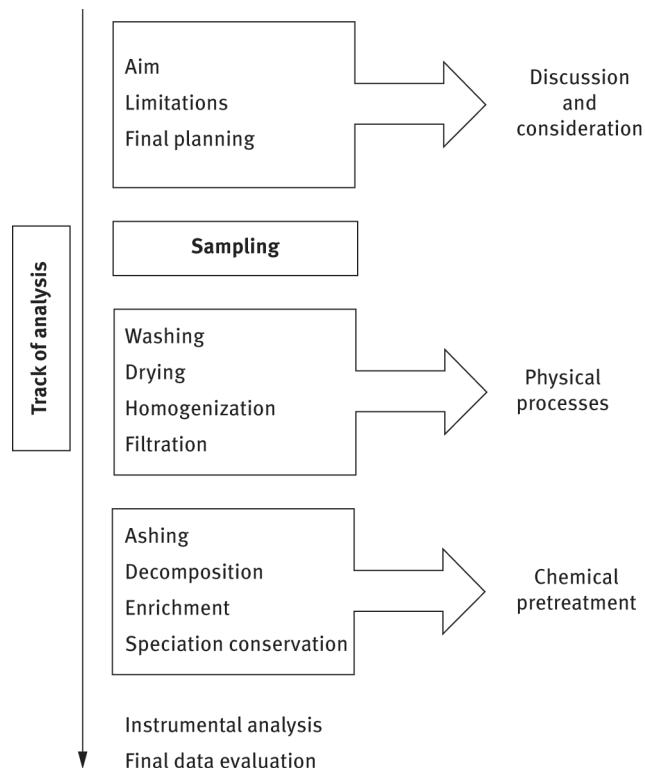


Beata Krasnodębska-Ostręga / Monika Sadowska / Ewa Biaduń

Sample Pretreatment for Trace Speciation Analysis

DOI: 10.1515/prsr-2017-8005

1 Introduction


Speciation analysis is already a challenge, and speciation analysis at trace levels is even more difficult [1]. The analytes might be of anthropogenic origin [2] (usually the concentrations are slightly increased) or naturally occurring (geochemical background) [3]. Procedures applied for speciation analysis must ensure low limits of detection as well as high selectivity, especially when the concentration of other sample compounds, potentially interfering, is much higher than the concentration of the analyte. Very often, there is no other choice but to use separation and/or preconcentration techniques. Methods applied for speciation studies should ensure isolation of the analyte from sample matrix without any changes of the original speciation and with highest possible efficiency [4–8]. The lower is the concentration of the analyte, the higher is the uncertainty of the results, because some additional steps have to be included in the analytical procedure. Deep interference in sample composition results in changes of the oxidation states and chemical compounds formed by the element of interest [9]. In case of water, soil or tissues the risk of changes in chemical speciation is created even by the sampling, not to mention chemical modifications or sample storage. Most published studies regarding speciation analysis were focused mainly on methods of separation and detection of the analytes. Determination is usually done using elemental detectors (inductively coupled plasma mass spectrometry [ICP-MS], ICP optical emission spectrometry [OES], graphite furnace atomic absorption spectroscopy [GF-AAS]) or molecular detectors (electrospray ionization [ESI] or time of flight [TOF] coupled with mass spectrometry [MS]) directly after separation on chromatographic column, or indirectly after separation using, for example, solid phase extraction (SPE).

Considering how fragile are the equilibria between speciation forms, the best solution would be to determine speciation directly in the analyzed object, using techniques that can differentiate between oxidation states. In general, only a few techniques allow performing nondestructive speciation analysis of solids or water samples. For water samples, the direct voltammetry technique could be applied [10] but the limit of quantification (LOQ) is too high for trace element speciation. Voltammetric methods can be proposed for (indirect) speciation analysis of As, Tl, and Se. In water samples containing As(III) and As(V) it is possible to perform speciation analysis based on cathodic stripping voltammetry (CSV) measurements. By varying the composition of the supporting electrolyte it is possible to differentiate between As(III) and As(V). Addition of mannitol into the supporting electrolyte leads to detection of only trivalent arsenic, and then As(III) is transferred to As(V) during ultraviolet (UV) oxidation of organic matter and the total As is determined [11]. Thallium speciation can be studied when glassy carbon working electrode is modified with an ion exchange resin, which allows to selectively accumulate trivalent thallium as a chloride complex. This method was applied to determine Tl speciation in water samples modified by an addition of large amounts of chlorides [12]. Another possibility is modification of the supporting electrolyte: addition of diethylenetriaminepentaacetic acid (DTPA) to inactivate Tl(III) (electrochemically) and addition (directly to the voltammetric cell) of anion exchange resin to adsorb the organic matter. In this case, only monovalent thallium is accumulated [13, 14]. Determination of Se(IV) and selenocysteine was done simultaneously in the aqueous phase using HCl as an electrolyte, while determination of dimethyldiselenide was performed in the organic phase after extraction with CH_2Cl_2 . Detection was done with differential pulse CSV at a hanging mercury drop electrode [15]. Also chromium speciation in water can be determined indirectly after the addition of an anion exchange resin and a chelating agent to the cell. Then, only Cr(VI) is electroactive in the supporting electrolyte [16, 17].

