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Abstract: In this contribution, we present a framework for the multiscale modeling
and simulation of magneto-active elastomers (MAEs). It enables us to consider these
materials on the microscopic scale, where the heterogeneous microstructure con-
sisting of magnetizable particles and elastomer matrix is explicitly resolved, as well
as the macroscopic scale, where the MAE is considered to be a homogeneous
magneto-active body. On both scales, a general continuum formulation of the
coupled magneto-mechanical boundary value problem is applied and the finite
element method is used to solve the governing equations. Starting with an experi-
mental characterization of the individual constituents, i.e. particles and matrix,
microscopic constitutive models for both are formulated and adjusted to the exper-
imental data separately.With that, properties of MAEs resulting from themicroscopic
constitutive behavior can be captured within the presented modeling approach.
Secondly, to discuss general macroscopic properties of magnetically soft and hard
MAEs, a computational homogenization scheme is used to calculate the composites’
effective behavior for different geometrical arrangements of the particles on the
microscale. Finally, the calculated effective response of a magnetically soft com-
posite system is used to identify the parameters of a macroscopic magneto-elastic
model. Using the calibrated model, the behavior of macroscopic MAEs is simulated
for different sample geometries.
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1 Introduction

Magneto-active elastomers (MAEs) are a special class of composite materials that alter
their effective macroscopic behavior if an external magnetic field is applied. Due to the
strong coupling behavior, they are attractive for several engineering applications such
as actuators and sensors [1–4], valves [5], tunable vibration absorbers [6], medical
robots [7] or prosthetic and orthotic devices with controllable stiffness [8].

Basically, MAEs consist of a soft polymer matrix filled with micron-sized magne-
tizable particles that can be arranged in an unstructured distribution or, if external
fields are applied during themanufacturing process, in a chain-like [9–11] or evenmore
complex structure [12]. Regarding the resulting macroscopic behavior, this leads to
isotropic and anisotropic properties, respectively. Besides the underlying particle
distribution, the effectivemagneto-mechanical behavior of theMAEwill depend on the
properties of the individual constituents. If the elastomer is combined with magneti-
cally soft fillers as carbonyl iron, a reversible behavior will be observed. In contrast to
that, a strongly irreversible behavior results if magnetically hard fillers, e.g. NdFeB or
CoFe2O4, with strong magnetic hysteresis are used [13–17].

1.1 Modeling approaches

Strategies regarding the modeling of MAEs can be divided into microscopic and
macroscopic approaches. In the former, the heterogeneous microstructure consisting
of particles and matrix is explicitly resolved whereas the composite is regarded as
macroscopically homogeneous in the latter, see Figure 1(a).

Figure 1: Continuum based modeling of MAEs: (a) macroscopic sample B0 embedded into the free
spaceF 0 and underlying heterogeneous microstructure consisting of magnetizable particles Bp

0 and
surrounding elastomermatrixBm

0 , and (b), (c)measuredmagnetization curve and adjustedmodel (25)
for magnetically soft carbonyl iron and major hysteresis loop of magnetically hard NdFeB particles
andparameterizedmodel (26)–(29). Experimental data given in (b) and (c) are taken fromSpieler et al.
[18] and Linke et al. [14], respectively.
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Microscopic approaches

The first class of microscopic approaches is represented by particle-interaction models
which are based on an energy minimization and the assumption, that the particles are
described by magnetic dipoles [19–21]. Within these models, the polymer matrix is
considered to be a continuous elastic medium or it is represented by springs between
the particles, see Menzel [22] or Menzel and Löwen [23]. Particle-interaction models are
numerically quite efficient but, due to the dipole assumption, their usage is limited to
dilute systems. An extension of particle-interaction models to tightly filled systems is
shown by Biller et al. [24], where a multipole expansion is used to calculate the par-
ticles’ mutual magnetic interactions.

The second class of microscopically motivated approaches are continuum based
models which resolve the local magnetic as well as mechanical fields within the
composite [13, 25–30]. Thus, these approaches are not limited to the modeling of
systems with a low amount of magnetic filler particles. Furthermore, they can be
adapted to several kinds of dissipative materials, easily [13]. Microscopic continuum
approaches also offer the possibility to analyze the stability of magneto-active mate-
rials under different loading conditions [31, 32]. However, the computationally
expensive numerical solution of the underlying magneto-mechanical boundary value
problem (BVP) which is usually done with the finite element (FE) method is a clear
disadvantage of these models: in order to predict the effective material behavior of
realistic magneto-active composites, an appropriate homogenization scheme as
introduced by Chatzigeorgiou et al. [33] has to be used. A tool to capture not only the
microstructure but also the shape of the macroscopic samples is the FE2 method as
performed by Keip and Rambausek [34, 35].

Macroscopic approaches

Macroscopic models represent an entirely different approach for the description of
MAEs. Since the microstructure is not explicitly resolved and the composite is
considered as a homogeneous continuum, they enable the representation of real
structures with a reasonable computational effort. To capture the effects of the un-
derlying microstructure implicitly, magneto-mechanical coupling terms have to be
incorporated in these models. A variety of macroscopic approaches for the isotropic
and transversely isotropic magneto-elastic case [9, 36–38] or the rate-dependent
magneto-viscoelastic case [39–41] can be found in the literature.

Naturally, all of these models are purely phenomenological, i.e. fitting parameters
have to be determined. This is done based on experimental results [9, 41] or by using
data generated from a microscopic model combined with analytical [42, 43] or
computational homogenization approaches [44]. If the fitting is done with experi-
mental data, it is important to note, that at least inhomogeneous mechanical fields
occur independent of the macroscopic sample geometry [35, 44, 45]. Moreover, if no
ellipsoidal samples [46, 47] are used within the experiments, also the magnetization is
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inhomogeneous, e.g. in the case of widely used cylindrical shaped specimens. Due to
this, the parameterized macroscopic model contains the influence of the sample ge-
ometry, i.e. the model describes the behavior of the MAE-sample and not the consti-
tutive behavior of the pure MAE composite material. The fitting based on data
generated from microscopic models avoids the described difficulty since it allows the
identification of the parameters independent of any macroscopic sample geometry.

1.2 Content

In this contribution, amultiscalemodeling approach based onMetsch et al. [29, 30] and
Kalina et al. [13, 28, 44] is presented. Results of these works are summarized and
partially supplemented in the present article. Within the developed multiscale
modeling framework, MAEs are described based on a general continuum formulation,
where the governing equations are solved with the FE method.

In order to achieve a deep understanding of the MAEs’ effective behavior, the
constitutive properties of the individual phases on the microscale as well as their
interactions have to be investigated. Starting with an experimental characterization of
the individual constituents, microscopic constitutive models are formulated and fitted
to the measured data. This includes models for magnetically hard and soft filler par-
ticles and an adjusted hyperelastic model for a specific silicone elastomer. To discuss
general macroscopic properties of magnetically soft and hard MAEs in a second step,
computational homogenizations are preformed to calculate the composites’ effective
behavior for different microscopic particle arrangements. The approach is usable for
the 2D and the 3D case, where both cases are compared. Finally, a macroscopic
isotropic model for magnetically soft MAEs is parameterized by using homogenized
data. It is used to analyze the behavior of MAEs for several sample geometries.

The organization of the paper is as follows: In Section 2, a general magneto-
mechanical continuum formulation and the applied numerical framework are given.
The microscopic constitutive models including their parametrization are described in
Section 3. In Section 4, the multiscale approach is applied to study the behavior of
several microstructures and in Section 5, a macroscopic model and its parametrization
is shown. After a discussion of the results, the paper is closed by concluding remarks
and an outlook to necessary future work.

