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Abstract: In this contribution, a magnetoactive elastomer (MAE) of mixed content,
i.e., a polymer matrix filled with a mixture of magnetically soft and magnetically hard
spherical particles, is considered. The object we focus on is an elementary unit of this
composite, for which we take a set consisting of a permanent spherical micromagnet
surrounded by an elastomer layer filled with magnetically soft microparticles. We
present a comparative treatment of this unit from two essentially different viewpoints.
The first one is a coarse-grainedmolecular dynamics simulationmodel, which presents
the composite as a bead-spring assembly and is able to deliver information of all the
microstructural changes of the assembly. The second approach is entirely based on
the continuummagnetomechanical description of the system, whose direct yield is the
macroscopic field-induced response of the MAE to external field, as this model ignores
all the microstructural details of the magnetization process. We find that, differing in
certain details, both frameworks are coherent in predicting that a unit comprising
magnetically soft andhard particlesmaydisplay a nontrivial reentrant (prolate/oblate/
prolate) axial deformation under variation of the applied field strength. The flexibility
of the proposed combination of the two complementary frameworks enables us to look
deeper into the manifestation of the magnetic response: with respect to the magneti-
cally soft particles, we compare the linear regime of magnetization to that with satu-
ration, whichwe describe by the Fröhlich–Kennelly approximation; with respect to the
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polymer matrix, we analyze the dependence of the reentrant deformation on its
rigidity.

Keywords: magnetoactive elastomer, magnetically hard microparticles, magneto-
striction effect

1 Introduction

The embedding of solid micro- and nanoparticles with magnetic properties into elastic
polymermatrices became in recent years one of themost successful approaches for the
design of “smart” materials, i.e., materials with a predefined response to external
stimuli [1, 2]. The addition of the magnetic component allows to control on the fly the
rheological properties of the viscoelastic polymer medium by means of applied
external fields. Closely related to ferrofluids andmagnetorheological fluids [3–5], these
polymer-based materials include gels, whose structure is swollen by a liquid back-
ground [6–10], and elastomers, which are dry rubber-like materials [5, 11–16]. The
latter, known generically asmagnetically active elastomers (MAEs), are attracting large
research efforts in recent years due to the broad range of applications that their
magnetically controlled physical properties are inspiring [17–23]. A main part of such
applications is related to their strong response to external fields that leads to large
variations of their shape and mechanical properties. For example, MAEs are used to
design controllable vibrational absorbers and mounts with tunable stiffness [24–26],
soft actuators and micromanipulators [27], force sensors and artificial muscles for soft
robotics [28, 29], coatings with tunable wettability [30, 31] or optical properties [32],
tunable radiation absorbers [33], or biomedical implants [34].

The overall response of MAEs to external fields is determined by a mechanically
constrained but substantial rearrangement of their embedded magnetic particles
[5, 35]: for instance, under uniform external fields, magnetically hard particles pos-
sessing a permanent magnetic moment tend to align with the direction of the field,
whereas magnetically soft particles tend to acquire induced magnetic moments in the
same direction; in both cases, if the particle density is large enough to let interparticle
interactions to be significant, particles will tend to assemble into straight chains par-
allel to the field. However, such rearrangements necessarily involve some degree of
local deformation of the polymer matrix, either elastic [35, 36] or inelastic [37].
Therefore, macroscopic changes in the properties of MAEs as a response to external
fields are the result of the interplay between the field-induced assembly of their
magnetic particles and the mechanical constraints of the polymer matrix. Such
changes include giant magnetorheological effects entailing large field-induced in-
creases of the elastic modulus [13, 16, 38–40] and large magnetostriction effects, cor-
responding to variations in the shape of the sample [20, 38, 41, 42]. Under elastic
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regimes, magnetostriction in MAEs is often fully reversible, leading to magnetic shape
memory effects [43, 44].

Even though the measurement of macroscopic magnetorheological and magne-
tostriction effectswith current techniques is straightforward, the accurate fundamental
characterization of their underlying microscopic mechanisms, and thus, the rational
design of materials with taylored sophisticated properties, still is a serious challenge.
Direct observations of the field-induced microstructural changes within MAEs became
available only in recent years, either by means of optical microscopy [25, 44–47] or by
cutting-edge techniques such as X-ray computerizedmicrotomography [36, 37, 48, 49].
However, so far these techniques provide only static information on the internal
microstructure. Application of particle tracking methods [35, 50, 51] is a promising
experimental approach to achieve dynamic characterization that is still under
development.