For solid samples, all methods of speciation analysis, which do not require sample pretreatment, are based on the use of X-rays: Mössbauer spectroscopy, X-ray photoelectron spectroscopy, and X-ray absorption near-edge structure (XANES) spectroscopy [18–21]. Unfortunately, all of them have LOQ too high for the analysis of biotic environmental samples, especially on trace levels. However, XANES was successfully applied for speciation analysis of thallium in polluted soil, and allowed to determine the kind of minerals binding Tl(I) and Tl(III)

on different soil layers [20]. In case of plant material, it was found that the dominant form of thallium in leaves of hyperaccumulating *Iberis intermedia* was Tl(I) [19]. An interesting overview on the use of X-ray absorption spectroscopy (XAS) for biological, agricultural, and environmental investigations was published [22]. XAS has been employed for studying of the phytoremediation of heavy metals from polluted soils [23]. The microscopic XANES (μ -XANES) spectroscopy and confocal microscopic X-ray fluorescence analysis were used for the in vivo determination of the distribution of total selenium and for the local speciation of selenium in roots and leaves of onion [24]. The spectroscopic methods, which are nondestructive and offer minor-level sensitivity as well as microscopic lateral resolution [23, 25, 26], can be used in speciation analysis as supporting methods. The results are often an indirect evidence in discussion about speciation of trace elements.

However, even the results obtained with the most reliable methods and procedures mean nothing if the sample does not represent the investigated object or the speciation has changed during the sampling step. Any chemical (pH, oxygenation, UV exposition) or physical changes (drying, fragmentation) has an influence on the speciation. For this reason all steps of analytical procedures (sampling, transport, storage, conservation), especially in case of procedures meant for trace speciation analysis, have to be very carefully studied for potential changes they may cause in sample's properties (Figure 1).

Figure 1 Simplified flowchart of environmental sample analysis.

The importance of sample pretreatment can be illustrated on the example of arsenic and its derivatives, where over 50 were identified in biological samples. In regions where significant amounts of organic compounds of As can be expected, groundwater (a deep intake) [2, 27–29] greatly differs in composition from groundwater sampled from soil level [30]. Arsenic comes in a variety of oxidation states and chemical compounds, and the content of organic compounds also differs [2, 3, 31, 32]. It is hard to imagine that there could be one method of sampling and sample conservation that meets all the needs of such challenging analysis.

It seems impossible that the speciation does not change during these critical stages of every trace analysis, but we have to strive for perfection and create procedures that would prevent the changes as much as possible.

2 Sampling and sample transport

Sampling of biotic or abiotic elements of the ecosystem is similar for both speciation analysis and the analysis of total content. Standard procedures of sampling are usually appropriate; however, in case of speciation analysis the conservation of the sample should be omitted and the time of transportation limited to a minimum. The unquestionable necessity of the sample to be representative is underlined by all scientists dealing with speciation analysis of traces. For the analysis of chemical speciation, physical speciation, or fractionation studies, it is

important to clearly define the aim of the analysis, that is, fraction/phase (e.g., suspension or dissolved fraction in water analysis) and the analyte of interest (e.g., organic or inorganic Hg compounds). This would enable to choose appropriate techniques and methods of sampling and transport, which would guarantee that the physical and chemical properties of the sample are representative for the whole studied object. It is important that there is no contamination or any losses of the analyte and that the fragile equilibrium between various species of the analyte stays intact.

In comparison to the total content analysis, in case of speciation analysis it is even more difficult to assure the immutability of the sample during sampling (e.g., exposition to sunlight of groundwater samples – limitation of photocatalyzed reactions) and transport (e.g., self-reduction of Tl(III) or self-oxidation of Cr(III) – high kinetic effects).

2.1 Selection of vessels

All vessels and tools should be made of materials that do not adsorb the studied species. For the speciation analysis of metals recommended are vessels made of polyethylene (PE) or polypropylene (PP). Glass should be avoided because of the risk of adsorption [33, 34]. The United States Environmental Protection Agency (US EPA) allows the use of plastic or glass bottles but plastic is preferred for drinking water sampling (US EPA). In the case of total mercury content or methylmercury compounds (MeHg) determination the collected water samples should be stored in glass bottles [36] or in fluorocarbon polymers and fluoropolymers such as Teflon®, Kynar®, and Tefzel® [37]. In general, mercury is widely considered to be a difficult element to determine, mainly because of its volatility, memory effects, and extraction problems [38, 39]. Also the stainless steel components in the liquid chromatograph system led to adsorption of the mercury compounds, which was more pronounced with HgCl_2 than methylmercury [40]. Mercury (II) is quickly lost from all containers except those made of aluminum, which rapidly convert mercury (II) to metallic mercury, which is stable [41]. Similarly to Hg compounds, organic compounds should not be collected nor stored in plastic containers [42], but glass bottles are required (US EPA). In case of both total and speciation analysis, stainless steel devices can cause contamination of the sample with traces of Fe, Ni, Cr, and Mn. Introduction of these elements, when none of them is the analyte, may cause species transformation of other analytes (indirect influence on equilibrium between species of the studied element) [44, 45].

