Scholar PubMed

76. Asari, N, Takemoto, Y, Shinomoto, Y, Yagyu, T, Yoshimura, A, Zhdankin, VV, et al.. Catalytic cycloisomerization–fluorination sequence of N-propargyl amides by iodoarene/HF⋅pyridine/selectfluor systems. Asian J Org Chem 2016;5:1314–7. https://doi.org/10.1002/ajoc.201600383.Search in Google Scholar

77. Scheidt, F, Thiehoff, C, Yilmaz, G, Meyer, S, Daniliuc, CG, Kehr, G, et al.. Fluorocyclisation via I(I)/I(III) catalysis: a concise route to fluorinated oxazolines. Beilstein J Org Chem 2018;14:1021–7. https://doi.org/10.3762/bjoc.14.88.Search in Google Scholar PubMed PubMed Central

78. Haupt, JD, Berger, M, Waldvogel, SR. Electrochemical fluorocyclization of N-allylcarboxamides to 2-oxazolines by hypervalent iodine mediator. Org Lett 2019;21:242–5. https://doi.org/10.1021/acs.orglett.8b03682.Search in Google Scholar PubMed

79. Herszman, JD, Berger, M, Waldvogel, SR. Fluorocyclization of N-propargylamides to oxazoles by electrochemically generated ArIF2. Org Lett 2019;21:7893–6. https://doi.org/10.1021/acs.orglett.9b02884.Search in Google Scholar PubMed

80. Takahashi, S, Umakoshi, Y, Nakayama, K, Okada, Y, Zhdankin, VV, Yoshimura, A, et al.. Fluorocyclization of N‐propargyl carboxamides by λ3‐iodane catalysts with coordinating substituents. Adv Synth Catal 2020;362:2997–3003. https://doi.org/10.1002/adsc.202000381.Search in Google Scholar

81. Mangaonkar, SR, Singh, FV. Hypervalent iodine(III)-catalyzed epoxidation of β-cyanostyrenes. Synthesis 2019;51:4473–86. https://doi.org/10.1055/s-0039-1690621.Search in Google Scholar

82. Ochiai, M, Takeuchi, Y, Katayama, T, Sueda, T, Miyamoto, K. Iodobenzene-catalyzed α-acetoxylation of ketones. In situ generation of hypervalent (diacyloxyiodo)benzenes using m-chloroperbenzoic acid. J Am Chem Soc 2005;127:12244–5. https://doi.org/10.1021/ja0542800.Search in Google Scholar PubMed

83. Hokamp, T, Wirth, T. Hypervalent iodine(III)‐catalysed enantioselective α‐acetoxylation of ketones. Chem Eur J 2020;26:10417–21. https://doi.org/10.1002/chem.202000927.Search in Google Scholar PubMed PubMed Central

84. Zhong, W, Liu, S, Yang, J, Meng, X, Li, Z. Metal-Free, organocatalytic syn diacetoxylation of alkenes. Org Lett 2012;14:3336–9. https://doi.org/10.1021/ol301311e.Search in Google Scholar PubMed

85. Haubenreisser, S, Wöste, TH, Martínez, C, Ishihara, K, Muñiz, K. Structurally defined molecular hypervalent iodine catalysts for intermolecular enantioselective reactions. Angew Chem Int Ed 2016;55:413–7. https://doi.org/10.1002/anie.201507180.Search in Google Scholar PubMed PubMed Central

86. Altermann, SM, Richardson, RD, Page, TK, Schmidt, RK, Holland, E, Mohammed, U, et al.. Catalytic enantioselective α-oxysulfonylation of ketones mediated by iodoarenes. Eur J Org Chem 2008;2008:5315–28. https://doi.org/10.1002/ejoc.200800741.Search in Google Scholar

