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Abstract

This paper presents a techno-economic model of two interconnected hybrid microgrids whose electricity— and
thermal dispatch strategy are managed with Sequential Least Squares Programming (SLSQP) optimization
technique. Microgrids (MGs) combine multiple thermal- and electric power generation, transmission, and
distribution systems as a whole, to gain a tight integration of weather-dependent distributed renewable
generators with multiple stochastic load profiles. Moreover allow to achieve an improvement
in the return of investment and better cost of energy. The first part of the work deals with a method to obtain
an accurate prediction of climate variables. This method makes use of Fast Fourier Transform and polynomial
regression to manipulate climate datasets issued by the European Centre for Medium-Range Weather
Forecasts (ECMWF). The second part of the work on the optimization of interconnected
MGs operations thru the SLSQP algorithm. The objective is to obtain the best financial performance

when clean distributed energy resources (DERs) are exchanging both thermal and electric energy. SLSQP
optimizes the energy flows by balancing their contribution with their nominal Levelized Cost of Energy
(LCOE). The proposed algorithm is used to simulate innovative business scenarios where revenue streams are
generated via sales of energy to end users, sell backs and deliveries of demand response services to the other
grids. A business case dealing with two MGs providing clean thermal and electric energies to household
communities nearby the city of Bremen (Germany) is examined in the last part of the work. This business case
with a payback in two years, an internal rate of return at 65% and a levelized cost of energy at 0,14 €/kWh,
demonstrates how the interconnection of multiple hybrid microgrids with SLSQP optimization techniques,
makes renewable and distributed energy resources outcompeting and could strand investments in fossil fuel

generation, shaping the future of clean energy markets.
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1. Introduction

The world is currently facing massive energy- and dramatic environment challenges caused by global
warming and increase of energy demand. The —Intergovernmental Panel on Climate Change (IPCC) on
December 2019 assessed that human activities have already caused approximately 1.0°C of global warming
above pre-industrial levels and a 1.5°C warmer world is likely between 2030 and 2052, if business models and

energy policies proceeds as today.

Climate models predict hot extremes in most inhabited regions, heavy precipitation in several regions and the
probability of drought and precipitation deficits in some regions. Limiting global warming to 1.5°C is
mandatory to reduce increases in ocean temperature, health, livelihoods, food security, water supply, human
security, and economic growth. The European Union has defined an ambitious climate and energy framework
to support a sustainable low-carbon energy transition with targets and policy objectives until 2030 to realize at
least 40% reduction in greenhouse gas emissions as compared to 1990 levels, at least 32% share for renewable
energy and at least 32.5% improvement in energy efficiency. Achieving these goals requires— a quick adoption
of new technologies and new approaches fostering a tight integration of highly intermittent renewable energy
systems (RESs) such as photovoltaic systems and wind turbines, with stochastic loads of residential,

commercial and industrial buildings.

MG is a promising to
overcome energy balance issues the overall cost of

energy generated from alternative energies

This study explores the route of interconnection of optimized MGs that
embed a mix of clean thermal- and electric DERs. -The main is to analyze the
when energy

flows are optimized thru an SLSQP algorithm.




1.1 Prediction of climate variables

Within the techno-economic model (ATE) of a M@, the accuracy of climate datasets plays an important role
for the prediction of power generated by DERs. Thus, at the beginning of this work, We investigated the use
of recent monthly daily means datasets covering Earth's areas by latitude and longitude coordinates, which are
available from historical archive of ECMWF . The
periodic components of solar radiation, wind speed, temperature, cloudiness are generated with Fast Fourier
Transforms (FFT) and then filtered. These climate datasets are subsequently extrapolated over timeframe of
the project, with, inverse FFT (IFFT). Polynomial and forest tree regression methods are also used to
correlated coupled of best fitting variables. The spectral transform method has been successfully applied in
climate datasets for more than thirty years, with the first spectral model introduced into reanalysis at ECMWF
in April 1983 and it performs well. Fourier Transform method was introduced to numerical weather prediction
starting from the work of Eliasen et al. (1970) and Orszag (1970) who achieved high efficiency by alternating
the computations between a grid-point and a spectral representation at every time-step. Joly and Voldoire,
(2009) have developed a method to manipulate gridded datasets with Fast Fourier Transform (FFT) to better
understand the coupled ocean—atmosphere processes. Inter-annual variability has been studied by filtering
long-term change data in both the observed and simulated time-series. Kent at al. (2013) reanalyzed in situ

measurements and satellite retrievals of monthly mean marine wind speeds.

The results have been used to validate the accuracy required in calculation of air—sea heat fluxes. Wang and
Zeng (2015) have used observed data to quantify the land surface air temperature, which is one of the
fundamental parameters to represent heat transfer and to modulate the moisture cycle between land and
atmosphere. Amendola at al. (2017) used FFT to recombine Gaussian distributions of monthly datasets

obtained via a neural network for seasonal weather forecasts.

Different approaches have been adopted to convert the monthly mean of solar radiation and wind speed
variables into hourly mean time-step of the analytical techno-economic model. For the solar radiation, in this
work an empirical model deriving from the literature and validated with experimental results, has been used.
The model is based on the work of Liu and Jordan in 1960 and several other researchers, i.e. H. P. Garg at al.
(1987) and Jain (1988) who improved the hourly horizontal global radiation with a Gaussian function. The
cloudiness effect is then added to the solar radiation with a normal probability density function. The hourly
mean average for wind speed is obtained via a normal distribution of the wind speed values at 50 m above the
surface of the earth. A global wind speed distribution is obtained from the NASA surface meteorology and

solar energy database.
1.2 Electric system operations

The hourly mean climate are to calculate the renewable thermal- and electric
energy generated by -wind turbines (WT), photovoltaic panels (PV) and solar thermal collectors (ST) net of

losses and actual efficiencies, deriving from the remaining useful life (RUL) under the steady state conditions.




( FC-CHP),
diesel gensets (OG), electrolyzers (EC), electric boilers (EBOY), stand alone heat pumps (HP), heat pumps
combined with ST (STHP) inverters (INV) thermal ( ) and electric energy storage systems (ESS) are
additional in the

. The techno-economic model keeps updated the states of health of each DG every time-step, in

relation to their actual calendar lifetime and lifecycles (number of start-stops, charge/discharge).

Lifecycle and calendar lifetime of lithium ion batteries is modeled with a function having an “Arrhenius-like”
form that takes into account for the time, temperature, SOC, and Delta % SOC of the batteries. These models
were developed according to the results of test conducted on 18650-size, lithium-ion battery cells by the US

Department of Energy in 2001.

The model of thermal- and electric load demands are based on the result of statistical analysis carried on by K.
Konstantinos in 2017 with loads of more than 100 households. Additional stochastic virtual load profiles such
as load shedding and load shifting are introduced in the techno-economic model. This contribution simulates
additional energy services that the MGs can provide as controlled options to respond to unplanned energy

flows that occur in the main electric power grid.

A sub-model to simulate the purchase and sellback of electric energy to the main grid is also considered in

conjunction with stochastic grid outage events.
1.3 Outline of the proposed optimization strategy

Based on the thermal- and electric distributed energies resources which have been discussed in the previous
paragraph, the objective of this is to analyze how two interconnected MGs, whose energy flows are
governed by the sequential least squares programming (SLSQP) algorithm, improve

, reduce the cost of
energy, increment IRR while providing electric, thermal energy and water to users and demand response

services to the main grid.