2.2 Contamination of the sample with various substances

Uncontrolled introduction of inorganic ions or organic compounds may change not only the total content of the analyte but it can also affect the speciation. Contamination with the analyte can be easily revealed by the analysis of blank samples. However, when the sample gets contaminated with an unexpected substance like weak reducing (e.g., ascorbic acid) or oxidizing agent (e.g., H_2O_2), the oxidation state of many compounds will change (disturbance of the redox equilibria between $\text{Fe(III)}/\text{Fe(II)}$, $\text{Mn(IV)}/\text{Mn(II)}$, $\text{Tl(III)}/\text{Tl(I)}$) [46]. Not only the changes of the oxidation state of the studied species are problematic but also the increased solubility of compounds binding the analyte, such as MnO_2 and Fe(OH)_3 [47, 48], or decrease of Cr solubility [49]. Also the addition of one of the species perturbs the initial speciation. Even trace amounts of reducing agents will completely reduce the trivalent thallium species [13], and the addition of oxidizing agents will change the speciation of Cr and As. Even small amounts of oxidizing agents at pH 6 shift the equilibrium in favor of arsenate (V) [49]. The presence of sulfur compounds (both elemental S and sulfides) at temperature above 22°C promotes the reduction of Cr(VI) to Cr(III) [50]. Usually, the laboratory vessels are conditioned by washing in acidic solution (pH 1). If the acid is not properly washed out, the sample will be unintentionally acidified, and the pH changes influence directly or indirectly the equilibria between all speciation forms [32, 51]. Sometimes the influence of contaminants is unpredictable. For example, methylation of mercury (II) occurs in the presence of trimethyl lead but the process is inhibited by humic substances [52]. The presence of Fe(III) ions affects thallium speciation – oxidation of Tl(I)(aq) took place when natural water samples were exposed to either sunlight or UV light, notably at low pH [53]. Therefore, any uncontrolled substance introduction or loss should be avoided.

2.3 Elimination of UV-Vis irradiation

In practice, limited exposure to sunlight (UV-Vis radiation) is preferred for each environmental sample. UV light (wavelength 100–400 nm) is involved in the degradation of chemical bonds in large organic compounds, and it may cause reduction or oxidation of the analyte [54]. The United States Geological Survey (USGS) suggests

in most of the water sampling procedures to keep the sample in dark [37]. Thallium speciation study is a good example of how UV-Vis light affects the speciation. For thallium it was showed that oxidation of Tl(I) in an aqueous solution can take place when the sample is exposed to sunlight irradiation [55]. Ultraviolet irradiation of aqueous solutions containing Tl(III) and being in equilibrium with the atmosphere increases the reduction rate of Tl(III). In systems where photoreduction of Fe(III)(aq) takes place, a quantitative oxidation of Tl(I)(aq) was observed, notably at low pH. The process is reversible, as indicated by the formation of Tl(I) when the irradiated systems were kept in the dark [53]. Also high instability of Tl(III) in the presence of plant matrix is observed under UV exposition. For example, plant extract with an addition of Tl(III)DTPA standard was exposed to UV for 1 h. It was observed that 95% of Tl(III) added as Tl(III)DTPA was reduced to Tl(I) [14]. The data indicated that Tl(III) extracted as Tl(III)DTPA from plant tissue is not stable under UV irradiation. Therefore, plant extracts should be stored in dark till analysis. Similar study about the stability of Se(IV) extracted from plant tissue showed that it is most likely that Se(IV) is reduced to Se(0) or that an insoluble complex is formed [5]. Most data seem to indicate that darkness is necessary for preservation of mercury species during storage in biological matrices. Methylmercury and inorganic mercury in fish extract solutions were stable for 5 months at 4°C when stored in the dark [56]. The stability of butyltin species in lyophilized mussel samples was also affected by the light. Significant variations were found in the butyltin content after 3 and 6 months of storage at room temperature in daylight and in the dark, respectively [1].