87. Yu, J, Cui, J, Hou, XS, Liu, SS, Gao, WC, Jiang, S, et al.. Enantioselective α-tosyloxylation of ketones catalyzed by spirobiindane scaffold-based chiral iodoarenes. Tetrahedron: Asymmetry 2011;22:2039–55. https://doi.org/10.1016/j.tetasy.2011.12.003.Search in Google Scholar

88. Levitre, G, Dumoulin, A, Retailleau, P, Panossian, A, Leroux, FR, Masson, G. Asymmetric α-sulfonyl- and α-phosphoryl-oxylation of ketones by a chiral hypervalent iodine(III). J Org Chem 2017;82:11877–83. https://doi.org/10.1021/acs.joc.7b01597.Search in Google Scholar PubMed

89. Xiong, Y, Coeffard, V, Feng, Y, Huang, R, Hu, L. Chiral C2-symmetric iodoarene-catalyzed asymmetric α-oxidation of β-keto esters. Synthesis 2016;48:2637–44. https://doi.org/10.1055/s-0035-1561442.Search in Google Scholar

90. Alharbi, H, Elsherbini, M, Qurban, J, Wirth, T. C–N axial chiral hypervalent iodine reagents: catalytic stereoselective α‐oxytosylation of ketones. Chem Eur J 2021;27:4317–21. https://doi.org/10.1002/chem.202005253.Search in Google Scholar PubMed PubMed Central

91. Lex, TR, Swasy, MI, Whitehead, DC. Relative rate profiles of functionalized iodoarene catalysts for iodine(III) oxidations. J Org Chem 2015;80:12234–43. https://doi.org/10.1021/acs.joc.5b02129.Search in Google Scholar PubMed

92. Boelke, A, Nachtsheim, BJ. Evolution of N-heterocycle-substituted iodoarenes (NHIAs) to efficient organocatalysts in iodine(I/III)-mediated oxidative transformations. Adv Synth Catal 2020;362:184–91. https://doi.org/10.1002/adsc.201901356.Search in Google Scholar

93. Abazid, AH, Clamor, N, Nachtsheim, BJ. An enantioconvergent benzylic hydroxylation using a chiral aryl iodide in a dual activation mode. ACS Catal 2020;10:8042–8. https://doi.org/10.1021/acscatal.0c02321.Search in Google Scholar

94. Quideau, S, Lyvinec, G, Marguerit, M, Bathany, K, Ozanne-Beaudenon, A, Buffeteau, T, et al.. Asymmetric hydroxylative phenol dearomatization through in situ generation of iodanes from chiral iodoarenes and mCPBA. Angew Chem Int Ed 2009;48:4605–9. https://doi.org/10.1002/anie.200901039.Search in Google Scholar PubMed

95. Dohi, T, Maruyama, A, Minamitsuji, Y, Takenaga, N, Kita, Y. First hypervalent iodine(III)-catalyzed C–N bond forming reaction: catalytic spirocyclization of amides to N-fused spirolactams. Chem Commun 2007:1224–6. https://doi.org/10.1039/b616510a.Search in Google Scholar PubMed

96. Dohi, T, Takenaga, N, Fukushima, KI, Uchiyama, T, Kato, D, Motoo, S, et al.. Designer μ-oxo-bridged hypervalent iodine(III) organocatalysts for greener oxidations. Chem Commun 2010;46:7697. https://doi.org/10.1039/c0cc03213a.Search in Google Scholar PubMed

97. Dohi, T, Nakae, T, Ishikado, Y, Kato, D, Kita, Y. New synthesis of spirocycles by utilizing in situ forming hypervalent iodine species. Org Biomol Chem 2011;9:6899. https://doi.org/10.1039/c1ob06199b.Search in Google Scholar PubMed

98. Jain, N, Hein, JE, Ciufolini, MA. Oxidative cyclization of naphtholic sulfonamides mediated by a chiral hypervalent iodine reagent: asymmetric synthesis versus resolution. Synlett 2019;30:1222–7. https://doi.org/10.1055/s-0037-1611831.Search in Google Scholar