Following the growing interest in these systems, large theoretical research efforts
have been devoted to MAEs in recent years. Classical approaches to the modeling of
rubber-like materials are based on numerical solving of constitutive equations
describing their elastic properties. In the case of MAEs, such continuum description
can be applied not only to the polymermatrix, but also to the distribution of embedded
magnetic particles. This implies to define, on the basis of microscopic motivations or
phenomenological approaches, constitutive equations for both the elastic and the
magnetic properties [52, 53]. The simplest approximations within this framework as-
sume a linear elastic behavior, along with linear or nonlinear magnetic properties, and
a weak magnetoelastic coupling. The latter implies treating the magnetic forces as
mechanical loads, which allows to solve the mechanical and magnetic equations
separately. More accurate approaches involve taking into account the nonlinearity of
elastic response at finite strains [54–60]. Further important refinements are the
consideration of geometry of the boundaries of finite samples [58, 61–63], anisotropies
in the distribution of magnetic particles [64, 65], or strong magnetoelastic couplings
that impose simultaneous solving of the elastic and magnetic equations [63, 66–68].
Continuum approaches have the main advantage of enabling direct comparison to
macroscopic properties. However, they generally lack detailed descriptions of the
material microstructure.

A widely used alternative to full continuum theoretical models is the explicit
representation of themagnetic particles based on the dipole approximation [11, 69–73].
This allows both to naturally incorporate microstructural details by means of the
discrete distribution of particles and to treat interparticle magnetic interactions as pair
potentials, with the main drawback being significantly higher calculation costs. This
approach can be combined with different approximations to treat microstructure and
interactions, such as bead-spring network representations of thematerial [51, 74–76] or
hybrid mean field models [77–79]. The simplest dipolar approach, which assigns a
point dipole moment to each magnetic particle, is a reasonable approximation when
the density of magnetic particles inside the elastomer is not high and, thus, mutual
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magnetization between particles is weak. However, different corrections might be
needed when such effect is significant [70, 80, 81].

While the plethora of existing theoretical approaches for the study of MAEs keeps
growing [60, 73, 82], important experimental aspects such as microscopic inelastic
responses [37] or polydispersity of themagnetic component [83] remain poorly studied.
In addition, the experimental search for MAEs with enhanced or more sophisticated
magnetoelastic behaviors brings in complex characteristics that pose additional
theoretical challenges. An example of a MAE material of increased complexity is the
one obtained by mixing inside the polymer matrix two types of magnetic microparti-
cles, with different sizes andmagnetic properties, in order to achieve a combined active
andpassivemagnetic control of the response [84–86]. Themagneticmixture consists of
a relatively low fraction of large spherical microparticles of NdFeB alloy, which are
magnetically hard (MH), and a high fraction of smaller carbonyl iron microparticles,
which aremagnetically soft (MS). In such amixture, bothMH andMS particles respond
to external fields (active control), whereas MH ones can be permanently magnetized
and affect the surrounding MS particles even in the absence of applied field (passive
control). Very recently, we introduced the first theoretical study on the behavior of such
magnetically hard + soft elastomers (HSMEs) [87]. Using a twofold modeling strategy,
which combines a minimal continuum analytical description and a bead-spring
computer simulation model, we analyzed the magnetostriction of a representative
elementary cell of such material, consisting of a central MH particle surrounded by a
cloud ofMS ones, all beingmechanically interconnected by the elastic matrix. As a first
approximation, we assumed linear elasticity and magnetization under weak magne-
toelastic coupling conditions for the continuum model, whereas for the bead-spring
representation we adopted simple dipolar particles, also with linear magnetization of
theMS ones. Both approaches provided the same qualitative behavior for the two cases
we analyzed: nonmagnetized andmagnetized central particle. In the first case, an axial
elongation of the elementary volume in the direction of the field that grows paraboli-
cally with the strength of the latter was established. In the second case, we found an
unusual behavior: due to the fact that the field of the central particle breaks the
symmetry of the system, a reentrant axial deformation arises, in which the cell adopts
prolate–oblate–prolate shapes as the strength of an applied field antiparallel to the
central dipole increases.

On the basis of our preliminary characterization of themagnetostriction of a HSME
elementary cell [87], in this work we analyze several parameters affecting its behavior.
Here, we perform such analysis mainly by means of our continuum magnetoelastic
description, whereas simulations with the bead-spring model are used only for con-
sistency checks on a single set of parameters. Bothmodels are convenientlymodified to
study the effects of a nonlinear magnetization of the MS particles. In addition, we also
study the effects of a moderate variation in their initial susceptibility and the impact of
different rigidities of the elastic matrix. We show that the saturation magnetization of
the MS particles only has significant qualitative effects at high rigidities. Moreover, we
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find that the reentrant axial deformation tends to be hindered as the elastic modulus is
increased, with only the axial elongation remaining at high rigidities. Finally, we
observe that a moderate decrease of the initial susceptibility tends to favor the reen-
trant behavior, broadening the region of deformation into oblate profiles.