At each time-step, the proposed optimization algorithm, minimizes a nonlinear objective function composed
by the difference of two terms: to the first term that groups the costs inherent the generation of energy, the
revenues stream (deriving from the use of energy) are subtracted. Costs and revenues are obtained as the
product of the average energy flow in the time-step and respectively the nominal LCOE and the levelized sale
of energy (LSOE). The estimation of LCOE is based on a simplified model of Department of US Energy
2001.

The revenue streams are generated from contemporary sale of energy to the end users and sale of energy
demand response services. Nominal LCOE LSOE

sellback prices and remunerations prices (for demand response services) act as weights in the objective
function to balance the thermal and electric energy flows. The SLSQP algorithm searches the best contribution
of energy flow for each DERs that maximizes the whole economic performance. The calculation is executed,

respecting the set of constrains related to thermal and electric power flow under the steady state conditions.
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The range of the boundaries of each DERs are dynamically shaped in relation to the available energy they can

provide each time-step.

The results given by SLSQP feed a financial model. Maintenance and operational costs (OPEX) are added to
the initial investment costs (CAPEX) to obtain the total cost of ownership (TCO). Total revenues, contribution
margin, total energy generated, actual LCOE and the following key financial performance indicators are
finally calculated: the Net Present Value (NPV) and the Internal Rate of Return (IRR) of the MGs.

Optimizations of electric system operations have been recently the subject of several recent works. S. Wang at
al. (2015) proposes an optimization method based on differential evolution for dynamic economic dispatch of
a microgrid, considering various distributed generations, energy storage systems, the transaction between the
microgrid and power grid, as well as multiple kinds of loads. J. Radosavljevi¢, at al. (2015), proposed an
efficient algorithm based on particle swarm optimization (PSO) for energy and operation management (EOM)
of a microgrid including different distributed generation units and energy storage devices. PSO minimizes the
total energy and operating cost of the microgrid via optimal adjustment of the control variables of the EOM,
while satisfying various operating constraints. Owing to the stochastic nature of energy produced from
renewable sources, i.e. wind turbines and photovoltaic systems, load uncertainties and market prices, a

probabilistic approach in the EOM is proposed.

Soares et al. (2017) have proposed an evolutionary algorithm to offer residential end-users an integrated
management of energy resources minimizing the electricity bill while keeping the best possible quality of
energy service. Simulation results show that a minimum savings of 10% might be achieved by optimizing
load scheduling, local micro-generation, and storage systems including electric vehicles (EVs) in both grid-to-
vehicle (G2V) and V2G (vehicle-to-grid) modes. Jamaledini et al. (2018) introduced an evolutionary
algorithm based on the multicellular organism mechanism applied to microgrid operations. For optimization,

both differential evolution (DE) and PSO algorithms is used for comparison of results.

More recently (2019), Nagapurkar P. et al. presented a methodology that assessed the techno-economic and
environmental performance of microgrid-conventional grid integration scenarios for homes located in US
cities. A genetic algorithm optimization technique is implemented to determine the lowest levelized cost of

energy for different microgrid-conventional grid integration and carbon taxes scenarios.

Based on the state of art that has been above discussed, this work proposes to extend the analysis at the

optimization of interconnected heat and power (hybrid) microgrids through the SLSQP algorithm.
2. limate data
2.1 Prediction of -datasets by Inverse Fast Fourier Transform

Fourier analysis is a method for expressing a function as a sum of periodic components and for recovering the
function from those components. Cooley and Tukey (1965) and more recently Press et al. (2007) provided a
computing approach to Fourier analysis for discretized counterparts: the Fast Fourier Transform (FFT),
attributed to Gauss (1805).

The following reanalyzed monthly mean daily means issued by ECMWF have

been considered: ssr[#] (solar net surface radiation), 10si[#] (10 meter wind speed), t2m[#n] (Temperature at 2




meters from soil), tcc[n] (total cloud cover) the number of months named ‘n
84

two predictive discrete curves of N-dimension:— X,(n) and Xf(n)

. The first set of data has respectively a dimension N;=72 and it is used to train the IFFT
model (January 2010 to December 2015). The second dataset with dimension N,=12, is used to test the model
(June 2017 to June 2018). A one-year timeframe is chosen as it is the typical test period for simulations of
microgrids and it is suitable for conversion in hourly solar radiation data (T. Khatib, at al.-, 2015)— as
described later in this paper.— The— following relation:

N=1 n
Yk) = ) e TN x (), [1]

n=0
transforms the climate datasets array x,(n) from the time domain to different- complex arrays Y,(k) of K;
dimension -where £ is the index of the complex element. A first complex array of K;-dimension is generated
in the frequency domain from the original N, dataset. The monthly averages of - the original - N, over a five
years period has been used to generate a second complex array of K,-dimension.
A third complex array is generated from an optimized subset of the original K-complex array thru a low-pass
filter (LPF)- that iterates until the cut-off- frequency. This third optimized complex array has a K;-dimension.
The LPF algorithm minimizes the mean squared error (MSE). As described in the the following function [2],
the array in the time domain, X,,(n) obtained with an optimized subset (K3) of K is compared with the original,

until MSE is minimized.

N

2
1 1
min f(k) = — Z (xd(n) -5 Z ez’”%yp(k)> . [2]
N k=0

L y=1

Here- f (k) is the objective function MSE - to minimize and //Kj is the dimension of training (original)
dataset, x,(n) is the n-element of training dataset X ,(n), k is the index of the k-element of the complex array,

P is the dimension of complex array, y,(k) is the k-complex element.

The three complex arrays return then,— into the time domain by the inverse discrete transform as follows:

1 =l 2 - kn
X = — > Ty (k). [3]
k=0

Here Xf(n) represent the predicted dataset in the time domain of n elements xf(n). F is the dimension of the
best subset of complex arrays, y;(k) is the k-complex element of the best complex array.

And finally the coefficient of determination named R~ which estimates the ratio between the square error and

the variance is used to compare the performances against the test datasets.




Zle (xd(”l) - X_f(n)>2

R*=1- ~ .
Zn=1 (Xd(l’l) - /’lx)

[4]

where u, denotes the sample mean of the corresponding feature.

2.2 Prediction of - datasets by regression models

In the following part of the work we analyzed different regression models to identify interrelations among the
four climate variables. The scope was to setup an indirect method to build quickly accurate predicting curves,
among best-fitting coupled variable. We utilized exploratory data analysis to identify the presence of outliers,
the distribution of the data, and the relationships between the variables, then We created a scatterplot matrix to
visualize the pair-wise correlations. In order to quantify the linear relationship between the variable, we
proceed to build a correlation matrix embedding the Pearson product-moment covariance coefficients as

follows:

X [(xd(m ~ 1) (valm - uy)]

P, =

—. [5]
[ij:l (x4(n) — )ux)z] B [fo:l (yd(n) - ﬂy>2]

Here p denotes the sample mean of the corresponding variable, x;(n) and y,(n) are correlated training
datasets. As introduced by S. Raschka (2015) the linear dependence between pairs of variables is strictly
related to the value of Pearson coefficient within the range -1 and 1. A perfect positive linear correlation is
expressed by Pxy =+1 /-1, while no correlation if Pxy = 0. The relationship among monthly climate variables
with the Pearson’s coefficient higher than 0.7 has been modeled by using: linear, quadratic and cubic
polynomials. For variables with a weakest Pearson‘s coefficient, as proposed by A. Liaw and M. Wienerthe

(2002) the random forest method has been used.