2 Theoretical framework

In this section, the basic equations of the coupled magneto-mechanical BVP are
summarized. This includes the field equations, general constitutive relations and a
scale transition scheme which connects the micro- and the macroscale. Furthermore,
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an FE formulation, which is necessary for the numerical solution, is introduced. The
theoretical framework is given in a condensed form. For more details, the reader is
referred to the works [13, 28–30, 44].

2.1 Continuum formulation

According to the basic concept of continuummechanics, a material body occupies the

current and the reference configurations B ⊂R3 and B0 ⊂R3 with boundaries ∂B and
∂B0, respectively. In the following, associated Eulerian and Lagrangian fields are
denoted by lower- and uppercase letters. Vectors and higher-order tensors are indi-
cated by boldface italic characters. The norms of vectors and second order tensors are
written as |v| := ̅̅̅

vlvl
√

and ‖T ‖ := ̅̅̅̅̅
TklTkl

√
, respectively. Therein, the tensor coordinates

are given with respect to a Cartesian coordinate system and the Einstein summation
convention is applied. Furthermore, the symbols∇ and∇X denote partial derivatives of
a quantity (•) with respect to the spatial and reference configurations. Derivatives with
respect to a tensor quantity t are given by ∂t(•) within the running text. Finally, the
jump acrossmaterial surfaces of discontinuityS andS0, with unit normal vectorsn and
N pointing from subdomains B− to B+ and B−

0 to B+
0, is denoted by ⟦(•)⟧ = (•)+ − (•)−.

2.1.1 Field equations

Regarding the MAEs’ microstructure, the embedded magnetizable particles are
multidomain particles with a mean diameter of several micro meters, which is
considerably larger than the polymer chain length. Thus, the assumption of a con-
tinuum and the following field equations are valid on the both considered scales of the
material.

Kinematics
The first set of equations is given by kinematic relations. Each material point of the
considered body is identified by its position vector X ∈ B0 at time t = t0. Due to the
displacement u(X, t) := φ(X, t) − X of these points, the actual position changes to
x ∈ B at t > t0. Therein,φ is amapping function that is continuous in space and time, i.e.
⟦φ⟧ = 0 holds on S. The deformation gradient F and its determinant J are defined by
the relations

F := (∇Xφ)T and J := det(F) > 0. (1)

Finally, the symmetric right Cauchy–Green deformation tensor Cd FT⋅F is introduced
as a further kinematic quantity which is free of rigid body motions.
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Maxwell equations and mechanical balance laws
The second set of relations are the two stationary magnetic Maxwell equations and the
mechanical balance laws. For vanishing current densities j as well as neglected me-
chanical body forces ϱf and inertia terms ϱẍ, these equations and corresponding jump
conditions are given by

∇ ⋅ b = 0 with n ⋅ ⟦b⟧ = 0 on S, (2)

∇ × h = 0 with n × ⟦h⟧ = 0 on S, (3)

Jϱ − ϱ0 = 0, (4)

∇ ⋅ σtot = 0 with n ⋅ ⟦σtot⟧ = −t̂ on S and (5)

skwσtot = 0 (6)

with respect to the current configuration B [48–50]. In the equations above, b and h
denote the magnetic induction and field which are linked by the permeability of free
space μ0 and the magnetization m via the equation

b = μ0(h +m). (7)

The quantities ϱ and ϱ0 denote the mass density with respect to B and B0, respectively.

Furthermore, the symbols σtot and t̂ indicate the total Cauchy stress tensor and a
mechanical traction vector on S, where σtot is given as the sum of the mechanical and
magnetic stress tensors [28–30, 49].

Besides the introduced Eulerian quantities, Lagrangian fields related to B0 are
defined. With them, an objective formulation of constitutive models is ensured.
Furthermore, they are necessary for a total-Lagrangian FE formulation [28], which is
applied here. The Lagrangian magnetic quantities B, H andM as well as the total first
Piola–Kirchhoff stress tensor Ptot and the corresponding mechanical traction vector p̂
are obtained from the pullback operations [28]

B := JF−1 ⋅ b, H := FT ⋅ h and M := FT ⋅m as well as (8)

Ptot := JF−1 ⋅ σtot and p̂ := J
⃒⃒⃒⃒
F−T ⋅ N

⃒⃒⃒⃒
t̂. (9)

It should be noted, that the introduced operations are not unique, but the choice
according to Eqs. (8) and (9) leads to a preserved structure of the Eqs. (2)–(5) in their
Lagrangian form [36, 38], e.g. ∇X ⋅ B = 0.

In order to reduce the set of equations that has to be solved, it is favorable to
introduce a magnetic potential. If, for example, the magnetic scalar potential φ which
is defined by H = :− ∇Xφ is used, Eq. (3) is satisfied automatically and only Eq. (2)
remains to solve the magnetic part of the BVP. Likewise, the magnetic vector potential
Awhich is defined by the relation B = : ∇X × A is usable. In contradiction toφ, now Eq.
(2) is satisfied automatically and Eq. (3) has to be solved. A common way to ensure
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uniqueness of A, is to demand the satisfaction of the Coulomb gauge ∇X ⋅ A = 0. Note
that this equation is fulfilled automatically in the 2D case but needs to be considered as
a constraint in the 3D case [51].

Constitutive equations
Finally, the set of field equations is completed by the constitutive relations. In order to
ensure thermodynamic consistency, the second law of thermodynamics has to be
fulfilled for all values of the independent constitutive variables and their rates at any
time t. Thus, the Clausius–Duhem inequality (CDI), which is derived from the balance
of internal energy, the entropy balance, the second law of thermodynamics as well as
the previously introduced balance equations has to be evaluated [49]. Assuming
temperature fields that are homogeneous in space and time, the CDI in its Lagrangian
form reduces to

−Ω̇ +H ⋅ Ḃ + Ptot : Ḟ ≥ 0 with Ω := ϱ0Ψ(C,B,Qα,Zβ) + 1
2μ0J

C :(B ⊗ B) (10)

in themagneto-mechanical case. Therein,Ω denotes the so called amended free energy
density function [36] which is decomposed into the specific Helmholtz free energy Ψ,
that depends on C and B as well as possible vector or tensor-valued internal variables
Qα, Zα and a material independent free space part which follows from the pull back of
the magnetic free field energy μ−1

0 b ⋅ b. Following the procedure of Coleman and Noll
[52], the constitutive relations

Ptot = 2
∂Ω
∂C

⋅ FT, H = ∂Ω
∂B

 and  − ∂Ω
∂Qα ⋅ Q̇

α − ∂Ω
∂Zα : Ż

α
≥ 0 (11)

result from the evaluation of (10). The described formulation is suitable if the magnetic
vector potential A is used, since B –which serves as independent constitutive variable
in Ω – could be derived directly from A.