2 System and modeling approaches

2.1 System parameters

Typical HSME samples are synthesized using NdFeB MH particles of diameter
dh ≈ 50 μm and saturation magnetization Mh ≈ 800 emu. They are combined with MS
particles of carbonyl iron with diameter ds ≈ 5 μm and high initial magnetic suscep-
tibility, χ0. Here, we will sample three different values of χ0 = {0.15,0.2,0.24}, where
the highest one corresponds to the limiting value χ*0 ∼ 3/4π. The volume fraction of MS
particles is around ρs≈0.3. In order to study the effects of rigidity of the polymermatrix,
here we also sample several values for its shear modulus, G, comprised between 105

and 107 dyn/cm3. For the external field, we samplefield strengths up to 1.9⋅104 Oe that is
the same order of magnitude of typical saturation fields used for these materials [36].
Finally, for our elementary HSME cell, we take an ideally spherical MH particle and a
homogeneous spherical elastic shell around it of 25 μm. The latter contains the
aforementioned volume fraction of embedded MS particles.

2.2 Qualitative description

Figure 1 shows the schematic representations of the elementary cell of a HSME defined
for our analytical magnetoelastic and bead-spring simulation models. Here, we use
Figure 1a, corresponding to the continuum description, to qualitatively describe the
behavior observed in bothmodels. In such scheme, the central dark disc represents the
MH particle that, when magnetized, carries a point dipole μ

→
h in its center. The orien-

tation of this dipole, corresponding to an arbitrary direction along the magnetic easy
axis of the MH particle, defines the symmetry axis of the cell.

The shadowed region around the central disc represents an incompressible elastic
shell in which an assembly of implicit MS particles is embedded, whereas the thick
solid circle indicates the boundary of this shell when it is unperturbed. Independently
of the central particle being magnetized or not, as we showed in Reference [87], when
an external field H

→
0 is applied parallel to the symmetry axis of the system, the elastic

shell tends to deform in such a way that its initially circular boundary adopts a prolate
shape (dashed line). The prolateness grows with the strength of the field mono-
tonically. When the MH particle is magnetized, a weak external field antiparallel to μ

→
h
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tends to deform the shell into an oblate shape (dotted line). This effect increases with
the strength of the field up to a point of maximum oblateness, then decreases until the
circular shape is recovered, and finally, an increasing prolateness can be observed
again until the critical field required to force the inversion of the central dipole is
attained. This latter event is out of the scope of the present study. The scheme in
Figure 1b illustrates how the MH and MS particles are explicitly represented by soft
spheres of different size in the bead-spring model, with the same type of arrangement
established for the continuum description: a central big sphere representing the MH
particle and a spherical shell of small MS particles, all highly interconnected by elastic
springs representing the mechanical constraints imposed by the polymer matrix.

In the following sections, we briefly describe each model, underlining the modi-
fications introduced to study the effects of the aforementioned parameters.

2.3 Continuum analytical approach

In order to define the analytical equations of our continuum model, here we assume a
weak magnetoelastic coupling. Therefore, we can split the problem into components,
which are described separately in the next two sections. In addition, the axial sym-
metry allows us to adopt, without loss of generality, a two-dimensional representation
of the system. For both magnetostatic and elastic contributions, we obtain variational
equations that are solved numerically using finite elements. Such calculation is per-
formed with the FEniCS computing platform [88].

Figure 1: (a) Scheme of the HSME elementary cell as represented in the continuum magnetoelastic
model. Central dark disc represents the MH particle with dipole moment μ

→
h pointing in z direction,

light annulus corresponds to the elastic shell with MS particles, and its unperturbed boundary is
indicated by the solid circle. Dashed and dotted ellipsoids show the shell deformation according to
the strength and direction of the external field, H

→
0, indicated by corresponding dashed and dotted

arrows. (b) Snapshot of an unperturbed HSME elementary cell in the bead-spring simulation model,
with a large dark central sphere representing the MH particle and a cloud of small light spheres
representing the MS ones, connected by a network of elastic springs depicted as semitransparent
lines. Radius of the MS particles has been halved to ease the visualization.
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2.3.1 Magnetostatic problem

We consider the elementary cell outlined in Figure 1a, placed in an external homo-

geneous magnetic field H
→

0. As pointed out earlier, the cell consists of a magnetically
hard core region, Ω1(r < r1), and a magnetically soft shell region, Ω2(r1 < r < r2),
whereas the empty region external to the cell is denoted as Ω3. Without loss of gen-
erality,H

→
0 points along theOz axis. Themagnetically hard core hasmagnetization,M

h
,

also coaligned with Oz. In this geometry, the magnetically soft shell is a continuum
medium that is reversiblymagnetizable. Here, we introduce a nonlinear magnetization
for this shell by taking the empirical Fröhlich–Kennelly law [89–91],

χ(H) = χ0M
(sat)H

M(sat) + χ0H
, (1)

where χ0 is the initial susceptibility of the shell and M(sat) is its saturation
magnetization.

The magnetostatic problem in the absence of charges or currents is described by
two Maxwell equations with their respective boundary conditions:

∇ × H
→ = 0,  ∇ ⋅B

→ = 0, [H→τ] = 0, [Bn] = 0. (2)

Here, B
→
is themagnetic flux density, and subscripts n and τ denote the components of a

vector normal and tangential to the surface of the discontinuity boundary, respectively.
Square brackets denote the difference between the values of a quantity on the two sides
of the boundary.