2.4 Oxidation and desorption of carbon dioxide

Deep-sea water samples naturally contain small quantities of oxygen. Contact with air results in rapid dissolution of oxygen in the sample, and the effect is especially intense when the sample is shaken (during transport). The USGS suggests in most of the water sampling procedures to keep the sample without any contact with oxygen, to prevent metal-oxide precipitation [37]. In general, the zone of interest must be isolated, the sample pumped slowly to minimize turbidity, and collected in such conditions that eliminate O₂ and CO₂ exchange with the atmosphere [35, 37]. The redox equilibria are then shifted to oxidizing range, which affects the speciation of free ions within a matrix of a water sample, which is a noticeable effect in samples from reservoirs with low oxygenation of water. Consequently, oxidization of sulfides to sulfates and Fe(II) to Fe(III) will occur, and then precipitation of iron hydroxide with traces of Co, Ni, As, and Pb. Changing of pH and hardness (temporary hardness) of the water sample due to absorption of CO₂ from the air accelerates and increases the precipitation of calcium carbonate minerals [57, 58]. Also the oxidation of Mn(II) by oxygen dissolved in water brings some consequences for chromium speciation. MnO₂ particles, formed as a result of the process of oxidation of Mn(II) to Mn(IV) in dissolved fraction, accelerate the oxidation of Cr(III) to Cr(VI). The product of this reaction – Cr(VI) – is adsorbed on suspended particle matter (SPM) and therefore both physical and chemical speciation is changed in the water sample [59]. But unlike Cr, As speciation was not changed by oxygenating of the sample. After air exposure of wine and beer samples, arsenite, arsenate, monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA) were stable at 4°C for months, probably due to the acidic pH of the samples [60]. In contrast, storage of the samples for antimony determinations is very difficult, because Sb(III) easily transforms into Sb(V) in the oxidizing environment [61].

2.5 Solid sample for fractionation study

A special case of speciation analysis is fractionation, where the fractions are defined according to the physical properties of the solid samples such as soils [62, 63], sediments [64, 65], or solid wastes [66, 67]. Methods of sampling are the same as those used in the analysis of the total content [37, 68–70]. In the case of soil, the top layer (rhizosphere) is discarded, together with large objects such as stones, roots, or zoological specimens. Then, the top layer (0–10 cm) [71–74] or the bottom layer (10–30 cm) [71–73] is taken for the analysis. The samples are transported with natural water content in a cardboard box granting access to the air. The alluvial deposits depending on the size of river's backwaters are collected from various depths, usually 15–20 cm. The oxygenated layer is analyzed separately and it is taken from 1 to 3 cm depth [75]. The samples are then dried in the laboratory. Despite the fact that the process of drying affects the mobility of various metals [76, 77], fractionation studies (distribution evaluation) are rarely carried out on wet samples.

2.6 Temperature lowering just after sampling

The lowering of samples' temperature just after sampling and during transport is one of the most widely and longest used methods. The literature data about sample pretreatment indicate that freezing could decrease the

efficiency of extraction of the analytes from plant tissues [4, 78–80]. In the case of Tl speciation study in leaves of hyperaccumulating plant, the storage at -18°C for over one month lead to total reduction of Tl(III) [81]. The content of arsenobetaine in blue mussels was significantly reduced during storage of frozen material. The content of tetramethylarsonium in fishes as well as in seafood was generally lower after deep freezing and some days of storage [82]. Groundwater, which has naturally low temperature, after collection requires transport in cold state, especially if it was not possible to filtrate the samples and separate the SPM from the dissolved fraction. It is not recommended to freeze the water prior to analysis [35]. The increase of sample temperature causes absorption of carbon dioxide, which affects the pH. Also for biological samples lowering of the temperature (4°C), usually in combination with storage in complete darkness, may well reduce the activity of microorganisms and enzymes. Cooling limits the speed of these processes, but it does not eliminate them completely [83]. Samples of seafood were stored up to 9 months till analysis, and the arsenic organocompounds were not degraded [84]. Sometimes freezing (-17°C or -20°C) is recommended, or even rapid cooling in liquid nitrogen followed by lyophilization. However, this procedure is not suggested if the purpose of the analysis is determination of phytocochlatins (PCs) in plant tissues, because these compounds are then degraded to peptides [1]. The analysis of PCs or their complexes is carried out using fresh material, as PCs are known to be unstable during sample preparation [85]. If the analysis cannot be done immediately after the extraction of PCs, derivatization has to be done (precolumn derivatization with monobromobimane), which prevents the process of PC degradation [86]. Only samples containing derivatized PCs can be kept refrigerated for a long time [85]. This limits the amount of information obtained, but the procedure is very useful as there is not always a possibility of carrying direct analysis using MS methods [87–91]. Lowering of the temperature is also suggested for physical fractionation of soil, within the SPM and the solid phase of water, but only when the separation of SPM or the specific soil pretreatment (to reduce putrefaction) cannot be performed on the sampling site. In the case of wastewater containing large amount of S(II) compounds, Cr(VI) was reduced to Cr(III) if the sample was not cooled down to 20°C [50].

A very particular case is transport of the samples at the boiling point of liquid nitrogen (-150°C). After sampling the sample is inserted into a labeled container and into thermos with liquid nitrogen. Most of the steps of sample preparation should also be carried out at this temperature, for example, cryomilling, lyophilization, and long-term storage. In such conditions, the samples collected by German Environmental Bank (UPB – Umwelt Proben Bank des Bundes) for long-term storage (over 50 years) are transported to laboratories [71, 72, 92–97].

3 Sampling with some pretreatment on sampling site

Both solid and liquid samples should be prepared directly after sampling, and this is often done immediately on the sampling site. However, keep in mind that both chemical and physical interventions in a sample have a smaller or greater impact on the equilibrium that we want to study.