If instead amagnetic scalar potential formulation is chosen, it is favorable to useH
instead ofB as an independent constitutive variable. Therefore, a further amended free
energy density function Ω* is introduced by the Legendre–Fenchel transformation

Ω*(C,H,Qα,Zβ) := inf
B
{Ω(C,B,Qα,Zβ) −H ⋅ B}

= ϱ0Ψ*(C,H,Qα,Zβ) − μ0

2
JC−1 :(H ⊗ H).

(12)

Regarding Eq. (11), the second relation is now replaced by B = −∂HΩ*, where the other
relations stay unchanged. As already stated, the presented set of equations holds on
the micro- and the macroscale. The representation of the individual properties of the
materials is inserted via a suitable choice of the free energy functions Ψ or Ψ*.
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2.1.2 Scale transition scheme

To connect microscopic and macroscopic quantities, a magneto-mechanical homog-
enization scheme is used. Depending on the choice of the independent variables, i.e.
{u,A} or {u,φ}, the scale transition scheme has to be adjusted. In this work, the set of
equations is exemplarily given for the scalar potential formulation. The reader is
referred to Metsch et al. [29] or Kalina et al. [13] for the case of a vector potential
formulation.

An effective macroscopic quantity ¯(•), that is related to the macroscale, is iden-
tified from the microscopic field distribution within a representative volume element
(RVE) by the volume average 〈(•)〉. To ensure a physically meaningful scale transition,
the equivalence of the macroscopic and the averaged microscopic energies which is
also known as the Hill–Mandel condition [53] has to be fulfilled. In the magneto-
mechanical case this relation is given by

〈Ptot : Ḟ 〉 −〈B ⋅ Ḣ〉 = P
tot

: Ḟ − B ⋅ Ḣ. (13)

This condition is fulfilled if, for instance, periodic displacement and potential spaces in
combination with antiperiodic fluxes are chosen:

U(F) := {u ∈Rd
⃒⃒⃒⃒
u = (F − I) ⋅ X + ũ with ũ+ = ũ−}, (14)

P(H) := {φ ∈R⃒⃒⃒⃒
φ = −H ⋅ X + φ̃ with φ̃+ = φ̃−} and (15)

(N ⋅ Ptot)+ = −(N ⋅ Ptot)− and (N ⋅ B)+ = −(N ⋅ B)−. (16)

In Eqs. (14)–(16), (•)+ and (•)− are values on associated opposing boundaries ∂Bα+
0 and

∂Bα−
0 , α ∈ {1,…, d} of the RVEwith the dimension d. The symbol (•̃)marks a fluctuation

quantity.

2.2 Numerical solution

The introduced nonlinear magneto-mechanical BVP is solved by using a total
Lagrangian FE formulation. As in the previous subsection, the general equations are
exemplarily given for the case of a scalar potential formulation. It is based on the weak
forms

0 =∫
B0

Ptot :δF dV0 −∮
∂B0

p̂tot ⋅ δu dS0 and (17)

0 =∫
B0

B ⋅ δH dV0 +∮
∂B0

η̂δφ dS0 (18)
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of the Lagrangian versions of Eqs. (2) and (5), where δu and δφ denote the virtual
displacement and scalar potential which have to vanish on the essential boundaries
∂Bu

0 and ∂Bφ
0 , respectively [30]. The virtual deformation gradient δF and the virtual

Lagrangian magnetic field δH are defined by δF := (∇Xδu)T and δH := −∇Xδφ,
respectively. Furthermore, p̂tot and η̂ denote prescribed nominal stress vectors
including magnetic and mechanical loads on ∂Bp

0 and fluxes B⋅N on ∂Bη
0, respectively.

The weak forms according to Eqs. (17) and (18) are solved numerically by
approximating the configuration B0 with nel finite elements capturing the domains Be

0,
in which the independent primary fields {u,φ} and their virtual counterparts {δu, δφ}
are approximated with the shape functions Nα. Here, α denotes the global node
number. Due to the arbitrariness of δu and δφ, the mechanical and magnetic residues

Rα :=∪
nel

e=1

⎡⎢⎣∫
Be
0

∇XN
α ⋅ PtotdV0 − ∫

∂Bp, e
0

Nαp̂totdS0

⎤⎥⎦ = 0 and (19)

Rα :=∪
nel

e=1

⎡⎢⎣∫
Be
0

∇XN
α ⋅ BdV0 − ∫

∂Bη, e
0

Nαη̂dS0

⎤⎥⎦ = 0 (20)

follow from the weak forms given in Eqs. (17) and (18). Within the FE code, the set of
coupled nonlinear Eqs. (19) and (20) is solved by applying a Newton–Raphson scheme
at each time step tn. To this end, the linear algebraic system⎡⎣ Kαβ

uu Kαβ
uφ

Kαβ
φu Kαβ

φφ

⎤⎦[ Δuβ

Δφβ ] = −[Rα

Rα ] with α, β ∈ {1, 2,…, nnd} (21)

has to be solved for the total number of global nodes nnd in each iteration. Therein,Kαβ
xy

with x, y being u orφ, denote the tangent terms which follow fromGâteaux-derivations
of Rα and Rα with respect to Δu and Δφ, respectively [28, 30]. If a homogenization
problem according to the subsection 2.1.2 is solved, the primary fields u andφ and thus
the nodal values uα andφα have to be elements of the spacesU(F) andP(H) according
to (14) and (15).

All simulations were performed within a MATLAB-based in-house FE framework
using the PARDISO solver project [54, 55] or, if large 3D problems are considered, the
software tool FEniCS [56, 57].

3 Characterization of the constituents

As shown in Figure 1(a), the MAEs’ heterogeneous microstructure consists of sub-

domains Bp
0 and Bm

0 denoting the particle and the matrix material phases. In the
following section, the behavior of these individual constituents is characterized by
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using experimental results. Based on this, constitutive models which describe the
behavior of an MAE at the microscopic level are given for both phases.

3.1 Particles

The magnetizable particles are very stiff compared to the soft elastomer matrix, so that

C ≈ I holds in Bp
0. Therefore, the magneto-mechanical coupling effects in the particles

are negligible and the free energy functions introduced in Eqs. (10) and (12) could be
divided into a purelymechanical part and a purelymagnetic part [13, 27, 28, 58, 59], i.e.

Ψ(C,B,Qα) := Ψmech(C) +Ψmag(B,Qα) or (22)

Ψ*(C,H,Qα) := Ψ∗mech(C) +Ψ∗mag(H,Qα). (23)

Independent of the magnetic properties of the particles, the mechanical part is
described by a compressible neo-Hookean potential

Ψmech(I1, J) := 1
2ρ0

[μ(I1 − lnJ2 − 3) + λ
2
(J2 − lnJ2 − 1)] (24)

with I1 := tr C and λ and μ denoting the Lamé parameters. The particles stiffness should
be chosen such that it is large compared to the one of the matrix. With that, they are
represented as nearly rigid in the FE calculation. The description of the magnetic part
depends on the properties of the particles, where a distinction between magnetically
soft and hard behavior is done in the following.

3.1.1 Magnetically soft particles

Since magnetically soft materials do not exhibit a load dependent behavior, the actual
state of thematerial only depends on the chosen primarymagnetic quantity, i.e.B orH.
Exemplarily, a suitable description is shown for a scalar potential formulation in the
following.

Regarding a polycrystalline material as carbonyl iron or nickel with a uniform
distribution of the anisotropic crystals inside the particle, an isotropic behavior is
observed at the microscopic level where the particles are represented as a continuum.

Thus,Ψ*mag only depends on the norm of the Lagrangian magnetic field
⃒⃒⃒⃒
H
⃒⃒⃒⃒
. In order to

capture the characteristic saturation effect of ferromagnetic materials, the Langevin
function

Ψ∗mag(H) := − μ0

2ϱ0
∫
|H|

0

Ms[coth(αH) − (αH)−1]dH, (25)

is used [30, 44]. Therein, Ms and α denote the saturation magnetization and a scaling
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factor, respectively. Experimental data for carbonyl iron and the fitted model with
Ms = 841 kA m−1 and α = 2.18 × 10−5 mA−1 are given in Figure 1(a).