This further method allows dividing the continuous regression curve into a sum of linear functions. The

decision tree is generated by splitting its nodes until the Information Gain (IG) is maximized

16 (D,,x) =1(D,) - Nipl, [5b]

where, x is the feature to perform the split, Np is the number of samples in the parent node, I is the impurity

function (i.e. MSE), Dp is the subset of training samples in the parent node. The performance of the forest

regression is again evaluated with R? parameter.

3. Techno-economic models of the distributed energy resource

This section is dedicated to describe all the techno-economic models that are used in the optimization

algorithm for the objective function, the boundaries and constrains.




3.1 Photovoltaic Panels

For a PV system, the calculation of the hourly mean power generated, starts with an expression to convert the
daily mean solar radiation into hourly solar radiation.— The Cooper relation [6]. is commonly
used to detect the angle between the equatorial plane and a straight line drawn between the centre of the
Earth and the centre of the sun for every day of the year. This angle is known as the solar declination, 8. For
our present purposes, it may be considered as approximately constant over the course of any one day. If
angles north of the equator are considered as positive and south of the equator are considered negative, the

solar declination— 6(n), can be described as:

284
5(n) = 23.45%sin | 3600 [ 22 | 6]
365

where 7 is the number of the day. The standard deviation is then calculated:

0,(n,0) =1.983 —0.022 - arccos [—tan 6 - tan 5(n)], [7]

where 6 is the latitude.

Finally the normal distribution is calculated as follows:

t, -12)2
gt,n,0)= _ e_kc"’g(”’a)z . [8]
s s ka-ag(n’e)

In relation [8], #, represents the time unit for the calculation of mean values expressed in hourly value and- k,
and k, are constants. The choice of a time unit z;, with a step of one hour (referred later in the paper as time-

step), permits to express the terms of energy equal to the hourly power average.

The conversion between the mean monthly value and the mean hourly value is done via

G, 0,¢)=g(1,0,n) - HO,p,n), [9]

where H(0, ¢, n) is the daily radiation monthly means returned by equation [3] and ¢ is longitude. These
values are delivered for the tilted angle f, = 0. Then, the probability density function of the normal
distribution, (defined here as N (/,t, a)) is used to adjust the hourly radiation with the monthly mean cloudy

cover datasets; therefore the final expression of the hourly radiation mean with the cloudy effect can be

calculated as follows:

G.(1,,0, ) = G (1,0, ) - <1 N (u (rs,e,qﬁ),o)) : [10]

where ¢ is the longitude. The random number generator, N (,u (ts, 0, qﬁ), a), returns a uniformly distributed

random number within the range 0 < G (1,0, ¢) < G(1,,0,¢). Here u (ts, 0, (,b) denotes the daily monthly

mean cloudiness dataset and o is standard deviation defined as a constant (e.g. 0.25). The mean hourly

radiation with clouds is finally modified with the vegetation by multiplying v (0, ¢) with eq. [11]:




Goolt0.0) = G(1,0.) - (1-v(6.0) ). [11]

where v(G, ¢) assumes only the value ‘0’ , if the vegetation is not present— or ‘1’ if- the ground is vegetated.

The function G, (¢, n, 6, ¢) is then adjusted taking into the account the angle between the horizontal plane
and the solar panel which is called the tilt angle. As proposed by A. Luque and S. Hegedus in 2011, the

optimal inclination angle,— can be obtained with the following linear eq

ot =37+ 0.691 1, [12]

where f and ¢ are given in degree. Thus, with a second-order polynomial equation the ratio between radiation

and a different tilt can be described with accuracy

& (b)) = 1401 (B =B ) +p2 (B —Bips) [13]
G _ (55,
where, G (ﬂopt> g (ﬁ p [,) [14]

Hence, the maximum radiation can be calculated, combining the hourly mean radiation with clouds described

in eq. [11] which is related to S, = 0, to the polynomial cq [14]:

G,.(t,0,9)
Gvc(ts’e, ¢7 ﬁopt) =" [15]
8 (Ao )
Eq. [14] can be used again to adjusted the title angle in the radiation
G, (t,0,$,P) = G,(t,0,$.5,,) - & (ﬂ, ﬁop,) . [16]

The further step is the definition of— a model for the temperature which is used in ATE of DGs.— The
Pearson‘s coefficient indicates that this variable can be derived from the hourly mean solar radiation via a

linear regression model as follows:
Tamb =W, +wy - Gvc([s, 0, ¢) . [17]

Here the weight w, represents the y-axis intercept and w; is the coefficient of the explanatory variable G,,.

Finally, the total available power generated by the photovoltaic panels can be derived from the adjusted hourly
radiation, the solar panel yield and the power losses due to temperature, power conditioning (i.c. MPPT), AC/

DC cables, shading, snow, dust is described as follows:

N
va_available (ts’ 9’ d)’ ﬂ) = ﬂst ' Gvc(ts’ 9, ¢7ﬂ) : H (1 - ni) : Apv ’ [18]

where: 4 is the PV solar yield, N is the dimension of the power losses #; are and A, is the surface of the PV

panel. Also for thermal solar, the total available power generated derives from the hourly net radiation, the

solar panel yield and the power losses due to temperature, shading, snow, dust and tilt is described as follows:




N
Pst_available (ts’ 0’ ¢’ ﬂ) = Nt (ATSI (ts’ 9’ ¢)) : Gvc(ts’ 0’ ¢’ﬂ) : H (1 - Ui) : Ast ’ [19]

o (AT (1,0.0) ) = 1, %y (T = Tus (1,6,0) ) [20]

eq. 19 is the relation for the thermal solar collector efficiency which has a linear correlation with the

difference between the input collector mean (7,) and the environmental temperature (¢kq. [17]) and the terms
v; represent the power losses while A, is the area of the solar panel.
3.2 Wind Turbines

For this RES, the definition of the techno-economic model starts with the average of wind speed daily mean,

here defined as w(ts, 0, q’)) , that is converted into an hourly mean dataset by the probability density function of

the normal distribution as— the following relation.

N [W (ts’ 9’ ¢)’ O (9’ ¢)]
0 < W(t,.0,¢) < w(1,,0.4)

Wi, 0, ¢) = [21]

The standard deviation Gs(9,¢) for each geographic location, —can be derived from the NASA Surface
meteorology and Solar Energy (SSE) database (https://power.larc.nasa.gov). The available power generated by
a wind turbine is a function of the hourly mean wind speed and the characteristic curve of wind turbine
delivered by the manufacturer that correlates power of the wind turbine to the wind speed. The sum of the
losses, 7; caused by the cables, MPPT will be deducted - to obtain the available wind power as:

N
Pwt_available (ts’ 9’ ¢) = Pwt (Ws(ts’ 9’ ¢)) ' H (1 - 771) [22]
3.3 Thermal and electric load profiles

Two different profiles of load has been considered: thermal and electrical loads. These loads represents— a

sum of multiple loads which are powered by the microgrids. The monthly profiles of the thermal loads

(P, 10a@) and electric loads (P, ;,,,) are obtained from the input of — minimum and maximum daily mean

power (respectively, P P, as follows:

max?
4rn
Py toaa (m) = cos | ——m 0.5 (Pryax = Ponin) + 0.5 (Prax + Pruin) [23]
. Az
Pioua o(m) peak in first semester
Pel_load(m) = {P - . [25]
load_p (M) peak in second semester
P 10adM) = Py jpqa M)+ Py 10 (M), [26]
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where m denotes the number of the month.