99. Ishiwata, Y, Togo, H. Ion-supported PhI-catalyzed cyclization of N-methoxy-2-arylethanesulfonamides with mCPBA. Tetrahedron Lett 2009;50:5354–7. https://doi.org/10.1016/j.tetlet.2009.07.034.Search in Google Scholar

100. Mizar, P, Laverny, A, El-Sherbini, M, Farid, U, Brown, M, Malmedy, F, et al.. Enantioselective diamination with novel chiral hypervalent iodine catalysts. Chem Eur J 2014;20:9910–3. https://doi.org/10.1002/chem.201403891.Search in Google Scholar PubMed PubMed Central

101. Zhu, C, Liang, Y, Hong, X, Sun, H, Sun, WY, Houk, KN, et al.. Iodoarene-catalyzed stereospecific intramolecular sp3 C–H amination: reaction development and mechanistic insights. J Am Chem Soc 2015;137:7564–7. https://doi.org/10.1021/jacs.5b03488.Search in Google Scholar PubMed

102. Bal, A, Maiti, S, Mal, P. Iodine(III)-enabled distal C–H functionalization of biarylsulfonanilides. J Org Chem 2018;83:11278–87. https://doi.org/10.1021/acs.joc.8b01857.Search in Google Scholar PubMed

103. Ding, Q, He, H, Cai, Q. Chiral aryliodine-catalyzed asymmetric oxidative C–N bond formation via desymmetrization strategy. Org Lett 2018;20:4554–7. https://doi.org/10.1021/acs.orglett.8b01849.Search in Google Scholar PubMed

104. Mennie, KM, Banik, SM, Reichert, EC, Jacobsen, EN. Catalytic diastereo- and enantioselective fluoroamination of alkenes. J Am Chem Soc 2018;140:4797–802. https://doi.org/10.1021/jacs.8b02143.Search in Google Scholar PubMed PubMed Central

105. Maity, A, Frey, BL, Hoskinson, ND, Powers, DC. Electrocatalytic C–N coupling via anodically generated hypervalent iodine intermediates. J Am Chem Soc 2020;142:4990–5. https://doi.org/10.1021/jacs.9b13918.Search in Google Scholar PubMed

106. Deng, T, Shi, E, Thomas, E, Driver, TG. I(III)-catalyzed oxidative cyclization–migration tandem reactions of unactivated anilines. Org Lett 2020;22:9102–6. https://doi.org/10.1021/acs.orglett.0c03497.Search in Google Scholar PubMed PubMed Central

107. Maiti, S, Mal, P. Soft–hard acid/base-controlled, oxidative, N-selective arylation of sulfonanilides via a nitrenium Ion. J Org Chem 2018;83:1340–7. https://doi.org/10.1021/acs.joc.7b02841.Search in Google Scholar PubMed

108. Dohi, T, Sasa, H, Dochi, M, Yasui, C, Kita, Y. Oxidative coupling of N-methoxyamides and related compounds toward aromatic hydrocarbons by designer μ-oxo hypervalent iodine catalyst. Synthesis 2019;51:1185–95. https://doi.org/10.1055/s-0037-1611661.Search in Google Scholar

109. Yang, P, Wang, X, Wang, L, He, J, Zhang, Q, Li, D. Oxidative cross-dehydrogenative coupling between iodoarenes and acylanilides for C–N bond formation under metal-free conditions. Org Chem Front 2021;8:2556–62. https://doi.org/10.1039/d1qo00225b.Search in Google Scholar

110. Kiyokawa, K, Yahata, S, Kojima, T, Minakata, S. Hypervalent iodine(III)-mediated oxidative decarboxylation of β,γ-unsaturated carboxylic acids. Org Lett 2014;16:4646–9. https://doi.org/10.1021/ol5022433.Search in Google Scholar PubMed