3.1.2 Magnetically hard particles

In contrast to magnetically soft materials, the behavior of magnetically hard materials
as NdFeB strongly depends on the load history. Thus, internal variables Qα are used to
describe the actual state of the material.

A phenomenological constitutive model which is based on the work of Bergqvist
[60] and has been published by Kalina et al. [13] is shown in the following. Again,
polycrystalline materials with isotropic properties are regarded. Within the model, the
pinning of domainwallmotion is considered as the cause of hystereses in ferromagnets
[61]. Since it is not sufficient to represent the pinning within a real polycrystalline
material by only one pinning strength k, it is modeled by N independent so called
pseudoparticles [60]. Each of them is characterized by the individual strength kα and a
related weight ωα which can be interpreted as the probability that a magnetic moment
in the material belongs to the respective pseudoparticle. In this case, the free energy
function is represented by

ϱ0Ψmag(B,Mα) := − ∑
N

α=1
ωαB ⋅Mα + ∑

N

α=1
ωα ∫

|Mα |

0

1/γtanh−1(Mα/Ms)dMα. (26)

In the equation above,Mα denotes a part of the magnetization belonging to the weight
ωα. According to the general constitutive relations given in Eq. (11), the equations

H = ∂Ω
∂B

= 1
μ0J

C ⋅ B − ∑
N

α=1
ωαMα and (27)

D = − ∑
N

α=1

∂Ω
∂Mα ⋅ Ṁ

α = ∑
N

α=1
ωαBiα ⋅ Ṁ

α
≥ 0 (28)

follow in which Biα = B − γ−1 tanh−1(|Mα|/Ms)|Mα|−1Mα is defined as the irreversible
induction field and D denotes the rate of dissipation. Applying the principle of
maximumdissipation [62], the rate independent behavior of thematerial is given by the
evolution equations forMα, the switching conditionsϕα and the related Karush–Kuhn–
Tucker conditions:

Ṁ
α = λα

Biα

|Biα| ,ϕα
:= ⃒⃒⃒⃒

Biα ⃒⃒⃒⃒ − kα and λαϕα = 0 ∧ λα ≥ 0 ∧ ϕα
≤ 0. (29)

Therein, λα and kα denote a Lagrange parameter and the pinning strength, respectively.
Experimental data for NdFeB and the adopted model with N = 10 are shown in
Figure 1(c). The fitted set of parameters ωα, kα, γ and Ms are given in Kalina et al. [13].

In order to incorporate the introduced constitutive model into a FE procedure
according to subsection 2.2, the set of equations given in (29) has to be solved and the

Multiscale modeling and simulation of magneto-active elastomers 11



algorithmically consistent material tangent ∂ΔBΔH has to be calculated at each inte-
gration point. This is done by an implicit Euler scheme which is adapted from the
theory of plasticity.

3.2 Polymer matrix

Besides the particles, the MAEs’ effective behavior essentially depends on the prop-
erties of the polymer matrix. In order to achieve large coupling effects in the magne-
toactive composite material, the stiffness of the matrix has to be preferably low but
suitable regarding technical applications. A common choice for the production of
MAEs are e.g. silicone elastomers [9–11, 47]. In order to consider a realistic behavior of
such a material within the presented modeling approach, uniaxial tension tests for
Zhermack silicone ZA 8 LT shore 8 from Troll Factory have been carried out. The
geometry of the sample with circular cross section and the jig for the load application
are taken from Dohmen [63].

3.2.1 Sample production and testing

The samples weremanufactured bymixing a base liquid, a catalyst liquid, and varying
amounts of silicone oil together. Furthermore, a slight amount of silicone-based white
dye is added to colorize the samples for local strain measurements. To study the
influence of silicone oil on the mechanical properties, five sets a six samples, with the
oil volume fractions ϕoil = {0, 10, 20, 30, 40}% were produced. The remaining volume
fractions are distributed equally between base and catalyst. After assembling and
stirring all chemicals into a beaker at room temperature, the compound was depres-
surized in a vacuum chamber for 10 min. In each manufacturing cycle, the liquid
suspension was filled into two separate polytetrafluoroethylene (PTFE)-moulds, where
metal caps with holes—the connectors for later mechanical testing—are placed inside.
After waiting at least 2 h, the two samples are demoulded.

All manufactured samples were tested with a tensile test machine, where the local
strains are measured via digital image correlation with the tool Aramis from GOM. To
this end, patterns are sprayed on the sample surfaces, cf. the photograph in Figure 2(b).
The maximum applied local stretch in the loading direction was λ∥ ≈ 2. Before the
recording of the stress-strain curves, all samples were preconditioned to avoid non-
reproducibility due to the Mullins effect [64]. The samples were pulled with a
displacement rate of 20 mm min−1. An increase of the rate up to 200 mm min−1 had
almost no influence on the measured stress–strain curves. Thus, the material could be
regarded as ideally elastic. Altogether, the measured stress–strain curves shown in
Figure 2(a) reveal a highly nonlinear response for all amounts of silicone oil.
Furthermore, the recorded perpendicular stretches λ⊥ indicate a nearly ideal incom-
pressible behavior within the examined strain range, cf. Figure 2(b).
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Finally it turns out, that the resulting shear modulus of the polymer, given in
Table 1, could be adjusted in a specific way by the amount of added silicone oil within
the production process. The dependence of μinit onϕoil is however nonlinear and could
be described by

μinit(ϕoil) = a exp(−bϕoil) + c. (30)

The parameters in Eq. (30) are determined in such a way, that μinit(100%) = 0kPa and
yield a = 103.91 kPa, b = 0.032 and c = −4.23 kPa.

Figure 2: Characterization of a silicone elastomer by uniaxial tension tests: (a) experimentally
determined stress strain curves for the amounts of silicone oilϕoil = {0, 10, 20, 30,40}%and adjusted
Ogden model (31), and (b) measured local stretches λ∥ and λ⊥ for ϕoil = 0% in the load direction and
perpendicular as well as ideal incompressible stretch curve. The directions ∥ and ⊥ are shown in the
photograph of a tested specimen with sprayed patterns for the local strain measurement.

Table : Identified parameters of the Ogden model () for different amounts of silicone oil ϕoil and
related initial shear moduli μinit. The compression moduli κ are given for a Poisson’s ratio of ν = ..

ϕoil μinit/kPa μ/kPa μ/kPa μ/kPa α α α κ/kPa

% . −. .  × 
− −.  . . × 



% . −. . . × 
− −. . . . × 



% . −. . . × 
− −. . . . × 



% . −. . − −. . − . × 


% . −. . − −. . − . × 

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3.2.2 Model and parameter identification

Within the microscopic modeling approach, the polymer matrix is regarded as non-
magnetizable. Furthermore, due to the negligible rate dependency of the characterized
silicone elastomer, possible internal variables Zα do not have to be considered, so that
Ψ within Bm

0 only depends on C. If the polymer is regarded as isotropic, it follows
Ψ(C) = Ψ(I1, I2, I3) = Ψ(λ1, λ2, λ3), where Ii and λi denote the invariants of the defor-
mation tensor C and the principal stretches, respectively.