Based on the work done by A.M. Breipohl et al. 1992, the Gauss Markov function, defined in
eq. [27] with the term " f,,, " is used to convert a monthly load profile into a stochastic daily electric load.

The mean and standard deviations inside eq. [27] (y;, o;), are derived from a statistical analysis of electric

loads profiles of more than 100 households. This work has been conducted by K. Konstantinos and converted

into a library of python programming language in 2017:

Pelst,load(ts) =fgm <(Pel,load(m)’ N(/’ll 61)’ tv) [27]

Finally, a stochastic electrical load profile is drawn from a normal distribution in eq. [28]. The

mean derived from the - previous eq. ; while the standard deviation (o,,,;,,) is given as input.

Pel_load(ts) = N(Pelst_load(ts)’ Gnoise)‘ [28]

The thermal load P,,(,) is defined with the following relation with a similar approach eq. [27].

Here two periodic peaks simulate heating in winter and cooling— in summer:
Pth_load(ts) :f:gfm <(Pth_load(m)’ N(/’ll Gl)’ ts)‘ [29]

Load shedding and load shifting (peak-shaving) are then applied as a controlled option to respond to
unplanned electric power underflow. Simulation of a demand response mechanism that makes the load profile
less peaky has been introduced to explore in a micro-grid paradigm, the economic benefit of providing energy
services. The electric load profile is analyzed per monthly period and the peak hours have their load shifted to
low load hours or are shaved. When not shaved, the total load is the same as that one from the original,
otherwise it is smaller due to the shaved peaks. The peak load is reduced by a predefined percentage. The

electric load profile corresponding to the desired demand response profile is obtained by:
Pelar_toaa(ty) = f <Pelst,load(ts)’ Kpm 5 kshifted) ’ <1 - kshedding)? [30]

where the parameters: k. ygings Knms Ksnifrea — €Xpress the— whole fraction of load to cut, - fraction of hours to

shift, fraction of energy to shift respectively.

3.4 Energies exchanged among interconnected microgrids

Outflow and inflow energies exchanged among microgrids and the main grid are respectively represented by

the following relationship :
Pgrid_sellback,grid_buy (ts) = N( [0’1] ,P) : Pgrid_sb,grid_by (ts) . [31]

Where the index “grid_sellback™ and “grid_buy” represents respectively the outflow energy and inflow energy

for each MG and the main grid.
N( [O,l], p) is a random number generator that returns a sample from the given 1-D array [0,1] to consider

grid outage events spread with the probability “p_.
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3.5 Thermal and electric distributed generators
Two type of Electric Distributed Generators (P, ;) are considered: combined heat and power fuel cell
systems and traditional internal combustion electric generators. The mean power they deliver in each time-

step (Z,) is defined respectively as: P.(1) and P,,,,(Z). On the contrary the mean power absorbed by an

electrolyzer to convert electric energy into chemical energy (H,) is denoted as: P, (z,). The efficiency of the
conversion from electricity into hydrogen is equal to the energy content (based on the higher heating value) of
the hydrogen produced divided by the amount of electricity consumed.

For the thermal generators, the following relations correlate the hourly mean energy produced respectively by

electric boilers, heat pumps stand alone and combined to solar panels as follows:

Peboy(ts) = neboy ’ Pelieboy(ts) [32]
Php(ts) = My Pelfhp(ts) [33]
Pyinp(ts) = Ngepy, - Pel_szhp(ts)’ [34]

where 7 represents for each DG the efficiency - in the conversion from electric to thermal energy.

A DG is— converting the chemical energy of a fuel into electric energy.— From the Techno-economic point of

view, to the fuel is associated a purchase cost per liter— and a transportation cost which are respectively

denoted as : Gy, Gy

. The conversion of energy occurs with a certain efficiency (74, ,) depending upon the
type of DG. For example, in the fuel cell, the efficiency is defined as a ratio between the electricity produced
and the hydrogen consumed. The efficiency is related to the performance of the fuel cell stack, the balance of
plant and the reformer unit, if installed. The overall costs are then related to the volumetric energy density of

the fuel (V4 pyen)-

For heat pumps, the efficiency is denoted by the cCoefficient 0Of pPerformance (COP). This term—— is
determined by the ratio between energy usage of the compressor and the amount of useful cooling at the
evaporator. For a heat pump a COP value of 4, means that the addition of 1 kW of electric energy is needed to

have a release of 4 kW of heat at the condenser.
3.6 Thermal and electric energy storage systems

The techno-economic model of the electric energy storage systems (ESS)

defined with a set of equations that describe charging and discharging hourly mean power
(energy charged and discharged in the time-step of 1 hour)— in relation to- SoC (State of Charge), SoH (State
of Health), P,

ess_rated_capacitys  Pess_aged_capaciry (tated and aged energy capacity).
The C-rate function, i.e. Cogs charge rare(ls)s is @ function of the rate at which the battery is discharged/charged

and the maximum capacity. We assume the convention that the energy flows coming out the

negatives (charging storages, absorptions of loads, sellback to main grid).

Pess_aged_capacity(ts) =.f <Pess_raled_capucity’ SOH@SS(IS)’ Tamb(ts)> [35]
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Pmax_aged_capacity(ts) = Pess_aged_capacity(ts) - So Cess_max [36]

Pess_storage(ts) - Pmax_aged_cupacity(ts)

Poss_aged_c in(fy) = [37]
_aged_charge_min\"s
Pess_uged_charge_min(ts) <0
P ) _Pess_aged_capacity : Cess_charge_rate(ts) [38]
) =
ess_aged_charge\"s
P ess_aged_charge_min([s) < P ess_aged_charge(ts) < 0
Pmin_aged_capacity(ts) = Pess_aged_capacity(ts) - So CESS_min [39]
p (l ) _ Pess_storage(ts) - Pmin_aged_capacity(ts) [40]
ess_aged_discharge_max\*s/ —
Pess_aged_discharge_max(ts) >0
p (Z ) _ Pess_aged_capacity : Cess_discharge_mte(ts) [41]
ess_aged_discharge\'s) —
0 < Pess_aged_discharge(ts) < Pess_aged_discharge_max(ts)
Each thermal generator is coupled with a thermal storage ( ); the hourly mean power discharge is

defined in eq. [43] as the minimum among the discharge rate of the thermal power capacity and the thermal

[y
l

energy storage in the tank. Similarly,— the hourly mean power charge can be defined as the minimum
among the charge rate of the thermal power capacity, the remaining thermal energy storage to fill the “i”” tank

as described in eq. [45].