111. Zheng, G, Ma, X, Li, J, Zhu, D, Wang, M. Electrophilic N-trifluoromethylation of N–H ketimines. J Org Chem 2015;80:8910–5. https://doi.org/10.1021/acs.joc.5b01468.Search in Google Scholar PubMed

112. Muñiz, K, Barreiro, L, Romero, RM, Martínez, C. Catalytic asymmetric diamination of styrenes. J Am Chem Soc 2017;139:4354–7. https://doi.org/10.1021/jacs.7b01443.Search in Google Scholar PubMed

113. Cots, E, Flores, A, Romero, RM, Muñiz, K. A practical aryliodine(I/III) catalysis for the vicinal diamination of styrenes. ChemSusChem 2019;12:3028–31. https://doi.org/10.1002/cssc.201900360.Search in Google Scholar PubMed

114. Zhang, LW, Deng, XJ, Zhang, DX, Tian, QQ, He, W. Aminolactonization of unactivated alkenes catalyzed by aryl iodine. J Org Chem 2021;86:5152–65. https://doi.org/10.1021/acs.joc.1c00074.Search in Google Scholar PubMed

115. Deng, XJ, Liu, HX, Zhang, LW, Zhang, GY, Yu, ZX, He, W. Iodoarene-catalyzed oxyamination of unactivated alkenes to synthesize 5-imino-2-tetrahydrofuranyl methanamine derivatives. J Org Chem 2021;86:235–53. https://doi.org/10.1021/acs.joc.0c02047.Search in Google Scholar PubMed

116. Suzuki, S, Kamo, T, Fukushi, K, Hiramatsu, T, Tokunaga, E, Dohi, T, et al.. Iodoarene-catalyzed fluorination and aminofluorination by an Ar-I/HF·pyridine/mCPBA system. Chem Sci 2014;5:2754–60. https://doi.org/10.1039/c3sc53107d.Search in Google Scholar

117. Kitamura, T, Muta, K, Oyamada, J. Hypervalent iodine-mediated fluorination of styrene derivatives: stoichiometric and catalytic transformation to 2,2-difluoroethylarenes. J Org Chem 2015;80:10431–6. https://doi.org/10.1021/acs.joc.5b01929.Search in Google Scholar PubMed

118. Banik, SM, Medley, JW, Jacobsen, EN. Catalytic, asymmetric difluorination of alkenes to generate difluoromethylated stereocenters. Science 2016;353:51. https://doi.org/10.1126/science.aaf8078.Search in Google Scholar PubMed PubMed Central

119. Zhou, B, Haj, MK, Jacobsen, EN, Houk, KN, Xue, XS. Mechanism and origins of chemo- and stereoselectivities of aryl iodide-catalyzed asymmetric difluorinations of β-substituted styrenes. J Am Chem Soc 2018;140:15206–18. https://doi.org/10.1021/jacs.8b05935.Search in Google Scholar PubMed PubMed Central

120. Molnár, IG, Gilmour, R. Catalytic difluorination of olefins. J Am Chem Soc 2016;138:5004–7. https://doi.org/10.1021/jacs.6b01183.Search in Google Scholar PubMed

121. Banik, SM, Medley, JW, Jacobsen, EN. Catalytic, diastereoselective 1,2-difluorination of alkenes. J Am Chem Soc 2016;138:5000–3. https://doi.org/10.1021/jacs.6b02391.Search in Google Scholar PubMed PubMed Central

122. Haj, MK, Banik, SM, Jacobsen, EN. Catalytic, enantioselective 1,2-difluorination of cinnamamides. Org Lett 2019;21:4919–23. https://doi.org/10.1021/acs.orglett.9b00938.Search in Google Scholar PubMed PubMed Central

123. Woerly, EM, Banik, SM, Jacobsen, EN. Enantioselective, catalytic fluorolactonization reactions with a nucleophilic fluoride source. J Am Chem Soc 2016;138:13858–61. https://doi.org/10.1021/jacs.6b09499.Search in Google Scholar PubMed PubMed Central