To describe the observed strongly nonlinear response, the ideal incompressible
model

ϱ0Ψ = ϱ0Ψdev(λiso1 , λiso2 , λiso3 ) − p(J − 1)

:= ∑
N

p=1

μp

αp
(λisoαp1 + λiso

αp

2 + λiso
αp

3 − 3) − p(J − 1)
(31)

of the Ogden type is used, where λisoi := λiJ−1/3 are the isochoric principal stretches
according to the Flory-split [65]. In the equation above, μp, αp and p denote parameters
of the Ogdenmodel and the hydrostatic pressure, respectively. The adjustedmodel (31)
and the measured uniaxial tension tests for all analyzed amounts of silicone oil are
shown in Figure 2(a). Within the parameter identification, a model with N = 3 sets has
been chosen for ϕoil = {0, 10, 20}%. In case of ϕoil = {30, 40}%, the adjustment is
already accurate withN = 2 sets. Furthermore, to describe the initial shearmodulus μinit
exactly and to ensure a physically meaningful behavior, the conditions

0 = 1
2
∑
N

p=1
αpμp − μinit and αpμ(p) ≥ 0 ∀ p ∈ 1… N (32)

are used in the least square fitting algorithm as constraints. The determined parameter
sets are given in Table 1. Altogether, the model is able to describe the highly nonlinear
behavior up to the measured strains of approximately 100% quiet well.

To incorporate the parameterized model into a standard FE simulation, according to
section 2.2, a compressible model is used instead of the ideal incompressible one. Thus, the
latter term in Eq. (31) is replaced by the volumetric energy function

ϱ0Ψvol(J) := κ
4 (J2 − 2ln J − 1), with κ denoting the initial compression modulus. In order to

ensure a stable FE calculationwith anearly incompressible stress response, aPoisson’s ratio
of ν = 0.49 and, consequently, a compression modulus of κ = 2/3μinit(1 + ν)/(1 − 2ν) is
chosen. With that, the deviation to the parameterized incompressible model (31) is below
1.5% for stretchesup to λ= 1.7 andbelow4.5%for the largestmeasured strains, respectively.

If only processes within the range of small or moderate strains are regarded, the
stress–strain curve could be described by a comparatively simple neo-Hookean model
which results from (31) forN= 1 and αp= 2. The corresponding Young’smodulus follows
to E = 2μinit(1 + ν).
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4 Study on the effective behavior of MAEs

Besides the previously characterized properties of the particles and matrix, the effec-
tive behavior of MAEs results from the arrangement and the interplay of the compo-
nents on the microscale. In order to analyze the microscopically-driven behavior, the
homogenization scheme given in subsection 2.1.2 is used to discuss basic macroscopic
effects in the following. This is done within three studies for MAEs filled with
magnetically soft and hard particles, where the polymer matrix is described by a
simplified neo-Hookean potential in a first step.

4.1 Homogenization of magnetically soft MAEs

At first, the resulting properties of magnetically soft MAEs are discussed. Thereby, the
magnetic behavior of carbonyl iron is regarded and the polymer matrix is described by
a reduced neo-Hookeanmodel. Thus, the resulting effective behavior is fully reversible
but highly nonlinear.

4.1.1 Analyses of the MR effect

One of the most popular properties of MAEs is their ability to change the effective
stiffness if an external field is applied. This phenomenon, also known as the magne-
torheological (MR) effect, is examined for 3D cubic and random microstructures with
varying particle volume fractions within this subsection. The parameters of the neo-
Hookean elastic model describing the polymer matrix are chosen to E = 100 kPa and
ν = 0.49.

In order to determine the magnetically induced MR-effect, several simulations
have to be performed for each analyzed microstructure. If the behavior under shearing

is investigated, this can be done by increasing an effective field H to a specific value

Hmax in a first step and applying a shear deformation while holding H constant,
afterwards. Finally, the resulting effective mechanical shear stress which is related to

the initial shear modulus G is calculated from the numerical homogenization. In order
to ensure a virtual linear stress-strain-curve, a maximum shear deformation of γ = 1%

is applied. The described procedure is repeated for maximum magnetic fields H
max

in

the range of 0–2000 kA m−1, so that G could be determined as a function of H. Ac-
cording to the sketch given in Figure 3(b), the prescribed effective magnetic field and
deformation are chosen as

[HK] =
⎡⎢⎣ 0
H

max

0

⎤⎥⎦, [FlK] =
⎡⎢⎣ 1 γ 0
0 1 0
0 0 1

⎤⎥⎦, (33)
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where [(•)] denotes the specification of tensor coordinates with respect to a Cartesian
frame. Consequently, the shear stress P21 is proportional to G which is changed by the
magnetic loading. The FE meshes of the investigated cubic and random RVEs were
generated with an in-house script for the tool HyperMesh. In case of the random RVE
geometries with 100 included spherical particles, the minimum particle distance was
set to d/5 within the positioning algorithm, cf. Figure 3(b).

Cubic microstructure
Initially, the behavior of cubic microstructures with varying particle volume fractions
ϕ = {10, 15, 20, 25, 30, 35, 50}% are analyzed. For all volume fractions, a magnetically
induced stiffening could be observed, where the magnitude of the MR-effect increases

with the particle volume fraction, see Figure 3(a). Regarding the curve ΔG/G0 over H,
the typical quadratic behavior could be observed for small magnetic fields. For large

values ofH, a clear saturation effect is visible which leads to an overall S-shaped curve
for each particle volume fraction. The predicted curves are in qualitative accordance
with experimental results [66, 67].

Random microstructure
Furthermore, the behavior of more realistic MAEs with underlying random parti-
cle distributions is investigated. Within the analyses, the particle volume fractions
ϕ = {5, 10, 15, 20}% are investigated. Regarding the results given in Figure 3(b), several
findings could be made. Equal to the cubic microstructure, the typical S-shaped curve
is predicted. However, it stands out that the predicted MR-effect is negative for all
considered microstructures which is in contradiction to experimental observations.

Figure 3: Predicted magnetorheological effect considering a simple shear deformation with γ = 1%:
(a) simplified cubic microstructures with different particle volume fractions ϕ, and (b) random
microstructure and considered 3D microstructures with 100 spherical particles.
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Furthermore, the predicted effect seems not to increase in a systematic way, since e.g.
the decrease in stiffness of ϕ = 15% is less compared to the one of ϕ = 10% whereas it
again increases for ϕ = 20%. Results which demonstrate a similar unsystematic
response of the composites’ MR-effect are shown by Gebhart et al. [45] for 2D random
microstructures.

Since the overall MR-effect depends on the microscopic magnetic interactions—
which increases for closer particle distances—and the properties of the polymer, a
reason for the observed decrease in stiffness cannot be stated easily. Probably,
a positive effect only occurs if the initial particle distance is reduced to lower values,
because the magnetic attraction force increases nonlinear with respect to the particle
distance [24, 68]. However, this supposition cannot be confirmed at the moment, since
the performed simulations are getting already unstable for the analyzed RVEs with a
minimumparticle distance of d/5. Due to that, the simulated curves forϕ = {5, 20}%are

not completed up to H = 1500kAm−1.

4.1.2 Comparison of 2D and 3D simulations

Due to the enormous computational cost of realistic 3D simulations which explicitly
resolve the magnetizable particles, many computational analyses based on micro-
scopic approaches are restricted to the 2D case. Therefore, in order to assess whether
those predictions are still sensible and can provide an understanding of principle
microscopic mechanisms inside MAEs, a comparison of 2D and 3D simulations ac-
cording to Metsch et al. [30] is shown here. A simplified cubic microstructure con-
taining only one spherical or even circular particle is investigated, whereby RVEs with

the same geometry (Cubic2D and Cubic3Dd ) as well as the same particle-volume fraction

(Cubic2D and Cubic3Dϕ ) of ϕ ≈ 20% are compared.