Pesth_aged_capacity,i(ts) :f (Peslh_rated_capacity,i(ts)’ SOHesth,i(ts)a ”esth,i> [42]
p ([ ) Pesthiagedicapacity,i(ts) : Ceslhidischargefrate,i(ts) [43]
esth_discharge,i\'s =
8 0 < Pesth_discharge,i(ts) < Pesth_storage,i(ts)
p (f ) _ Pesth_storage,i(ts) - Pesth_agea'_capacity,i(ts) [44]
esth_aged_charge_min,i\"s/ — Peszh_aged_charge_min,i(ts) <0

_Pesth_aged_capacity,i(ts) : Cesth_chargg_rate,i(ts)

1 esth agced charge (lg) - 45'
_agea_. ge,l !) P
esth aged cha;ge ml}’l,l( S) <— esth aged chmge,i( S) <—

4.0Optimization algorithm and techno-economic model

SLSQP is a sequential least squares programming algorithm that evolved from the least squares solver
proposed by Lawson and Hanson in 1974. The optimizer uses the Han—Powell method and the Broyden—
Fletcher—Goldfarb—Shanno (BFGS) update of the quasi-Newton Hessian approximation for nonlinear
programming (NLP) in the line search algorithm. Dieter Kraft has originally applied in 1988 this algorithm to

aerodynamic and robotic trajectory optimization.

The Sequential Least Squares Programming (SLSQP) method minimizes a function of several variables with

any combination of bounds, equality- and/or inequality constraints. It can be used to solve linear and nonlinear

13



programming problems to minimize scalar functions. In this work, the off-the-shelf SLSQP optimizer
available in SciPy (https://www.scipy.org) has been used. SciPy is a Python-based ecosystem of open-source

software for science, and engineering.

In each time-step, SLSQP minimizes a nonlinear objective function that contains costs and revenues, while the
thermal and electric power and the interconnected energy flows are balanced. The objective function is the
difference between the sum of costs and revenues. The firsts are related to: the energy inflows from DG to the
MGs, the energy to generate hydrogen, the purchase of energy from others MG and the main grid and the
discharge of storage storages. The revenues are inherent to the electric and thermal load consumptions, the
sellback of electricity and heat to other MGs, the generation of water by PEMFC-CHP,—— the delivery of
energy services (load shedding, peak shaving, load shifting), the sellback electricity to the main grid. Costs
and revenues are calculated as product between the levelized cost of energy (LCOE), levelized sale of energy

(LSOE) and the related energy generated and consumed in each time-step.
LCOEs are the ratio between the initial costs, the nominal operational and maintenance costs along the

lifetime of the DER and the whole energy generated during the lifetime. The general expression of the

objective function can be summarized

C R
f@ =) LCOE, -x,— ) LSOE,x, [46]

c=1 r=1

Where x; ; represents the energy flows

every time-step

X = xl(ts)l,...,x(ts)C’R [46b]

The final profitability depends on the assumed values of the X-array . Therefore the elements of the
X-array have to be optimized for obtaining— the best profitability.— The contribution to the profitability of
each single element is detailed in the following paragraph 4.1.

The weights (LCOE, LSOE) direct the SLSQP algorithm to choose the optimal bounded value for every
element of X to maximize the right terms (L SOE - x,) while minimizing the left terms (LCOE - x,).

In other words, SLSQP acts to a better counterbalance for the energy flows with the weight mechanism. The

highest costs of generation are penalized while on the contrary, the highest revenue streams-— are prioritized.

The LCOE for each inlet thermal and electric i-DER can be obtained from the definition of LCOE:

3 GHoj+f
j=1 (1 J
LCOE,; = = [47]
Zn J
=1 (140
where:

C;— are— the investment expenditures in year j (including financing),0; are the operations and maintenance

expenditures in year j, F; are the fuel expenditures in year j (only for DG),P; Electricity generation in year j;
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r is the dBPiscount rate— and— 7 is life of the system expressed in years.

It is relevant to note that while in the objective function, the terms LCOE and LSOE are constants, in the final
financial analysis (reported in the following paragraph 4.4), they are computed considering the actual costs

and revenues deriving from the former optimization.

4.1 Models of DERs costs
This paragraph draws in details the costs and revenues embedded into the eq. [46].
The mean hourly cost of energy generated by the renewable energy source (RES) is— obtained as:

Zn Cres,j,i + Ores,j,i
=1 (Y
Croy () =D x. (1), [48]
res ( s) p zn Pavailable,j,i(ts’g’ &, /}) res,i ( S)
=1 (1+1r)J

Where i is the type of electric RES (PV, WT) and ST.

The general expression of the cost and revenues for the thermal ( ) and electric (ESS) energy

storages is denoted in the following eq.:

<, :,+0 )
" es,j,t es.jit
j=1 L+7))
T a+n . .
_ “Xpe 1 (1 i X, >0 (discharge)
Zt_l n  Pes_rated_discharge.jt 't es,t( S) F est 8
=1 (1+n/
Ves (15) = (Cog,jt t0 ) [49]
n 7 es,],t
j=1 1+nJ
T a+n .
1 | Se(gg) — X t if Xxp5;<0 (charge)
Zt_l ! ( S) n Fes_rated_dischargejt "t st ( S) et
=1 (1+nr))

The cost contribution of the thermal (EBOY, HP, STHP) and electric Distributed Generators (

, OPG) can be described as follows:

(Cfuel,j,g +Cirp,j.g)
Ved_fuel,g *ldg,g

Cdg.j.g * Odg.jg t

G
/=1 (1+nk
Cdg (tY) = Z P, . -G " Xdg.g (ts) [50]
n 'dg.jg vt
o yr s
=1 ()
where g is the type of DGs.

The term G, ,- is correlated to the “products”- that are generated and it assumes a different- value as follows:

1 others
Gf_{2,5 fuel cell system (electric, heat, water) [500]

According to the research of K. D. Hristovski et al. in 2009 the harvesting water from fuel cells should be

considered as a by-product of operation. The overall results of this study indicate that water generated from
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fuel cells is very pure, with contaminant levels lower than the MCL values.
Typically, a fuel cell is operated at its peak power output, which corresponds to a current density of 1 A/cm2,

which results in a ratio of 0,5//kW h.

The costs and revenues associated to the exchange of electric and thermal energy among microgrids and main

grid is represented as follows:

-

n Cgrid,j + Ogrid,j

=1 (1+ni

LCOEgrid + P .. “Xerid (ts) lf Xerid >0

n grid,j

(t) =11+ ]

Voul(t) =1L [51]

& ’ n | Cgrid,j + Ogrid,j
= (1 +n/

n Peridj gria ()1 Xyria < O

=11+ 7))

In the microgrid there are several thermal- and electric loads. They are one of the main sources of the revenue

stream. The expression to describe their economic contribution is denoted as follows:
Rload(ts) = Sth (ts) X load (ts) + Sel (ts) * Xel _load (ts)' [52]

Where Sth(ts) and Sel(ts) are the unit price of the thermal and electric energy sold to the end-user. The
subscripts th_load, el loads are respectively thermal and electric loads.

An additional source of revenues coming from electric loads is the services to the main grid. Electric loads of
MG can contribute in the future to balance the main grid by taking part at demand response programs or
frequency response markets. The framework of these programs can foresee incentives to users when they

provide additional power or reduce their consumptions from the grid at peak periods.