124. Kitamura, T, Miyake, A, Muta, K, Oyamada, J. Hypervalent iodine/HF reagents for the synthesis of 3-fluoropyrrolidines. J Org Chem 2017;82:11721–6. https://doi.org/10.1021/acs.joc.7b01266.Search in Google Scholar PubMed

125. Wang, Y, Yuan, H, Lu, H, Zheng, WH. Development of planar chiral iodoarenes based on [2.2]paracyclophane and their application in catalytic enantioselective fluorination of β-ketoesters. Org Lett 2018;20:2555–8. https://doi.org/10.1021/acs.orglett.8b00711.Search in Google Scholar PubMed

126. Neufeld, J, Daniliuc, CG, Gilmour, R. Fluorohydration of alkynes via I(I)/I(III) catalysis. Beilstein J Org Chem 2020;16:1627–35. https://doi.org/10.3762/bjoc.16.135.Search in Google Scholar PubMed PubMed Central

127. Sarie, JC, Neufeld, J, Daniliuc, CG, Gilmour, R. Catalytic vicinal dichlorination of unactivated alkenes. ACS Catal 2019;9:7232–7. https://doi.org/10.1021/acscatal.9b02313.Search in Google Scholar

128. Braddock, DC, Cansell, G, Hermitage, SA. Ortho-substituted iodobenzenes as novel organocatalysts for bromination of alkenes. Chem Commun 2006:2483. https://doi.org/10.1039/b604130b.Search in Google Scholar PubMed

129. Fabry, DC, Stodulski, M, Hoerner, S, Gulder, T. Metal-free synthesis of 3,3-disubstituted oxoindoles by iodine(III)-catalyzed bromocarbocyclizations. Chem Eur J 2012;18:10834–8. https://doi.org/10.1002/chem.201201232.Search in Google Scholar PubMed

130. Stodulski, M, Goetzinger, A, Kohlhepp, SV, Gulder, T. Halocarbocyclization versus dihalogenation: substituent directed iodine(III) catalyzed halogenations. Chem Commun 2014;50:3435–8. https://doi.org/10.1039/c3cc49850f.Search in Google Scholar PubMed

131. Granados, A, Shafir, A, Arrieta, A, Cossío, FP, Vallribera, A. Stepwise mechanism for the bromination of arenes by a hypervalent iodine reagent. J Org Chem 2020;85:2142–50. https://doi.org/10.1021/acs.joc.9b02784.Search in Google Scholar PubMed

132. Yoshimura, A, Middleton, KR, Luedtke, MW, Zhu, C, Zhdankin, VV. Hypervalent iodine catalyzed Hofmann rearrangement of carboxamides using oxone as terminal oxidant. J Org Chem 2012;77:11399–404. https://doi.org/10.1021/jo302375m.Search in Google Scholar PubMed

133. Purohit, VC, Allwein, SP, Bakale, RP. Catalytic oxidative 1,2-shift in 1,1′-disubstituted olefins using arene(iodo)sulfonic acid as the precatalyst and oxone as the oxidant. Org Lett 2013;15:1650–3. https://doi.org/10.1021/ol400432x.Search in Google Scholar PubMed

134. Sun, Y, Huang, X, Li, X, Luo, F, Zhang, L, Chen, M, et al.. Mild ring contractions of cyclobutanols to cyclopropyl ketones via hypervalent iodine oxidation. Adv Synth Catal 2018;360:1082–7. https://doi.org/10.1002/adsc.201701237.Search in Google Scholar

135. Moriyama, K, Ishida, K, Togo, H. Regioselective Csp2–H dual functionalization of indoles using hypervalent iodine(III): bromo-amination via 1,3-migration of imides on indolyl(phenyl)iodonium imides. Chem Commun 2015;51:2273–6. https://doi.org/10.1039/c4cc09077b.Search in Google Scholar PubMed

Published Online: 2021-10-18

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 23.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/psr-2021-0019/html
Scroll to top button