Figure 4: Comparison of cubic RVEs: (a) computed effective magnetization M and (b) mechanical
stress P

tot
for F = I, and (c) local induction field within the 3D geometry Cubic3Dϕ for shear loading.
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While the latter two RVEs predict a virtually coincidingM–H curve, its maximum

value is reduced by a factor of three for the Cubic3Dd microstructure, cf. Figure 4(a). This
effect is directly related to the differences in ϕ, whereas the variations in Cubic2D and

Cubic3Dϕ are a result of differences in the related cylindrical and spherical inclusions.

Comparing the effective mechanical stresses for F = I in Figure 4(b), a qualitative

agreement can be found for all RVEs, i.e. a positive, S-shaped component P11 in

dependence ofH1. In contrast to that, considerable differences become apparent in the
quantitative results. Due to the differing demagnetization factors and the mechanical
behavior of cylinders and spheres, the magnetically induced particle interactions vary
considerably even if the particle volume fraction is held constant.

4.2 Homogenization of magnetically hard MAEs

In contrast to magnetically soft MAEs, the usage of magnetically hard fillers as NdFeB
in the production process leads to composites with irreversible and strongly path-
dependent behavior. For instance, measurements presented by Linke et al. [14] show,
that the overall magnetization loops of MAEs based on a soft silicone elastomer matrix
filled with NdFeB are significantly smaller compared to the loops of NdFeB particles
fixed in a stiff epoxy resinmatrix, cf. Figure 5(a). In the following, the results presented
in Kalina et al. [13, 69] are summarized. Therein, the elastomermatrix is represented by
a neo-Hookean model with E = 100 kPa and ν = 0.49.

Figure 5: Magnetic hystereses of composites filled with NdFeB particles: (a) measured effective
behavior of epoxy sample (blue lines) and MAE sample (red lines) with a low modulus elastomer of
Em ≈ 64kPa, (b) calculated hysteresis loops for epoxy and MAE with Em = 100 kPa, and (c) evolution
of the MAE microstructure during the first hysteresis loop and local b1-field. Experimental data are
taken from Linke et al. [14] and Kalina et al. [13].
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4.2.1 Magnetization loops

In order to investigate the effective behavior, numerical homogenizations with RVEs
containing randomly distributed circular inclusions are examined. During the simu-

lation, the macroscopic deformation is fixed, i.e. F = I. The predicted initial magne-
tization curve as well as the first and second hysteresis loops of the MAE are compared
to the hysetereses of a composite with NdFeB particles embedded into an epoxy resin
matrix, see Figure 5(b). In accordance with the measurement, the second major hys-
teresis loop of the MAE is significantly smaller.

As demonstrated in Kalina et al. [13] from a theoretical point of view, this effect
results from magnetically induced particle rotations within the polymer. Due to these
rotations, the inversion of the MAE’s overall magnetization is expedited compared to
the epoxy sample, in which the inversion completely results from local domain
switching processes within the mechanically fixed particles. Furthermore, the particle
rotations insert stored strain energy into the polymer matrix. This energy storage ap-
pears after the first inversion of the external magnetic field and leads to an inverse
rotation of the particles if the external field is equal to zero. Thus, the switching of m
within the following ascending branch and the second hysteresis loop is faster than the
initial process and consequently, an asymmetrically shaped first hysteresis loop oc-
curs. Finally, the simulations indicate that the reversion of m is a result of particle
rotations and internal domain conversion processes. The evolution of the MAE
microstructure during the first hysteresis loop and the related local b1-field are given in
Figure 5(c).

Figure 6: Simulation of a magnetically hard MAEs: (a) mechanical butterfly hystereses for an
alternatingmagnetic load in the 45°-direction, and (b) comparison of the stress response of two RVEs
with almost identical microstructure which only differs in the initial position of one single particle.
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4.2.2 Mechanical hysteresis loops

To analyze the mechanical response of magnetically hard MAEs, imperfect hexagonal
microstructures, i.e. perfectly hexagonal distributions modified by a small geometric
perturbation of the particles reference position, cf. the microstructure shown in

Figure 6(a). They are loaded with an alternating effective induction B in the 45°-
direction where the effective deformation F is fixed.

Regarding the resulting mechanical stress response of the system, butterfly hys-
tereses appear. The loops reveal a stress σ which is initially symmetric and gets
asymmetric after several load cycles, see σ12 and σ21 in Figure 6(a). As in the case of
magnetic hysteresis, this is an effect of the local particle rotations in the mathemati-
cally positive or negative direction, respectively. Since these rotations are not in
equilibrium, a resultingmagnetically-induced torque, which has to be compensated by
a non-symmetric mechanical stress tensor is observed. Furthermore, the effect of
smaller hystereses, appearing in the system’s magnetic response, also appears in the
butterfly loops. The described effects become dominant with an increase of the local
particle rotations. However, after five load cycles a constant hysteresis is reached in the
system’s following loading periods.

Finally, the magneto-mechanical response is calculated for two nearly identical
imperfect hexagonal RVEs which differ in the reference position of only one particle.
While themagnetic answer of both systems almost coincides and is thus not depicted, a
strong variation of the mechanical response is detected when the microstructural
particle rotations become dominant, cf. Figure 6(b). According to that, the presented
study indicates a non-systematic behavior with respect to the stress response.

5 Macroscopic modeling approach

In the previous section, it is shown that the effective behavior of MAEs can be calcu-
lated by computational homogenizations. However, in order to simulate the behavior
of real MAE samples under complex loading conditions in a computationally efficient
way, it is necessary to use a macroscopic approach.

5.1 Macroscopic models

In this subsection, a macroscopic model similar to Kalina et al. [44] is discussed and
extended for the magnetically nonlinear case. In contrast to the most previously
published approaches in this field, it is constructed and parameterized by using results
from computational homogenizations. As a consequence, the model contains the
properties of themicrostructure implicitly and is nonetheless computationally efficient
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compared to costly FE2-schemes [34, 35]. The described strategy is often denoted as
decoupled multiscale scheme [70].

5.1.1 Microscopic simulations—Generation of the data basis

The macroscopic modeling approach is realized for the description of 2D isotropic
MAEswith anunderlying randommicrostructure, where theminimumparticle-particle
distance is set to 1.1 times the diameter. For statistical purpose, 10monodisperse RVEs,
each containing N = 400 particles are analyzed. Exemplarily, the volume fraction is
chosen toϕ = 30% in the following. The reader is referred to Kalina et al. [44] for a study
which evaluates several particle volume fractions.

A suitable database for the parameter identification of the macroscopic model is
generated by three purely mechanical load cases (M1–M3) and six coupled magneto-
mechanical load cases (MM1–MM6), cf. the schematic depiction in Figure 7(b). Within

Figure 7: Multiscale modeling approach: (a) averaged homogenized stresses σtot and σ as well as
magnetization m of an RVE with ϕ = 30% and adapted macroscopic model (36) plus (38, 39),
(b) mechanical load cases M1–M3 and coupled magneto-mechanical load cases MM1–MM6 for
calibration, as well as (c) load cases for validation.
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the coupled load cases, the effective magnetic field H and deformation F are applied
simultaneously, where the maximum effective stretches and shears are prescribed to

different values: λ
max = {1.05, 1.1, 1.15} and γmax = {0.05,0.1, 0.15}. With that, an accu-

rate description of the macroscopic model in a wide range of deformations is guar-

anteed. The maximum effective field is applied to
⃒⃒⃒⃒
H

max ⃒⃒⃒⃒ = 1500kAm−1. Load cases for

the validation of the model, M4 and MM7–MM10, are shown in Figure 7(c).
Within the microscopic simulations, the properties of the constituents are

described by the behavior of magnetically soft carbonyl iron particles according to
Figure 1(b) and a silicone elastomer with ϕoil = 40% which is described by the Ogden
model (31), see the stress–strain curve given in Figure 2(a).