The following equations proposes a scheme to calculate a revenues streams issued by grid services
(DR) :

Rdra(ts) = Peldr_load(ts) : Seldr (ts) - (xel_load (ts) _Peldr_10ad(ts)) : Cd,. <ts) [53]
Rdrb(ts) = xel_load(ts) : Seldr (ts) - (Peldr_load(ts) — Xel load (ts)) : Cdr (ts) [54]

Rdra(ts) lf xel_load (ti) > Peldr_load(ti)
Ry (1) = : [554]
Rdrh(ts) lf Xel_load (ti) < Peldr_load(ti)

Where P

eldr load 1S the energy demanded by the main grid, - S, is the remuneration per kWh for the demand

response service while C;, is the penalty for exceeding energy absorbed by the load.

These relations describe possible business scenarios to foster the diffusion of prosumers communities (who
consumes and produces energy). EC is a special internal load that absorbs electric energy to convert it into
hydrogen, an energy carrier that can be converted later in electric energy. The term #,, represents the

efficiency in the conversion of electric energy to hydrogen back and forward.
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The contribution in term of revenue streams of the EC is

(Cop j+ oec’j)

) .

=L )
Rec(ts) = Sel (ts> “Nhe — n Pecrj
>

7=l (14 n)J

X (1) - [56]

4.2 Objective [Function and cConstraints

In this paragraph the terms of the nonlinear objective function indicated in eq. [46]

The overall revenue streams R generated by the thermal, electric load, DR and EC is the following:

R (ts) = Rload(ts) + Rec(ts) + Rdr(ts) [57]
In addition to [57], grids sellback and ES charging functions are further additional contribution to the
revenues embedded in the “V”’ terms of [58]. Therefore the objective function

expressed as follows

f&)= [ res ( S) + Cog (tS) + Ves (IS> + ngl( )] ke - < S> Ky [58]

where - k_, k, are parameters to calibrate the weights of the two terms.

The objective function in [58] is solved by keeping balanced the energy flows.
The unequal constrains equations

are nonlinear and respectively express— the thermal- and electric balances:

[gel_der (ts)] : kder - [gel_load (ts)] kl >0

[gth_der (ts):| : kder - [gth_load (ts)] kl >0

These terms are detailed in the following equations [60-63] :

Ge
gelider (tv) Z el res,i \"s Z evc disch,i s) + erlidg,i (tv) + xgridibuy (tv) [60]
i=1

Z,-Ciel Xth_dg,i (1)
gel_load (tv) = +X Xel load( ) +x grid_ vellback + Z evv C/’ll +xec( v) [61]
ndg_thermal,i

Mh Th Gh

gth_der (ts) = 2 xth_res,i (ts) + Z xesth_disch,i (ts) + Z xth_dg,i (ts) + kchp : xfc (ts) [62]
i=1 i=1 i=1

gth_load (ts) = xth_loadl + Z sth chl : [63]
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Where Me, Te, Ge are respectively a subsets of - electric RESs, ESs, DGs, while Mh, Th, Gh are respectively a
subsets of - thermal RESs, ESs, DGs.

The following additional equality constrain is added for both thermal and electric energies, that is exchanged

among the interconnected MGs:
xitc_i(ts) : (1 - ”itc) +xitc_j(ts) =0, [64]
where ;.. are the losses in the MG interconnections.

The elements of the X-array energy flows vary within the -boundaries described in the following— eq. [65-69].
Their limits are dynamically shaped based on— the available mean power that can be calculated with the

model defined in the paragraph 3.

0 < Yo (1) < Pres_avaitabrea (1) [65]
0 < x4, (£,) < Pyg (1) [66]
Pyy aged_charge. (s ) < X5 (£,) < P, _aged_discharge,i (1) [67]
Pyria setipack () < Xgria (1) < Poria puy (1) [68]
Min(Py 1ad(ty)s  Petar t0ad(t)) < Xop oaai (1) L max (Py 1,04t Petar_ioad(ty)) [69]

Where with the subscript “i” describes the— i-DER.

In conclusion, both constraints and the objective function are nonlinear. These functions are a sum of
piecewise-linear convex functions, thus, convex is preserved. We found that the SLSQP optimizer that was
specifically designed for NLP, is able to find iteratively in an efficient manner the global solution of our
nonlinear constrained convex optimization problem.

4.3 State of Health of DERs.

The optimal configurations of the X-array calculated each time-step by SLSQP, is used to update the States of
Healths (SoH). SoH has a relevant role in the calculation of operational costs (OPEX). It is obtained as the
ratio among the energy generated until the time-step and the potential energy that can be generated by the
DER until the End of Life (EOL). The following eq. [70-77] propose how to estimate— SoH of RESs, DGs,

and ES in a simplified— manner:

a Xres,i (th b hz ([h
S0Hes; (1) = : 70
0 (t,) = min <,§{ - Z - [70]

res_available EOLz( ’ h=1 i

s—1 xdgi (th) s—1 ni (th>
(t) = mi i 71
SoH jg (Q) min <}§ Poi T, , 2 N [71]

i =1 'Veycles,i

- esthz [h - hl th
SoHesth, =min Z . [72]
h=1 esth i’ i h=1 Z
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Where the subscript h is the time-step (one hour),— 7 is the lifetime in hours of each DERs, the term N..

ycles
represents the lifecycles, n(#,) is the n-cycle at the time-step #; , while /,(#,) is cumulative run-hour and P, ;
andP,,, ; are the power size of the DER.— E, . . iapie_por.; 1 the cumulative energy at end of life generable
by the RES geo-localized at latitude 6, and longitude ¢.

The State of health of the lithium battery is composed with two terms: the calendar lifetime and lifecycles.
These empirical models proposed by R. B. Wright and C. G. Motloch of DOE in 2001 have been validated
with test on commercial 18650 cylindrical cells type with cathodes of LiNiCo, carbon anodes and as
electrolyte LiPF6. The results of testing indicate that both the discharge and (R) resistances increased with
time at each percentage change (delta%) of the State of Charge (SOC). The magnitude of the discharge and
resistance and the rate at which they changed depended on the temperature and delta% of SOC.

he square root of time dependence can be accounted for by either a one-dimensional diffusion type of

mechanism

The functional form of the model of the resistances are given by:

E E,

s—1 act_acal act_ccal
RT, RT
R(t5, Tymp» SO Ce““')calendar = 2 a (SOCess,h) e amb(1h) . % +c (SOCess,h) e (th) [73]
h=0
s—1 Eact_acy Ey ct_ccy

R(t5, Tampy SO Cesss ASO Cess) ity e = Z a (SOCy, ASOC g4 1) - e RTamb(th) i+ ¢ (SOC ASOC,g5p) - ¢ RT(1p)

[74]
E,

act_acy’

E

Where a, ¢ are constants. E E act_ccy are the further constant related to the

act_acal® act_ccal’

activation energy. These parameters can be obtained thru characterization tests. 77, , is the environment

temperature dataset R is the gas constant ASOCog 1
R(ts’ Tamb’ SO Ce‘“)calendar
SOHeSS (ts)calendar - = R [75]

calendar_max

R(ts’ Tamb’ SO Cs ASOCess)lifecycle

SOH,g, (ts)lifecycle =1- [76]

Rlifecycle_max
After the calculation of the above terms, the State of Heath of the lithium battery is defined as follows:

SOH.gs (tS) =min <S0Hess (ts)culendur > S0Hess <ts)lifecycle> [77]
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4.4 The financial models