The reaction of the analyte with stabilizing agents should be quick [98–100]. Currently, there are proposed some interesting solutions for sample modification (an addition of specific sorbent) which enables indirect speciation study. It can be achieved by an addition of the substance which is permanently binding one form of the analyte. In the case of chromium, the addition of multiwalled carbon nanotubes with coprecipitated MnO_2 selectively removed the trivalent Cr ions from water sample at pH 5 [44]. The addition of chitosan grafted with 2-hydroxyethyltrimethyl ammonium chloride stabilized the speciation, and the adsorption of Cr(VI) is favorable; therefore, only Cr(III) can be detected [101]. To preserve the samples, the researchers often use chelating reagents, such as ethylenediaminetetraacetic acid (EDTA) or DTPA. The authors do not agree on the stability and permanence of arsenic forms in water, especially at different pH and in the presence of other substances [102]. Generally, in river water As(V) is partially converted to As(III), but after 2 days this is followed by gradual oxidation of As(III) into As(V) to reach an equilibrium. Storage at 5°C delays this oxidation by about 6 days [103]. In the case of thallium, DTPA was used for stabilization of Tl(III). To prevent self-reduction of trivalent forms of thallium in water samples and in plant extracts the addition of DTPA was used [13, 104, 105]. Stabilization with DTPA was also applied in antimony speciation analysis [61]. If the object of study is arsenic speciation, the addition of EDTA must be done immediately after sample filtration on the sampling site [37].

3.1 Suspended matter separation – fractionation in water

SPM is an integral part of the hydrosphere. SPM is an important component of the water, and it is responsible for the transport of elements and substances in water currents [106]. SPM is composed of mainly inorganic colloidal particles in the form of oxides, hydroxides, metal carbonates, and organic components. Therefore, a significant effect on the physicochemical properties of SPM has its origin as well as the shape and size of the

suspended particles [107]. Due to the fact that processes of coprecipitation, adsorption, and desorption, as well as ion exchange take place between the dissolved fraction (solution) and SPM fraction (suspended solid phase), it is impossible to store water samples even for a short time without changes in the speciation. The border between SPM and the solution phase is conventional, and it is widely accepted that SPM phase is defined as a fraction bigger than $0.45\text{ }\mu\text{m}$. This idea came to Nürnberg et al. in 1988 [108]. In case of physical fractionation of water samples, that is, to determine the content of SPM, the sampling of the water sample does not differ from the sample for other purposes. Usually, a few hundred milliliters is taken but in exceptional cases even some liters (nano-level or radiation study) but no pretreatment is performed. It is forbidden to add commonly used nitric acid, as such addition will disturb the equilibrium between the two phases of water – suspended and dissolved phases. Such analysis requires filtration just after sampling, on the sampling site, before the sample is oxygenated, warmed up, and/or exposed to UV-Vis radiation. The filtration through a filter with a pore size of $0.45\text{ }\mu\text{m}$ is performed [35, 109–114]. The filter retains the suspended phase (SPM).

Often the mass of SPM is quantified as a gram per milliliter of the water, and then the SPM is decomposed in order to determine the total content of the elements. Usually a large volume of the sample is filtered (100–300 mL), and clogging of the pores could be observed during the filtration [35], which is a phenomenon that affects the quality of the obtained results. While the sampling is done in regions with considerable dustiness, the initial separation of “dust fraction” is suggested. The “dust fraction” is defined physically as a fraction of particles bigger than $100\text{--}125\text{ }\mu\text{m}$. Next, the appropriate fraction bigger than $0.45\text{ }\mu\text{m}$ is separated in sequence. The “dust fraction” plays an important role in the distribution of the contaminants during the dry seasons, but not during the rainy seasons [115, 116]. This part, which is associated with large particles, will quickly sediment and thus it is not responsible for the transport of the pollutants. The SPM fraction can be transported and it spreads the pollutants in the environment. Study of the distribution of As, Cd, Co, Cr, Cu, Mn, Ni, Pb, Tl, and Zn indicated that the dissolved fraction contains the highest amount of trace elements [115]. Trivalent chromium in water remains bound to organic matter (SPM component), which decreases its mobility, but the toxic Cr(VI) is highly soluble [117, 118]. In the case of mercury speciation analysis on low level, filtration directly on the sampling field is required to separate SPM, and it is strongly recommended by the USGS [37]. Often, the removal of SPM is a step of preparation of a water sample for the analysis of total content of the elements (it is assumed that the share of SPM in the total content is negligible) [110] or it is the first step of speciation analysis (e.g., determination of chemical speciation of Tl within the dissolved phase [105] – SPM was not analyzed). However, leaving SPM in a nonacidified water sample even for a short time results in binding of the free ions of Cr, Mn, and Cu with the organic compounds suspended in solution, followed by their fast precipitation [119] or to adsorption of the free ions of Pb, As, Ni, and Co on the sediment containing Mn and Fe oxides (coprecipitation), which is formed during storage [94].