The first equation of set (2) shows thatH
→
is a potential field, which can be expressed

asa superpositionof an external uniformfieldH
→

0 and thegradient of a scalar potentialψ:

H
→ = H

→
0 − ∇ψ. (3)

With allowance for the rotational symmetry around Oz, we may use cylindrical co-
ordinates, so that the potential ψ depends only on the radial distance ρ and axis
coordinate z. We require that potential ψ(ρ, z), first, vanishes at the external boundary
of the cell: ψ

⃒⃒⃒⃒
ρ=r2 = 0; and second, is periodic along the Oz axis: ψ(ρ, z) = ψ(ρ, z + h),

where h is the cell period.
The solution of Equation (2) is equivalent to finding an extremum of the energy

functional for the entire volume V [92]:

∫
V

B
→
⋅ δH

→
dV = 0, (4)

where here and hereinafter δ denotes the variation of a quantity.
The vector of magnetic flux density is defined in each region of the model cell as

follows:
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B
→ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
H
→

0 − ∇ψ + 4πM
→

h for Ω1,

(1 + 4πχ(H))(H→0 − ∇ψ) for Ω2,

H
→

0 − ∇ψ for Ω3.

(5)

Taking into account the relations:

δH
→ = − ∇ δψ and ∫

V

H
→

0 ⋅ ∇δψdV = 0,

Equation (4) can be transformed into

1
4π

∫
V

∇ψ ⋅ ∇δψdV = ∫
VΩ2

M
→

h ⋅ ∇δψdV + ∫
VΩ3

χ(H)(H→0 − ∇ψ) ⋅ ∇δψdV . (6)

Finally, this variational equation is solved numerically for the potentialψ(ρ, z), finding
solutions for each sampled value of the initial susceptibility, χ0.

2.3.2 Elastic problem

Having once obtained the solution of themagnetostatic problem, i.e., having found the
distribution of the magnetic field inside the magnetically soft shell, one can calculate
how the shell would deform under the resultingmagnetic forces. In order to do that, we
need to formulate the equations for a magnetoelastic medium, assuming balance be-
tween magnetic and elastic forces:

∇ ⋅ σ̃ + ∇ ⋅ σ̃m = 0, (7)

where σ̃ denotes the elastic stress tensor and σ̃m = 1
4πB

→
H
→ − 1

8πH
2g̃ is the Maxwell stress

tensor. In case of equilibrium, the pressure on both sides of the outer boundary Γ
should be the same. Thus, one obtains:

n
→
⋅ σ̃

⃒⃒⃒⃒⃒
Γ
= n

→
⋅ (σ̃(e)

m − σ̃(i)
m )⃒⃒⃒⃒⃒

Γ
= 2πM2

nn
→⃒⃒⃒⃒⃒

Γ
, (8)

where n
→
is the vector normal to the outer boundary and (.)(i) and (.)(e) denote internal

(inside the shell) and external (outside the shell) values. Then we write Hooke’s law
and the relation between strain tensor ẽ and displacement vector u

→
as

σ̃ = λ tr (ẽ)g̃ + 2Gẽ, ẽ = 1
2
( ∇ u

→ + ∇u
→T), (9)

where g̃ is unity tensor, G stands for the shear modulus, and the Lamé coefficient λ
characterizes the compressibility of the material and is related to its volume elastic
modulus as K = λ + 2G/3.

In order to obtain a variational form of the magnetoelastic problem using the

principle of virtual work, we have tomultiply Equations (7) and (8) by δu
→
and integrate:
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∫
V

( ∇ ⋅σ̃ + ∇ ⋅ σ̃(i)
m ) ⋅ δu→dV − ∫

S

n
→
⋅ (σ̃ + σ̃(i)

m − σ̃(e)
m ) ⋅ δu→dS = 0. (10)

Employing Gauss–Ostrogradsky theorem, after simplifications, we come to a so-called
weak variational form:

∫
V

(λ tr (ẽ) tr (δẽ) + 2Gẽ ⋅ ⋅δẽ + σ̃(i)
m ⋅ ⋅δẽ)dV = ∫

S

(2πM2
nn
→ + n

→
⋅ σ̃(i)

m ) ⋅ δu
→
dS. (11)

As pointed earlier, the presence of a magnetic field transforms our initially spherically
symmetric problem into an axisymmetrical one. Therefore, here we also use cylindrical
coordinates, (ρ, z), and solve the problem numerically with finite elements, obtaining
u
→(ρ, z) for the quarter of themain cross section of the cell. In order to do this, we need to
apply the Dirichlet boundary conditions

uρ
⃒⃒⃒⃒
ρ=0 = 0, uz |z=0 = 0, u

→⃒⃒⃒⃒⃒
r=r1

= 0, (12)

which mean that the shell is immobile at the shell–core boundary, and the symmetry
requirement applies at the boundaries ρ = 0 and z = 0. For all calculations, the ratio
λ/G = 103 was fixed.