5.1.2 Model description

In the macroscopic constitutive model, the general split of the amended free energy

Ω*(C,H) according to Eq. (12) into material dependent part ϱ0Ψ
*(C,H) and free space

part Ω∗free(C,H) = −μ0/2JC−1
:(H ⊗H), that does not depend on any material prop-

erties, is applied. To capture the effects of the underlying microstructure which is not
resolved within the macroscopic approach, magneto-mechanical coupling terms have

to be incorporated inΨ*(C,H). Regarding an isotropic, purely elastic andmagnetically
soft MAE, it can be described in terms of the following six magneto-mechanical
invariants:

I
iso
1 := J

−2/3 trC, I
iso
2 := J

−4/3

2
[tr2C − tr(C2)], I3 := J

2
,

I4 :=
⃒⃒⃒⃒
H
⃒⃒⃒⃒2
, I5 := C

−1
:(H ⊗ H), I6 := C

−2
: (H ⊗ H). (34)

To facilitate a systematic discussion of themacroscopic constitutivemodel, the specific
Helmholtz free energy function is decomposed into purely mechanic, coupling and
purely magnetic parts:

Ψ∗(C,H) := Ψ∗mech(I iso1 , I
iso
2 , I3) +Ψ∗coup(I iso1 , I

iso
2 ,…, I6) +Ψ∗mag(I4). (35)

The chosen ansatzes are discussed in the following, where amagnetically linear model
according to [44] and a magnetically nonlinear one are presented.

In the absence of magnetic fields, the MAE’s behavior is characterized by the
purely mechanical part of the model. To capture the nonlinear stress–strain behavior

for effective stretches in the range of λ = 0.9 up to 1.15. This part is described by an
Ogden type model, so that the mechanical invariants have to be replaced by the

principal stretches λ
iso
i and J. With that, the mechanical part is given by

22 K. A. Kalina et al.



ϱ0Ψ
∗mech

:= ∑
N

p=1

μp

αp
(∑

3

i=1
λ
isoαp

i − 3) + K
4
(J2 − ln J

2 − 1). (36)

Note that the effective nonlinear stress–strain behavior results from the Ogden model,
which is usedwithin themicroscopic simulations, cf. Figure 2. To reduce the number of
parameters in (36), only N = 1 term is used.

Using Eq. (34) and keeping the properties of the predicted macroscopic magneto-

mechanical MAE response in mind, i.e. a quadratic dependence of Ψcoup
and Ψmag

on

the magnetic field for
⃒⃒⃒⃒
H
⃒⃒⃒⃒
→ 0, the linear model with

μ−1
0 ϱ0Ψ

∗coup
:= −C1I5 + C2I6 + C3(J − 1)I6 and ϱ0Ψ

∗mag
:= μ0C4I4 (37)

is chosen. It has shown to be suitable for the description of the deformation dependent
effective behavior within the examined range of magneto-mechanical load cases but is
only valid for small magnetic fields up to

⃒⃒⃒⃒
H
⃒⃒⃒⃒
≈ 250kAm−1. A possible extension of the

linear model (37) for large values of
⃒⃒⃒⃒
H
⃒⃒⃒⃒
is given by the nonlinear model with

μ0Ψ
∗coup

:= −γ1
δ1
ln[cosh(μ0δ1

̅̅
I5

√ )] + γ2ln(1 + μ2
0δ2I6)…

+ 1
2
γ3(J − 1)tanh2(μ0δ3

̅̅
I5

√ ) and
(38)

μ0Ψ
∗mag

:= γ4 ln(1 + μ2
0δ4I4). (39)

Therein, the well-known saturation behavior that results from themagnetization of the
ferromagnetic particles, cf. Figure 1(b) is incorporated. The chosen functions enable the
accurate description of the magnetization as well as the stress tensors, respectively.
Altogether, a total number of 11 parameters have to be determined in the nonlinear
case. In contrast to other macroscopic constitutive MAE models, e.g. Bustamante et al.

[71] or Haldar et al. [41], a volumetric sensitivity has been added to Ψcoup
.

5.1.3 Parameter identification

Besides the development of the macroscopic model, the crucial task in the presented
approach is the identification of the mechanical, coupling and magnetic model

parameter sets—in the following denoted as κmech, κcoup and κmag, respectively. A high
accuracy of the models (36) plus (37) and (36) plus (38, 39) is ensured if they describe
the effective homogenized magnetizationm as well as the total and mechanical stress

tensors σtot and σ in the linear and nonlinear magnetic regime, respectively.
The proposed parameter identification according to Kalina et al. [44] features a

stepwise algorithm based on four least square optimizations. At first, the parameter
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sets κmech, κcoup and κmag are identified independently from i = 1…N homogenized data

sets defined by the correlated tensor fields {F i,H i}→ {bi,σi
tot}. Thus, the following

three separate optimizations have to be performed:
(i.i) Determine κmech from the purely mechanical load cases,
(i.ii) find κcoup from the magneto-mechanical load cases by setting κmech from (i.i)

constant, and
(i.iii) identify κmag from the magneto-mechanical load cases by fixing κcoup from the

step (i.ii).

With that, both, the total stress tensor σtot and the magnetizationm are described with

high accuracy. However, since O(σ) ≈ 10−2O(σtot) , see Figure 7(a), the mechanical

stress tensor σ = σtot − σm is not captured with sufficient precision using the identified

set of parameters κcoup and κmag. Therefore, the quantities σact := σ − σmech andm are
fitted simultaneously according to the final optimization

{κcoup,κmag} = arg{ min
κcoupκmag

∑N
i=1(Wσ

i

⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒
σact(F i,H i,κmech,κcoup,κmag) − σact

i

⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒2
…

+Wm
i

⃒⃒⃒⃒
m(F i,H i,κcoup,κmag) −mi

⃒⃒⃒⃒2)} (40)

which is denoted as step (ii) in the following. Therein,Wm
i andWσ

i areweighting factors
for the single error sums which are determined as the inverse of the maximum value of
the components σact

kl andmk for each load case, respectively. Step (ii) naturally causes
an optimization of the model with respect to both fields, σ andm, but also guarantees
an accurate description ofσtot. The determined values from the steps (i.i)–(i.iii) are used
as starting values in the highly nonlinear optimization.

The procedure is exemplarily applied for the nonlinear model (36) plus (38, 39). In

order to determine the parameter sets κmech, κcoup and κmag, the load cases M1–M3 as
well as MM1–MM6 are used. With that, the parameters follow to the values given in
Table 2. Figure 7(a) exemplarily depicts the calibrated model and the homogenized
data for the load case MM4. The remaining load cases M4 and MM7–MM10 are used to

Table : Identified parameters of the macroscopic mechanical model () as well as
the nonlinear magnetic model ( and ). The isotropic model is adapted to ho-
mogenized data of an RVE with random particle distribution for ϕ = %.