3.2 Chemical modification of the sample

Acidification with nitric acid is commonly applied in the analysis of trace metals, but in the case of speciation analysis it is not advisable to lower the pH [51]. Sometimes, however, in specific cases such as determination of As(III), acidification is not only permitted, but even required [120, 121].

Storage of water (chemical speciation) and soil extracts (fractionation) without any pretreatment results in coprecipitating of ions of As, Ni, Co, Pb, and Tl with Mn(II) and Fe(III) oxides [47, 72]. Limitation of this phenomenon can be achieved only through a significant acidification of the solution ($\text{pH} < 2$) or the addition of complexing ions (e.g., EDTA), but after such a modification, the sample is not suited for broadly defined speciation analysis. Hydrochloric acid (non-oxidizing acid) is sometimes used because of complexing properties of chlorides. Complexation of free ions (+2 and +3) influences the chemical equilibrium, but such modification (addition of complexing ions) is recommended when Mn(II) and Fe(III) are regarded as interferents [45]. The addition of another complexing agent, DTPA, is indispensable to perform speciation analysis of Cr and Tl. The compounds of Tl(III) are unstable and without DTPA they are slowly reduced [13, 122]. For arsenic speciation study the addition of ascorbic acid is recommended [121]. However, it is inadmissible in the case of trace speciation analysis of Cr and Tl [13, 16], because the ions with the highest oxidation state would be totally reduced. Also, the addition of phenol, previously used to prevent microorganisms' activity, leads to slight changes in the selenium speciation [5]. Therefore, the most suitable preservation scheme for determination of As(III), As(V), Cr(III), Cr(VI), Se(IV), and Se(VI) in water samples was found to be refrigeration at 10°C with no preservative, followed by the analysis as soon as possible (preferably within 24 h) [123]. Also mercury speciation is highly dependent on the presence of ions, such as chlorides, high content of SPM and pH of the solution. Therefore, any modification of water samples leads to a change in chemical equilibrium [124, 125].

To avoid changes of the analyte species it is important to analyze the samples as soon as possible after their collection.

4 Short- and long-term storage

The analysis of samples immediately after their collection and transport to the laboratory is not always possible. Usually speciation analysis requires sophisticated methods of separation and detection. A possibility to prolong the time between sampling and chemical analysis would be an important advantage of any analytical procedure. For this reason the methodology of material storage was studied by many authors. Storage of biological samples is not recommended even for such short period as 2 weeks [126]. But in some cases, various species of arsenic in algae were stable up to 12 months in dried material [127]. In the case of Tl the instability of Tl(III) was found, both freezing and drying caused significant changes in thallium speciation [81]. Recent studies of As speciation indicated that plant material containing As species should be kept at a low temperature, while others claim that the freezing/defrosting processes lead to species conversion, and therefore the samples must be kept at room temperature [128, 129].

For long-term storage deep freezing is recommended. Plant samples were stored at -80°C and the concentration of arsenic-PC complexes remained relatively constant during 21 days [88]. Samples may also be stored at the boiling point of nitrogen (-150°C). In such conditions soil and sediment samples are stored, as well as other materials collected by German Environmental Bank (UPB) [71, 72, 75, 94]. Long-term storage without any pretreatment exposes the samples to microorganisms' activity. It is important to avoid bacterial growth in the sample as this may cause changes in the speciation. In the case of Hg, for example, some species of mercury (II) may be reduced to volatile elemental mercury [1].

Samples for speciation analysis should not be stored for a long period, independently on the concentration of the analyte. For example, trivalent arsenic compounds should not be stored for longer than 24 h if the sample is stored without modification [130]. For thallium speciation, both freezing and drying cause significant changes in the speciation, so plant samples should not be stored. The quantitative analysis can be performed only on fresh tissues [81].

The time of storage can be slightly extended if the analyte is separated from the sample matrix.

4.1 Dehydration of samples

Dehydration is sometimes necessary for solid samples. The so-called drying is intended to remove the solvent from environmental samples. The main aims of this operation are limitation of the microbial activity and achieving a constant mass, which is taken for the analysis (results are usually given as the content in dry mass). The soil should be either stored deep frozen or after dehydration. Losses of the analyte and its mobility are much lower when the soil is kept dry (air dry) [75]. The procedure is well known and accepted, and routinely used in the analysis of soil for total content and speciation [131–135]. Usually, the samples of soil, sediment, or solid waste are brought to the laboratory with natural water content, and then slowly dried at room temperature in open-air conditions for 24 h. If necessary, the samples are oven dried at $40\text{--}50^{\circ}\text{C}$ or 105°C for 5–10 h [67, 112, 126, 134–140]. However, in fractionation study the extractability from such prepared samples is different from the original: lower for K, Cr, Mn, and Fe [77], and higher for Pb, Cu, Cd, Zn, and Ni [76]. Soil and sediment samples, according to the BCR-SMT (Bureau of Reference – now the Standards, Measurements and Testing Programme – SMT) scheme (the standard procedure called BCR procedure), are dried at room temperature or in the oven at $30\text{--}80^{\circ}\text{C}$. If higher temperature is required for drying, it should be performed in an inert gas atmosphere to limit the oxidation processes [141]. Many authors claim that low-temperature drying in ambient air and freeze-drying are the most "neutral" methods for samples of soil and sediments and that these methods do not considerably influence the distribution (mobility) of metals in soil phases [142].