2.4 Bead-spring model

Our bead-springmodel is designed formolecular dynamics (MD) simulations. The solid
magnetic particles are represented as soft spheres, assuming that they are always
surrounded by an elastic layer of polymer material that prevents them to get into close
contact. This assumption is consistent with the weak magnetoelastic coupling estab-
lished for the continuummodel. The soft core pair interaction is defined by a truncated
and shifted Lennard-Jones potential, also known as Weeks–Chandler–Andersen
(WCA) interaction [93]:

UWCA(r) = {ULJ(r) − ULJ(r = rcut), r < rcut
0, r ≥ rcut

, (13)

where r = r
→
i − r

→
j is the center-to-center distance between the pair of particles i and j,

U(r) = 4ϵLJ[(d/r)12 − (d/r)6] is the conventional Lennard-Jones potential, rc is the
truncation length, set to rc = 21/6d in order tomake the interaction purely repulsive, and
d is the center-to-center excluded distance, defined by the characteristic diameter of
each particle, di and dj, as d = (di + dj)/2.

As mentioned earlier, the mechanical constraints imposed by the polymer matrix
are represented by a network of elastic springs, with a simple harmonic potential

US, i(r) = 1
2
ki(r − Li)2  , (14)

where r is the distance between the connected points, ki is the elastic constant of the
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spring, and Li its equilibrium length. The connections points are the centers of the MS
particles and a set of fixed anchoring points randomly distributed on the surface of the
MH one that remains permanently immobile. In order to ease the fitting of the elastic
properties of this spring network, we take the elastic constants to be proportional to
their corresponding equilibrium lengths, with the average equilibrium length of all the
springs, 〈L〉, as scaling factor:

ki = k
Li
〈L〉

 . (15)

In this way, the only fitting parameter for the whole network is the constant factor k.
The direct comparison of the deformations obtained in the continuum and the bead-
springmodel [87] showed that the spring network of the latter fits rather well the elastic
properties defined for simple mass–spring networks [94]. The bulk modulus of such
networks is

KMS = n〈S〉〈kL2〉

18
= nk〈S〉〈L3〉

18〈L〉
 , (16)

where n is the number density of connection points and 〈S〉 is the average number of
springs connected to each of them. Assuming spatial isotropy and a Poisson ratio for
the simple mass–spring network of ν = 1/4, then the shear modulus can be defined as

GMS = 3KSB(1 − 2ν)
2(1 + ν) = n〈S〉〈kL2〉

30
= nk〈S〉〈L3〉

30〈L〉
 . (17)

The magnetic properties of the particles are represented as point dipoles located at
their centers. The moment of the dipole corresponding to the MH particle, μ

→
h = μhk̂, is

fixed to μh = MhVh, whereM
h
is itsmagnetization, whichwe take as constant, andV

h
its

volume. In the same way, the dipole moment of the ith MS particle is given by

μ
→
i = M

→
iVs  , (18)

where Vs is its volume and M
→

i its magnetization. In this case, according to its
magnetically soft nature, M

→
i is defined as

M
→

i = χiH
→

int  , (19)

where χi is the field-dependent susceptibility and H
→

int the internal field inside the
particle, which is parallel to the net external field at its position, H

→
ext. Following the

Fröhlich–Kennelly nonlinear magnetization introduced earlier for the continuum
model, χi is given by Equation (1) and the modulus of the internal field,H int = || H→ int || , is
given by Hext = ||H→ext|| as

H int = Hext − 4π
3

χ0H int

1 + χ0
Msat

H int
 , (20)
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where χ0 is the initial susceptibility of the MS material and Msat its saturation
magnetization. From this expression, we obtain:

H int = 1
6χ0

[3χ0Hext−4πχ0Msat−3Msat

+(9χ20H2
ext−24πχ20HextMsat+18χ0HextMsat+16π2χ20M

2
sat+24πχ0M2

sat+9M2
sat)1/2].

(21)

Here we consider only two contributions to H
→

ext: the externally applied field, H
→

0, and
the field generated by the dipole of theMHparticle, when it ismagnetized, at the center

of the MS one, H
→(i)

h ,

H
→

ext = H
→

0 + H
→(i)

h . (22)

The latter is defined as

H
→(i)

h = 3 r
→
i(μ→h ⋅ r

→
i)

r5i
− μ

→
h

r3i
 , (23)

where r
→
i is the vector connecting the center of the MH particle to the center of the

polarized one and ri = || r→i||. In this way, we disregard mutual magnetization between
MS particles when calculating their induced dipoles. However, we fully take into ac-
count the dipole–dipole interaction between any pair of magnetized particles,

Udd(ij) = −3 (μ
→
i ⋅ r

→
ij)(μ→j ⋅ r

→
ij)

r5
+ (μ→i ⋅ μ

→
j)

r3
, (24)

where μi, μj are their respective dipole moments, r
→
ij = r

→
i − r

→
j is the vector connecting

their centers and r = ‖ r→ij‖. Finally, MS particles also experience the Zeeman interaction
with the external applied field. However, since their dipoles are induced, the effective
interaction corresponds to one half of the conventional Zeeman potential [92]:

UH = − 1
2
μ
→
i ⋅ H

→
0. (25)

We perform our simulations with the package ESPResSo 4.1 [95], using MD with a
Langevin thermostat [96]. Therefore, we perform Langevin dynamics (LD) simulations,
integrating the Langevin translational and rotational equations of motion with the
velocity Verlet algorithm [96, 97]. In difference with most usual LD simulations, we
work under a quasi-athermal regime by setting a very small thermal energy in the
system – around 102 times smaller than the average elastic energy of each spring under
deformations produced by moderate applied fields. Therefore, our simulations corre-
spond to an energy minimization with slight thermal fluctuations. The latter help the
system to relax without getting trapped into high-energy local minima.
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As is usual in coarse-grained simulations, we use a system of dimensionless units.

Hereinafter, we denote dimensionless parameters with a tilde symbol, X̃. We take the

diameter of the MS particles as reference length scale, so that d̃s = 1 and d̃h = 10, and
the shear modulus of the matrix, G, as the reference scale for magnetic parameters, so

that dimensionless field is defined as H̃ = H/
̅̅
G

√
, magnetization as M̃ = M/

̅̅
G

√
, and

dipole moment as μ̃ = μ/
̅̅
G

√
d3s . The latter definitions also apply to the results of the

continuummodel. Since here we are not interested in dynamics, for simplicity we take
the Langevin translational and rotational friction coefficients as unity.

Each simulation run starts by placing and fixing the position and orientation of the
MH particle in a simulation box with open boundaries. Na = 99 connection points for
the springs are randomly assigned to its surface. Around it, Ns = 2⋅103 MS particles are
randomly placed inside a spherical shell of dimensionless thickness 5. The latter are let
to relax inside the shell by simply following their steric interactions, so any soft core
overlap is removed. Then the spring network is built up by randomly choosing pairs of
connecting points according to the following rules: first, the distance between them is
not larger than dcut = 6; second, none of them has more than smax = 6 springs attached.
These arbitrary rules provide a good compromise between locality and isotropy of the
elastic constraints acting on eachMS particle, on the one hand, and the computational
load, on the other. The result of such buildup procedure is a highly connected network

with 〈S〉≈6, 〈L̃ 〉 ≈4 and 〈L̃
3
〉 ≈93 [87]. Taking into account that the dimensionless

number density of connecting points is ñ = 6(Ns + Na)/7πd̃3h, we can use Equation (17)

in dimensionless units to fit the elastic prefactor k:

k = 30G̃〈L̃〉

ñ〈S〉〈L̃
3
〉
= 35πG̃d̃

3

h〈L̃〉

(Ns + Na)〈S〉〈L̃3
〉
≈ 0.4. (26)

Finally, with the setup described earlier, we set the central dipole μ̃h and external field

H̃0 to their selected values, performing a final relaxation run of 5⋅105 integration steps,

using a time step δt̃ = 0.01. Only the final configuration obtained from each run is
analyzed. For each set of sampled parameters, statistics are collected from60 runswith
independent initial configurations. In this case, we only sample different fields for two
cases: a nonmagnetized central particle, μ̃h = 0, and amagnetized central particle with
the lowest sampled matrix rigidity, G = 105 dyn/cm3, corresponding to μ̃h = 1324.6.

3 Results and discussion

We start the discussion by considering the simplest case, that is when the central
particle in the HSME elementary unit is nonmagnetic: μ̃h = 0. The first task is to find a
correct common basis to compare themagnetically induced deformations predicted by
the continuumand the bead-springmodels.Whereas in the former the outer edge of the
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matrix is perfectly defined and the deformations are easy to visualize, in the bead-
springmodel no explicit outer boundary exists (see Figure 1b) since it is rendered by the
discrete positions of MS particles. To find commensurate terms for that comparison, we
define a virtual boundary of the bead-spring system as follows. First, the convex hull of
all particles in the system is calculated. Then, by assuming that under any moderate
deformation the elastic shell keeps an ellipsoidal profile, we perform a least-squares fit
of an ellipsoid to that convex hull.

Taking advantage of the afore-introduced “ellipsoid terms,” we characterize the
deformations of the shell boundary by means of a single parameter, defined as
Δc* = 〈(c − c0)/c0〉, where c is the distance (along the line parallel to the external field)
from the center of the MH particle to the point where this line intersects the outer shell

boundary , c0 is the value of that distance when μ̃h = 0 and H̃0 = 0; angle brackets
denote the average over independent runs. Thus,Δc* is positive for stretching of the cell
along the field and negative in opposite case.

Figure 2 shows the dependence ofΔc* on H̃0 for bothmodels at μ̃h = 0. Note that the

sign of H̃0 indicates its orientation with respect to the reference axis. The curves are

perfectly symmetric with respect to the ordinate axis (H̃0 = 0), i.e., the unperturbed
state of the system.

