Abstract
Ultramarine pigments are representatives of the inorganic blue pigments. They are characterized by intensive shades of blue and relatively weak violet and pink color tones. The composition of the pigments can be summarized by the formula Na7Al6Si6O24S3. The color of ultramarine is generated by incorporation of free polysulfide radicals in the structure of a sodalite-derived crystal lattice. Ultramarine pigments are synthesized using a series of complex solid-state reactions. The pigments are mainly used in plastics, paints and powder coatings and printing inks, but also in paper and paper coatings.
References
1. Endriss H. Aktuelle anorganische Buntpigmente. Zorll U, editor. Hannover: Vincentz Verlag, 1997:85.Search in Google Scholar
2. Wehner M. In Kittel - Lehrbuch der Lacke und Beschichtungen. Spille J, editor. vol. 5. 2nd ed. Stuttgart/Leipzig: S. Hirzel Verlag, 2003:125.Search in Google Scholar
3. Calvert D. In industrial inorganic pigments. Buxbaum G, Pfaff G, editors. 3rd ed. Weinheim: Wiley-VCH Verlag, 2005:136.Search in Google Scholar
4. Pfaff G. Inorganic pigments. Berlin/Boston: Walter de Gruyter GmbH; 2017:137.10.1515/9783110484519Search in Google Scholar
5. Ball P. Bright earth - the invention of color. Sydney: Penguin Random House, 2001.Search in Google Scholar
6. Podschus E, Hofmann U, Leschewski K. Z. Röntgenographische Strukturuntersuchung von Ultramarinblau und seinen Reaktionsprodukten. Anorg Allg Chem. 1936;228:305.10.1002/zaac.19362280402Search in Google Scholar
7. Tarling SE, Barnes P, Mackay AL. Simulation of industrial furnacing with powder X-ray diffraction. J Appl Cryst. 1984;17:96.10.1107/S0021889884011055Search in Google Scholar
8. Tarling SE, Barnes P, Klinowsky J. The structure and Si, Al distribution of the ultramarines. Acta Cryst B. 1988;44:128.10.1107/S0108768187011698Search in Google Scholar
9. Booth DG, Dann SE, Weller MT. The effect of the cation composition on the synthesis and properties of ultramarine blue. Dyes Pigm. 2003;58:73.10.1016/S0143-7208(03)00037-8Search in Google Scholar
10. Clark RJ, Dines TJ, Kurmoo M. On the nature of the sulfur chromophores in ultramarine blue, green, violet, and pink and of the selenium chromophore in ultramarine selenium: characterization of radical anions by electronic and resonance Raman spectroscopy and the determination of their excited-state geometries. Inorg Chem. 1983;22:2766.10.1021/ic00161a024Search in Google Scholar
11. Clark RJ, Franks ML. The resonance Raman spectrum of ultramarine blue. Chem Phys Lett. 1975;34:69.10.1016/0009-2614(75)80202-8Search in Google Scholar
12. Clark RJH, Cobbold DG. Characterization of sulfur radical anions in solutions of alkali polysulfides in dimethylformamide and hexamethylphosphoramide and in the solid state in ultramarine blue, green, and red. Inorg Chem. 1978;17:3169.10.1021/ic50189a042Search in Google Scholar
13. Reinen D, Lindner GG. The nature of the chalcogen colour centres in ultramarine-type solids. Chem Soc Rev. 1999;28:75.10.1039/a704920jSearch in Google Scholar
14. Gobeltz N, Demortier A, Lelieur JP, Duhayon C. Encapsulation of the chromophores into the sodalite structure during the synthesis of the blue ultramarine pigment. J Chem Soc Faraday Trans. 1998;94:2257.10.1039/a801526kSearch in Google Scholar
15. Gobeltz-Hautecoeur N, Demortier A, Lede B, Lelieur JP, Duhayon C. Occupancy of the sodalite cages in the blue ultramarine pigments. Inorg Chem. 2002;41:2848.10.1021/ic010822cSearch in Google Scholar PubMed
16. Gobeltz N, Demortier A, Lelieur JP, Duhayon C. Identification of the products of the reaction between sulfur and sodium carbonate. Inorg Chem. 1998;37:136.10.1021/ic970962fSearch in Google Scholar PubMed
© 2020 Walter de Gruyter GmbH, Berlin/Boston