The State of Health is used to calculate the replacement costs (REPEX), added to operational costs (OPEX),
and initial costs to obtain the Total Cost of Ownership (7CO). At the end of the calculation of all time-step,
the yearly TCO is obtained by the following expression [78]:

Rl (Cruer; (1) + Cirp j (1))
TCOt Z Z <Nderj th +1- SOI—IJ (th>> : Cder,j + Oder,j (th) + ! (}j g [78]
j=1 h=1 ed_fuel,j " Mdg,j

the yearly energy generated (~E,), consumed by thermal and electrical loads, and sell-back— is given by

8760

E, = Z [xthfload, j (th) + Xei_t0ad, (th) + Xin_seliback, j (th) + Xei_seliback, (th)] [79]
j=1 h=

[S=

And the yearly revenue stream (R) with:

J 8760

= 2 (Rth load,j th + Rel load,j (th) +Rth sellback,j (th) +Rel sellback,j (Zh) + Rgy (th) + Ryater ([h))
j=1h=1

[80]

Where j and J identify the type of DER, £ is the index of — time-step, Naer , Cier— Oder— are respectively the
replaced number, the capital expenditures, operating expenditures of DG,RES, ES, EC, INV.

After the first year, the time of calculation can be reduced with a one-dimensional polynomial regression— to

extrapolate TCO, E, R over the timeframe of the project.

The Return the Internal Rate of Return (/RR)- is then calculated by solving:

M — CderJ + R
Z [81]
prs (1 +irr)
NPV (Net Present Value) of the cash flow generated during the project is returned by the result of:
J
Ml _Zj=l Cder,j + Rt
NPV = . [82]

(1+ry

Where here, t identify the year of the project, M are the total years of the project.

5. Results and discussion
5.1 Manipulation of climate datasets

The techno-economic model and optimization algorithm have been implemented into a pPython* script. The
FFT-IFFT method, utilized to manipulate original ECMWF datasets of the period from June 2017 to June
2018 has been implemented with the NumPy’s, SciPy, Sklearn and Matplotlib libraries.

The reference location for this work is nearby the city of Bremen, with Latitude: 53.0758196 and Longitude:
8.8071646.
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Firstly, FFT-IFFT was used to extrapolate a first training dataset based on the original series, a second one
based on monthly averages and a third generated with the low pass filter (LPF) cutting off frequencies
respectively:— 1,16 [Hz] for radiance, cloud cover; 2,83 [Hz] for temperature. The performances of the three
training curves, were measured with R2 index. The low pass filter results the best method to predict the

radiance; cloud cover, temperature and wind speed, are best predicted— with monthly average datasets.

Then, We verified with the Pearson coefficient the pairwise correlations among variables to use the regression
method ( ig.[31]) in alternative to FFT-IFFT. The best fitting linear correlation is among the radiation

and the other climate variables that are characterized by values higher than 0.6 linear.

From Pearson’s relation it is obvious to implement a linear regression model for those variables to reduce the
script runtime. The results delivered with linear, quadratic and cubic polynomial regressions as in fFig.

were evaluated. The R2 (0.65) equal for all degree of regressions, confirm the strong linear correlation
between these coupled variables. A good level of accuracy obtained with the climate datasets has allowed to

obtain an equally sound estimation of the energy generated by RES.

5.2 Main inputs of the two interconnected microgrids

This further part of the work concerns two interconnected microgrids MG_A, MG_B)

Power sizes of the clean DERs populating the two MGs are
described in [1].

In the first (Interconnected , an

optimized combination of DERs is distributed in two interconnected microgrids: in MG “A”,—— RES and
have a more pronounced role in the generation than the other MG; in MG_B, the main grid

(GRID) is the main external source of electric energy. The backbone of the thermal (ITCTH) and electric
(ITCEL) interconnections releases significant energy flows between the two microgrids. The DERs
configurations of this scenario have been selected among 7000 trials giving the best combination of IRR and

LCOE when the operations are managed by the SLSQP algorithm.

In the second scenario (Not_Interconnected), the absence of interconnections is compensated with a larger
power size delivered thru the grid utility (GRID) and RES. Also thermal DERs such as ST, EBOY have
thermal storages (Tank ST, Tank EBOY) have a markedly higher size than the previous scenario.

In the third scenario (Only main grid), the loads profiles are powered primarily by the grid utility; EBOY
convert electric energy into thermal energy combined with a thermal storage. This scenario simulates a typical

residential power system of today.

ach MG is feeding thermal, electric load profiles
resulting from the aggregation of 10-12 households [53]

. The mean daily monthly electric loads is ranging between 43-70 kWh while the
mean daily monthly thermal loads is ranging between 350-800 kWh. Working days and weekends are built
from different profiles having respectively a different weighting (the energy is split 70% in working day 30%
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non working day). The periodic peak daily electric load demand is in the second quarter, while the periodic
peak daily thermal load demand is in the first (heat) and second (cool) quarter. Stochastic thermal and electric

profiles have been generated with the ‘Gauss Markov’ algorithm.

The simulations of the revenues streams consider in besides the loads, the delivery of demand response
services and energy sellback to a local electric utility. The demand response profiles have been simulated with

5% maximum value for load shedding, 25% for peak reduction and 15% for peak hours per month.

The price structure of the services offered to the electric utility and exchanged between MGs are showed in
[2]. The calculation of the hourly mean available energy from solar radiation and wind, has been

executed with the power losses inputs described in Ttable [3].
The hourly dataframe of the environmental temperature is extrapolated with [17].

The ESS is characterized by a charge/discharge profile (0.25C for charge and 0.5C for discharge), a round trip
efficiency (98%), deep of discharge (3% to 98%). The performance curve of the battery in relation to the
temperature is utilized to obtain the hourly aged capacity of the ESS with equation [36].

In simulations We consider a PEMFC-CHP (Combined Heat and Power Proton
Exchange Fuel Cell). This type of FC converts the whole chemical energy of hydrogen into electricity and
heat and so the efficiency goes up to 95%. Hydrogen tanks at 200 bar are chosen to feed the FCs and the fuel
is transported once a day and has been considered— total cost for hydrogen of 3 Euro/kg. This values is
coherent to the report published in January 2020 by the Hydrogen Council. The cost of renewable hydrogen
produced from offshore wind in Europe starts at about USD 6 per kg in 2020. This rate is expected to decline
by about 60 per cent by 2030 to approximately USD 2.50.

In the simulated scenarios where FC is installed, the hydrogen is partially generated on site by a PEM
electrolyzer ( EC), integrated to a 200 Bar pressurized hydrogen tank. Typical commercial electrolyzer
system efficiencies are 56%—73% and this corresponds to 70-53 kWh/kg (NREL, 2004). An additional
thermal tank is part of the configuration to storage the heat. The EC incorporates a solid proton-conducting
membrane rather than the aqueous solution. This type of EC generates pressurized hydrogen and consequently
reduces compression losses. The electrolyzer system efficiency considered in the simulations is 53 kWh/kg at

nominal power.
The thermal energy is also generated by STs integrated with further thermal storage tanks and auxiliary HTs
which are powered by electric energy, with an efficiency at 400%.