The results of the continuum model presented in Figure 2 correspond to several
values of the elasticity modulus G. Note that the curves are plotted vs. nondimensional

field magnitude H̃0 = H0/
̅̅
G

√
, so that one and the same abscissa point at different G’s

renders different dimensional values of the field. Had the calculation been done with

Figure 2: Longitudinal deformation parameter, Δc*, as a function of the applied field, H̃0, for the case
of a nonmagnetized central particle, μ̃h = 0. Results of the continuummodel for different values of the
elastic modulusG are rendered by solid lines, data provided by the bead-springmodel for k = 0.4 are
shown by symbols with error bars. Dotted curve connecting the symbols is a guide for the eye.
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the linear magnetization law (M(sat) = ∞ in Eq. (20)), all the curves would have coin-
cided. However, the nonlinear magnetization dependence (that we allow for here)
removes this degeneration since the saturation magnetization is scaled with G as well.
Due to that, the nondimensional saturation magnetization is lower for stiffer matrices
and, as a result, the nonlinearities become more distinct. This is easily visible in
Figure 2, where the curves are presented, which have been calculated for

M̃
(sat) = 1500 emu/cm3

G̅
√ , see the curve for G = 107 dyn/cm3. The curve rendered by the bead-

spring model has been calculated for parameter k̃ = 0.4, and the comparison implies
that in the considered case of μ̃h = 0, the effective modulus that one may attribute to
this system should lie inside the interval 106−107 dyn/cm3.

Figure 3 shows the results on Δc*(H̃0) obtained when the central particle in the

system bears permanent magnetic moment μ̃h = 4π800
3 G̅
√ , where 4π/3 is the nondimen-

sional volume of the MH particle and 800 emu/cm3 its magnetization. In this case the
results of both models, although qualitatively similar, are quantitatively rather
different. In both approaches, the essential effect of the magnetic field of the MH
particle is to shift the minimum of the parabolic profile to negative values, thus pro-
ducing oblate shape of the cell under inverted field. As already explained, with the
employed scaling scheme, the increase of elastic modulus entails reduction of all the
magnetic contribution, and it is no surprise that this shift becomes smaller. This ten-
dency is clearly visible when comparing the curves rendered by the continuum model
with one another in Figure 2.

Figure 3: Longitudinal deformation parameter, Δc*, as a function of the applied field, H̃0, when the
central particle has a magnetization of 800 emu/cm3.
Solid lines correspond to the results of the continuum model for different values of the elastic
modulus, G, symbols with error bars to the results of the bead-spring model for k = 0.4. Dotted curve
is a cubic spline fit to the latter.
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It is instructive, however, to compare the continuum model with the bead-spring
one. The latter demonstrates an “ambivalent” behavior, as follows from Figure 3.
Indeed, under negative field the bead-spring model curve resembles that of the con-
tinuum one with elastic modulus about 105 dyn/cm3, whereas under positive magne-
tization it rather displays similarity with the continuum curves corresponding to much
higher elasticities: G ∼ 106−107 dyn/cm3.

To understand such field-tuned softening/stiffening, we recall that at H0 < 0 the
external field around the poles of theMHparticle substantially compensates the field of
the core and, thus, the field in the shell is on the average reduced. Under those con-
ditions, the MS particles are less magnetized that entails lower aggregation and,
consequently, makes the bead-spring shell to become effectively softer. When the
external field is in the H > 0 range, in the “polar” zones the core field adds to the
external one. This makes the MS particle aggregation in those zones stronger that, in
turn, induces higher stresses inside the inter-bead-springmesh and, by that, reduces its
ability to deformations. As a consequence, the overall stiffness of the shell increases, as
it is seen from comparison of the bead-spring (dashed) and continuum (solid) curves in
the right-hand part of Figure 3. The field-modulated elastic modulus is an essential
feature of the bead-spring model; note that in the continuum consideration such an
effect is entirely absent. Meanwhile, as Figure 3 shows, the contribution of field-
tuning – and this effect is most probably present in real magnetic elastomers – turns
out to be sufficiently strong and because of that appeals for further investigation.

Figure 4 presents the dependence of the field-induced anisometry of the consid-
ered cell on the, this time dimensional, values of elasticity modulus; here only the
results of continuum model are presented. In this diagram, the shaded curvilinear
triangle corresponds to the combination of parameters underwhich the cell is oblate; in
the points thatmake the borders of the triangle, the cell is spherical; outside the shaded
area the cell responds to the applied field by elongation. As expected, with the increase
of elastic modulus, the region of oblateness becomes more narrow and virtually dis-
appears at aboutG = 107 dyn/cm3. Note also that the dominating part of the triangle lies
to the right of the dashed line that corresponds to the magnetic switching of the MH
core of the shell.