Storage of animal and plant tissues with natural moisture content does not limit the microbial activity, and the microorganisms are actively involved in changing the speciation. In the case of arsenic, the intrinsic microbial population causes demethylation of organoarsenic compounds [143]. Therefore, drying is considered also in case of biological samples, but usually the temperature does not exceed $95\text{--}98^{\circ}\text{C}$ and not longer than 16 h after sampling [122, 144, 145]. Delicate plants are dried at a temperature not higher than 35°C [146, 147]. Also some analytes require lowering of the temperature of the drying process. For the analysis of Se, drying should be slow (over 48 h) and run at no more than 45°C [146]. Drying and storage of plants even at room temperature cause significant changes in the speciation of thallium. In contrast to the extract of fresh material, there was no measurable amount of Tl(III) in any of the stored samples [81]. The situation is opposite in the case of As speciation analysis, where drying of the plants is recommended because plant moisture can cause species conversion [148]. Many authors claim that biological samples should be dehydrated using freeze-drying systems (lyophilization – sublimation of frozen water under conditions of low pressure and temperature). The process consists of freezing of the sample, usually in liquid nitrogen or dry ice in ethanol, and drying at a very low pressure (10 Pa) in a round-bottom flask made of borosilicate glass [126, 149]. Certainly, the material that was

frozen after sampling should be dried by lyophilization [42, 75]. The method of sample preparation has an influence on the extraction process. Lyophilization can decrease the extraction efficiency even by 20% [79, 80]. But in some cases (e.g., As speciation study in *Brachiaria brizantha*), the extraction was more efficient from sample aliquots that were lyophilized and ground (extractability: 87–90%) than from those only stored under different temperatures (extractability: 53–66%) [4]. Usually, after drying the environmental samples are stored at room temperature in closed containers made of PE or PP [140, 150, 151] or cooled down to 4°C [152, 153].

5 Extraction as a method of sample pretreatment for speciation analysis

Extraction techniques are commonly used and widely accepted methods for trace analysis. The phenomena occurring during the extraction process in liquid–liquid and solid–liquid systems are well known. This simple technique can be the basis for procedures of selective isolation of a specific chemical form of the analyte. Theoretically, separated species of the analyte can be stored without any pretreatment for a long time. An example of such methodology is leaching of some selenium compounds from soil during solid (sample)–liquid (extractant) extraction. Selective separation of Se(IV) and Se-Cys from $(\text{CH}_2)_2\text{Se}_2$ was achieved by leaching of selenium species with 0.5 mol/L HCl. Then, the solution was extracted with CH_2Cl_2 . In the aqueous phase Se(IV) and Se-Cys were found, while dimethyldiselenide was present in the organic phase [15]. Extraction from plant tissues using water–methanol mixture is proposed for arsenic species (MMA, DMA, As(III), As(V) and arsenosugars) separation from sample matrix [74]. For metal-PC complexes (Me-PCs) determination of a “soft” extraction procedure is required. For example 1% formic acid is applied for As-PCs [85, 154], 3 mL cold (4°C) aqueous dithiothreitol for Pb-PCs [155] and 0.5% NaBH_4 in NaOH solution for Hg-PCs [156]. In the case of Tl speciation in plant tissues the extraction using DTPA in acetic buffer (pH 6.2) is the only way to prevent self-reduction of Tl(III). The chromatograms (liquid chromatography [LC]-ICP-MS) of extracts were recorded just after extraction, and after 4 months of storage (-18°C). In most cases, the results were consistent (revealed the presence of both Tl forms). In some cases, however, there occurred a significant decrease or increase in the content of Tl(III). Therefore, freezing of the extracts is an option only for semiquantitative analysis [81]. Additionally, high efficiency of the extraction is essential for trace analysis. This parameter can be accelerated using an extraction assisted with microwaves or ultrasounds, especially in the case of soil and sediment samples [157–159]. Acceleration of the extraction is also applied in leaching of xenobiotics from plant tissues [160]. Cell wall is a barrier for the extractant, and grinding of the plant tissues in the presence of liquid nitrogen noticeably increases the extraction efficiency [122]. It is very difficult to reach 100% recovery of the analyte from extractant. A small addition of surfactant such as sodium dodecyl sulfate (SDS) made to the extractant led to leaching of fractions containing not only water-soluble but also water-insoluble protein complexes [104, 161]. The comparison of data obtained for extraction with and without the addition of SDS reveals the fraction of the analyte (e.g., Pt, Tl) bound to insoluble protein complexes. The efficiency of thallium extraction from the above-ground plant organs using SDS was on the same level as in the case of water extracts (50%), which shows that thallium is not bound to hydrophobic proteins [104]. In the case of platinum, there were significant differences between fractions of Pt extracted from plant material with and without SDS. The efficiency of leaching with water was about 55% of total Pt but the leaching with SDS increased it up to 70% [162]. If it is important to distinguish between inorganic and organic arsenic species, the extraction should be done using an organic solvent, for example, methanol [163]. An extraction with hot water was used to leach Se from onion [164], but similar extraction of methyl arsenic acid (III) from tissues of marine animals is not recommended because this compound is not stable at high temperature [165]. In the case of marine organisms (algae and seafood), separation of arsenolipids was achieved by extraction with nonpolar solvents, and the extraction efficiency was about 50% [166]. Preceding of the proper extraction with degreasing using acetone effects in lowering of the extraction efficiency to 30% of the total content of arsenic [167].