Each time-step, the SLSQP optimization algorithm secures the minimum of the nonlinear objective function
[58] by choosing the highest energy contribution of RES, DG, ES with the lowest LCOE - indicated in Ftable

[45] and— maximizing the contribution of those DERs that in opposite, provide the highest revenues streams.
5.3 Discussion of the results

Table [4] reports the cumulative energy flows among DERs of three alternative scenarios. Among the loads,
the thermal loads account for— 95%. The demand of energy of the loads

decision of SLSQP in the use of the available power sources in all
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scenarios

In the first , where the two hybrid microgrids are interconnected, is the main

thermal and electric generation unit in conjunction with WT. The actual LCOEs, (resulting
after the optimization of the operations), indicated in Ftable [5], highlight that the strategy deployed by
SLSQP at each time-step, is appropriate. FC-CHP returns, a cost of energy lower than utility grid
(GRID). Therefore, when all the available power generated by RES is provided, then it becomes more
convenient produce the additional required energy with the hybrid . Indeed FC-
CHP is able to generate electric energy at most economic way but also is capable to produce thermal energy,
and water without any additional cost. The FC-CHP and RES in MG_A are fulfilling not only the internal
energy demand of thermal and electric loads and water. Their power sources are also able to deliver
energy services (thru both MGs) and electric energy sellback to the grid utility. This happens, by transferring
large amounts of thermal and electric energy from MG_A to MG_B (ITCEL _sellback,— ITCTH_sellback of
MG_A in Ttable [4]). The flows of energy among the interconnections is incentived by the price structures
described in Ftable [2]. In this example, the prices for energy interflows are in favor of — MG_A. In other
words, the backbones of electric and -thermal energy among MGs are substituting the role of large energy

storages transferring energy instead of deferring it,— at most economic conditions.

The second scenario (Nnot -linterconnected ) shows a different configuration and approaches to satisfy
the energy demand. In MG_A the energy is mainly with in

combination with WT.

Compared to scenario dealing with interconnected MGs the contributions of RESs (namely WT
and ST) are equivalent to FC-CHP. he exceeding thermal energy that is not used and
transferred to the other MG, is stocked in large tanks (Tank Boiler, Tank ST) by heating water as storage

medium; hence the stored energy can be used at a later time.

The load-exceeding available electric energy supplied by FC-CHP is given in sellback to the utility grid.
Thus, this optimized scenario does not consider large electric energy storage systems. The demand of energy
for MG_B of this second scenarios is satisfied with an approach similar to a traditional power system. In fact,
the main source of electricity is the grid utility. The electric energy is then converted into thermal energy with

an electric boiler in combination with a heat pump.

In the third scenario both thermal and electric loads are powered solely by the utility grid and electric boilers.
This is a typical actual electric system, where loads do have not a peer to peer interconnection to RES thru

MGs. The economic impact of such dispatching strategy is indicated in *table [6].

In conclusion, revenues of the interconnected scenario are higher than the other. In MG_A of this first
scenario, 25% of the revenue stream is generated by the loads, 14% by water and 54% by sellback to the other
MGs. In MG_B 57% of revenues comes from the loads and 39% to sellback to the utility grid. The sale
strategy implemented by SLSQP, allows to obtain the highest revenue streams with the lowers initial capital

investment (CAPEX) in interconnected scenario than in the not interconnected one. Consequently, the
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contribution margin, calculated by deducing the total costs is considerably higher when the two microgrids are

interconnected.

These considerations are finally synthesized in “table [7] with key financial ratios. The limited amount of
investments involving the first scenario, leads to a very attractive IRR (54%) and a relevant amount for the
NPV (calculated with discount rate at 5%). Actual LCOE resulting from the final calculation of CAPEX and
OPEX as aggregation of DERs is much lower than actual grid purchase costs in Germany (source: Eurostat

https://ec.europa.eu/eurostat/statistics-explained/index.php/Electricity _price_statistics). Payback (years to

recuperate from operations in form of cash inflow- the total amount invested) calculated for these MGs is less
than two years. In the other scenarios the return of investments is null and— the cost-profit structure of the
business leads— to negative NPV. Finally, it should be noted that the RES fraction (calculated as ratio between
the energy generated by the RES and the load consumptions-) in the interconnected MGs, results only 6% of
the entire generated energy. However, if the fraction of hydrogen produc

and assumed that the further hydrogen demand is sourced by large wind and

solar farms (green hydrogen), the contribution of RES goes almost- to 100%.

These simulations demonstrate that optimization strategies implemented via SLSQP algorithm in hybrid
interconnected microgrids leads to a very attractive IRR, short term paybacks while contributing to strengthen
the resilience of power systems. Optimal configurations of hybrid DERs in multiple microgrids, can operate at
lower LCOE than current tariff offered today from the utilities. Thus, interconnected hybrid microgrids with
SLSQP optimization techniques makes renewable and distributed energy resources outcompeting. They are a
viable route to foster the transition to the low carbon energy paradigm and they can strand investments in

fossil fuel generation.
6. Conclusions

This introduces a method based on Sequential Least Squares Programming (SLSQP)
to secure the best economic performances of interconnected hybrid microgrids. The algorithm minimizes
every time-step a piecewise-linear convex objective function that incorporates the weighted contributions in
terms of costs and revenues of distributed generators, loads, and microgrid interconnections. The nominal
LCOE are the weight for the costs and the nominal LSOE are the weight for the revenues components of the
objective function. Thermal and electric energy balances are the nonlinear constraint functions. The SLSQP
algorithm finds in an efficient manner every iteration, the global solution of this nonlinear constrained convex
optimization problem. The optimizer is embedded into a techno-economic model designed to shape
dynamically the boundaries of the objective function. Moreover, the algorithm-— computes— the— states of
DERs and at the end, it returns the actual values of the key financial ratios. The proposed techno-economic
model starts with the manipulation of climate datasets by combining FFT function with the IFFT. The
objective is to achieve an accurate extrapolation of reanalyzed climate datasets issued by ECMWF over the
project lifetime. A further method to identify linear correlations among coupled datasets has been investigated
and hence a polynomial regressor has been implemented to predict temperature from solar radiation with less
computing resources. The climate datasets feed the stochastic models forecasting renewable thermal and
electric generation. A further stochastic model based on Gauss Markov function has been introduced to
simulate hybrid loads profiles. Similarly, load shedding and load shifting has been implemented to simulate
24
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energy demand response to disturbances of the main grid. The proposed tool has proved to be very effective in
simulating innovative business scenarios in which multiple revenue streams are generated from the sales of
energy to end users, from further sales to the other energy networks and from deliveries of energy services to
the grid utility. In particular, the techno-economic simulator has been used to analyze the financial
performances of three different scenarios and it demonstrates the economic advantages of interconnected
hybrid microgrids operated with SLSQP algorithm. This optimal scenario is compared to an alternative
configuration of two not connected microgrids and another scenario where the loads are solely powered by the
grid utility. All these simulations deal with both thermal and electric loads profiles of household communities
located nearby the city of Bremen. With a payback within two years and an internal rate of return at 65%, the
first scenario brings to a levelized cost of energy of 0,14 €/kWh. This value lead also to the conclusion that
interconnected hybrid MG can operate at costs that are lower than a current typical utility tariff if an adequate
mechanism of remuneration among prosumers and the utility grid is provided. Thus, the results of this work
demonstrate that these energy systems can be very competitive option against the actual centralized large

power networks.
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