When relating the afore-presented results to a real situation, one essential issue is
to be clarified concerning the response of the MH core to the inverted (negative, in our
notation) field. Indeed, under such a field a particle with permanent magnetic moment
μ
→
h residing in a compliant matrix is well able to rotate mechanically in order to turn μ

→
h

to the actual direction of the field. To get an estimation for the negative field strength
when it happens, we consider a spherical single-domain particle of uniform magne-
tizationM

h
sitting in an elastic environment of shear modulus G. For the orientational-

dependent energy of the system in the inverse field (antiparallel to μ
→
h) we have

U = MhHVpcosϑ + 3GVpϑ2, (27)
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where Vp is the particle volume. As the particle is single-domain and magnetically
hard, the magnetic moment is “frozen” into its body, so that the angle ϑ describes
simultaneously: the deviation of the magnetic moment from the direction of the field
and the angular displacement of the particle from its initial position.

Expanding (27) for small angular perturbations (ϑ = 0 is the initial state), one gets

U ≈MhHVp(1 − 1
2
ϑ2 + 1

24
ϑ4) + 3GVpϑ2  .

Differentiation with respect to ϑ yields

∂U/∂ϑ ≈ −MhHϑ[1 − 1
6
ϑ2] + 6Gϑ ,

so that the condition of minimum is

ϑ[6G −MhH(1 − 1
6
ϑ2)] = 0 . (28)

From (28) it is easy to findout that the particle dwells in the initial state ϑ=0 atH <H* and
acquires a nonzero angle deviation (commences mechanical rotation) atH >H* with the

critical field H* = 6G/Mh; in nondimensional form it is H̃* = 6
̅̅
G

√
/M̃h. The latter

dependence is plotted in Figure 4 by dashed line. According to the definition of H > H*,

the region
⃒⃒⃒⃒
H̃
⃒⃒⃒⃒
> H̃* (to the left) is unphysical since there the particle mechanical rotation

Figure 4: Deformation diagramof the HSME elementary unit as a function of the applied field, H̃0, and
the elastic modulus of the matrix, G, as predicted by the continuum model.
Shadowed region corresponds to oblate deformations, being delimited by curves of no effective
deformation (filled circles). Curve of filled diamonds indicates the maximum oblate deformation.
Outside the oblate region, the system deforms into prolate shapes. Dashed curve is the critical field
H̃* that would invert the orientation of the central dipole moment: results on the left of this curve are
unphysical.
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should occur. AtMh=800 emu, at the lowest value usedhereG= 105 dyn/cm2, the critical

field is H̃*(G) = −2.37, see the point on the abscissa axis of Figure 4. As seen, theminima
of the presented curves and the full reentrant shrinking effect are justified only for the
cellswith elasticityG > 6⋅105 dyn/cm2.Although the existenceof theminima (seeFigure 3)
of the bead-spring model and the continuum one for G = 105 dyn/cm2 is doubtful, the
occurrence of negative cell shrinking effect falls well in the physical region.

It is worth of noting, however, that afore-obtained expression, in fact, un-
derestimates the strength of the inverse field when referring to the external applied

one. Indeed, according to its derivation, H̃* is the field experienced by the MH core of
the cell. Due to that, the absolute value of minimal external field strength capable of

initiating the particle rotation, exceeds H̃* by the strength of the demagnetizing field
generated in theMS shell. Thismeans thatwhen transforming the scaling of abscissa in
Figure 4 to the units of externalmagneticfield, the dashed linewould shift yet further to
the left, thus yet widening the range of applicability of our model.

The afore-presented consideration describes an isolated elementary cell and its
magnetomechanical response, so that it refers to the microscopic scale, i.e., that with
reference distances ofmicron order. The problemof correct transferring of those results
on the behavior of macroscopic HSME samples is nontrivial and requires special
studies. Indeed, bridging the micro- and macroscales might be performed in various
ways, which set spans from a simple Voigt approach [98] to sophisticated self-
consistent schemes [68, 72]. However, if not to qualify for quantitative predictions, we
infer that the revealed reentrant behavior would self-average to zero in the HSMEs,
which were not subjected to the initializing external magnetization, whereas the
reentrant response should be present in the premagnetizedHSMEs provided the testing
field is applied along the direction of the already existing magnetization.

We base this conclusion on the fact that a large number of small MS particles
surrounding a single much greater MH grain screens out the permanent dipole field of
the latter, so that with respect tomagnetic interactions theMH grains become to a large
extent isolated from one another. This effectively splits a macroscopic sample into an
assembly of almost independent entities, each of which in the same way interacts with
the two acting macroscopic fields: the external and the demagnetizing (determined by
the overall shape of the sample) ones. To the contrary, in mechanical aspect the cells
are never isolated and are always in contact. Evidently, on the one hand, a spherical
cell is not appropriate as a precise building block for any macroscopic sample. How-
ever, on the other hand, in qualitative aspect, the field-induced mechanical responses
of spherical and cuboid cells (of which any shape could be constructed with no voids)
should be similar. Given that and taking into account that typical MAEs are virtually
incompressible, we arrive at the conclusion that amagnetically initiatedHSME sample,
where all the MH magnetic moments are aligned, should in general reproduce the
mechanical response of the elementary cell.
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