K/MPa μ/kPa α/−

. −. −.

γ/T δ/T− γ/T δ/T− γ/T δ/T− ζ/T ξ/T−

 . . × 
−

. . × 
−

. . × 
−

.
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validate the fittedmodel which achieves errors below 15% for all considered load cases
and field strengths. Altogether, the developed macroscopic approach is able to
reproduce the homogenized response with a good accuracy up to the highly nonlinear
magnetic regime.

5.2 Simulation of the magnetostrictive effect

With the microscopically based, adapted macro-model, the magnetostrictive (MS) ef-
fect of MAEs, i.e. the free deformation of a sample due to an external magnetic field, is
analyzed. According to Figure 8(a), it is defined as

ε = l − l0
l0

, (41)

with l and l0 denoting the sample length in the reference and deformed configurations.
Within the macroscopic simulation, the sample is embedded into a free space domain
F 0 of adequate size, which enables the application of a homogeneous, external far-
field h

∞
[35, 44, 45, 72], see Figure 1(a). To this end, φ = φ̂ is prescribed on the exterior

boundary ∂F 0 of the free space. Furthermore, displacements on ∂F 0 are prevented for
simplicity, which however does not lead to a loss of generality [73]. Since the
Lagrangian description of the BVP requires the calculation of a deformation field
within the whole domain, F is described as a neo-Hookean-elastic and non-
magnetizable medium with E

free = 1kPa and νfree = 0.4: This guarantees a negligible
mechanical influence on the sample. In order to analyze the influence of the MAEs’
geometry, elliptical samples with aspect ratios shifted from values between l0/h0 = 1/4
and 4 are considered, where h0 is the sample’s height. For the loading of the samples, a
maximum far-field of

⃒⃒⃒⃒
h
⃒⃒⃒⃒∞ = 1500kAm−1 is applied in the horizontal direction.

Evaluating the FE simulations, a positive MS effect is predicted for all geometries,
where, according to Figure 8(b), themaximumelongation appears for a circular sample

Figure 8: FE simulation ofMSeffects in ellipticalMAE samples: (a) undeformed configuration (dashed
lines) and deformed geometry (solid lines) for a circular sample, (b) and (c) overall MS strain ε = l−l0

l0
depending on the sample shape. In (b), the linearmagnetic regime for

⃒⃒⃒⃒
h
∞ ⃒⃒⃒⃒ = 300kAm−1 and in (c), the

nonlinear magnetic regime for
⃒⃒⃒⃒
h
∞ ⃒⃒⃒⃒ = {300,450,…1500}kAm−1 are depicted, respectively.
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within the linear magnetic regime at
⃒⃒⃒⃒
h
∞ ⃒⃒⃒⃒ = 300kAm−1 [44, 45]. Increasing the external

field to values where saturation effects are relevant, the situation changes. Now, the
maximum effect is predicted for the samplewith a ratio l0/h0 = 3/4, see Figure 8(c). This
shift of the maximumMS effect from the ratio 1/1 to a value below is in good agreement
with results of Keip and Rammbausek [35], who perform FE2-simulations for periodic
microstructures, at the saturation point. According to the presented findings, a sig-
nificant correlation of the sample geometry and the resulting magneto-mechanical
response is apparent. Consequently, the overall behavior results from microstructural
as well as macroscopic properties and a separation of both effects is hardly achievable

in experiments. Furthermore, strongly inhomogeneous deformations F occur inside
the sample even for elliptical or, in the 3D case, ellipsoidal geometries, cf. Figure 9(a).

Finally, in order to validate the macroscopic approach, the decoupled multiscale
scheme is applied exemplarily for the circular sample. To this end, the effective

deformation gradient F andmagnetic fieldH in quadrature points close to the sample’s
center and aboundary point at an angle of 45° starting from the x1-axis are storedwithin
the macroscopic FE simulation, respectively. The temporal evolutions of these tensor
fields are applied in a computational homogenization to the RVE– this process is called
localization.With that, the prediction of themacroscopicmodel can be compared to the

Figure 9: Decoupled multiscale scheme for a circular MAE: (a) inhomogeneous deformation of the
sample due to an applied externalfieldh

∞
and localb-field in the correspondingRVE at the center and

a boundary point. In (b): comparison of the RVE’s effective response to themacro-model according to
Eqs. (36), (38) and (39) for localization BCs at these two points and macroscopic elongation ε = Δl/l0
of the sample.
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response of the RVE. The norm of the local b-field in the deformed RVEs and the
calculated effective mechanical stress σ of the macro-model and the homogenization
are shown in Figure 9(a) and (b), respectively. Therein, only small deviations can be
seen. This confirms the reliability of the macroscopic approach.

6 Conclusions

In this contribution, a continuum-based multiscale modeling approach for MAEs is
presented. Applying the FE method for the solution of the nonlinear magneto–me-
chanical BVP, these materials are described on the micro- as well as the macroscale,
where the two scales are connected via a computational homogenization scheme. The
present work summarizes results given in Metsch et al. [29, 30] and Kalina et al. [13, 28,
44] and complements these findings at several points.

In order to incorporate realistic properties of the constituents on the microscale,
experimental data are used to parameterizemodels formagnetically soft and hard filler
particles as well as an elastic silicone elastomer matrix. For all of them, the chosen
models are able to describe the measured response with high accuracy. By performing
computational homogenizations, the effective behavior of magnetically soft as well as
hardMAEs is predicted and qualitatively compared to experimental results. In the case
of magnetically soft MAEs, the well-known magnetorheological effect is analyzed for
3D cubic and random microstructures. Furthermore, realistic 3D and simplified 2D
simulations are compared,where a qualitative agreement but a significant quantitative
deviation of both approaches is observed. In the case of magnetically hard MAEs, the
experimentally determined effect of smaller hysteresis [14] is analyzed and can be
explained by particle rotations on the microscale. In addition, a non-systematic
behavior with respect to the MAEs’ mechanical response is detected. Finally, a
decoupled multiscale approach [70] which implicitly includes the microstructures’
influence is presented for isotropicmagnetically soft MAEs. This includes the summary
of the magnetically liner model given in Kalina et al. [44] and an expansion to the
magnetically nonlinear case, wherein saturation effects are considered. Exemplarily,
the nonlinear model is calibrated by using homogenized data of 2D random micro-
structures for several load cases. The validity of the parameterized macroscopic model
could be verified by further load cases. With the calibrated macroscopic model, the MS
effect of several macroscopic samples are analyzed and compared with experiments.

Altogether, the presented modeling strategy has shown to be an adequate tool to
predict the effective behavior ofmagnetically soft andhardMAEs,where thematerial is
described without simplifications as the dipole assumption. Furthermore, the devel-
oped decoupled multiscale approach enables the implicit embedding of the micro-
structures’ influence on themacroscale. A disadvantage of the strategy are however the
necessary microscopic simulations for the calibration of the macroscopic model which
are still quite costly, especially in the 3D case. The presented modeling strategy is

Multiscale modeling and simulation of magneto-active elastomers 27



adoptable for other particle-matrix-based magneto-active composites as e.g. ferrogels,
see Birster et al. [74], Gebhart and Wallmersperger [72], Gebhart et al. [45] or Weeber
et al. [75]. An essential task for the future is the expansion of the modeling approach to
MAEs with chain-like microstructures. Furthermore, geometric data of real micro-
structures [16] should be used as input instead of artificially constructed distributions.
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