An interesting example of simultaneous separation and conservation of the analyte (prevention against the self-reduction) is thallium speciation analysis in SPM separated from wastewater. Trivalent thallium was transferred from its original compounds into Tl(III)DTPA [116]. This complex is very stable, and its stability is practically independent of pH and the presence of other ions. Thus, leaching based on formation of Tl(III)DTPA complex was applied. But even in that case the self-reduction took place, and after 1 week of storage its rate reached 25% [116], while without storage it is usually not higher than 3% [13, 168]. Extraction with DTPA solution is a widely accepted method of isolation of Tl(III) from plant tissues. Usually the material is ground to a fine powder using a mortar and pestle in a liquid nitrogen bath, and extracted using DTPA solution in acetic buffer (pH 6.2) (plant material is shaken with the extractant for 1 h at 37°C). After leaching the suspensions are filtered through a 0.45 μm filter to separate solid particles [122, 168, 169], and plant extracts are immedi-

ately analyzed by chromatographic methods coupled with elemental detectors [104, 122] or by electrochemical methods (after some “soft” modification).

Voltammetric methods are very sensitive and they are characterized by low limits of detection [170]. Stripping voltammetry enables determination of As, Cr, Tl, Se, Sn, Pt, Rh, Pd, and Pb at the level of ppb [13, 17, 171, 172] or even ppt [173]. However, they require special preparation of the extract or mineralization of organic compounds (significant interferent), which are present in significant quantities in water samples and extracts of plant products. Of course, mineralization of the sample is not acceptable in speciation analysis. Conservation of the plant extract or wastewater using DTPA, and an addition of resin (Amberlite XAD-7) just before the step of ion preconcentration on the working electrode allowed to indirectly define the speciation of Tl and Cr (only not complexed forms of the analyte are electroactive) [14, 17, 172, 174]. Such modification does not affect the speciation. The results obtained by voltammetry were confirmed by comparison with the results of LC-ICP-MS study [14].

Relatively new trend is application of extraction as a method of sample pretreatment, especially for the analysis of organic compounds, known as QuEChERS. This technique of separation of the analytes from complicated sample matrix was developed based on Anastassiades et al.’s work [175]. The acronym means **Quick**, **Easy**, **Cheap**, **Effective**, **Rugged**, and **Safe**. This extraction technique is a combination of extraction of organic compounds, mostly from food matrices, coupled with removing of another organic compounds (interfering substances) and the excess of water. It is an alternative to traditional liquid–liquid extraction and SPE [176]. The methodology is suggested by AOAC International for the analysis of pesticides [177].

5.1 SPE–water analysis

In the analysis of water the major problem is low concentration of the analyte. SPE technique offers an interesting possibility of separation and considerable preconcentration of the analytes [178]. Combination of filtration through a 0.45 µm filter, and next preconcentration of pesticides on SPE column additionally allowed long-term storage of the samples [179, 180]. The sample of seawater collected for speciation analysis of Tl cannot be stored for a long time, as self-reduction of Tl(III) is observed even in the presence of DTPA. But after SPE separation, trivalent thallium as Tl(III)DDTC is selectively retained on the sorbent, and monovalent thallium is in the effluent. Such a way Tl species are collected separately and they can be stored without any problems till analysis [122]. Also Cr(III) was separated from Cr(VI) and preconcentrated using a column containing chelating resin. This method was successfully applied for speciation analysis of chromium in tap water, lake water, spring water, and wastewater samples [51]. Another SPE method was developed for on-site separation of inorganic arsenic from As-rich groundwater and applied for the study of arsenic removal from ferrihydrite in the absence of oxygen [181].

5.2 Extraction in fractionation study

A specific example of speciation analysis is fractionation, where the fraction is defined operationally by applying chemical and/or physical modifications to the sample. It is intended to indicate what fraction of the total content of the analyte is bound to particular phases of the soil (extraction under certain conditions). Fractionation is used as a source of information about xenobiotics’ mobility and bioavailability, and for potential risk assessment. Several extraction procedures are used [182]. The most popular are the Tessier’s procedure [183], and the BCR procedure [184] (Table Table 1). Nowadays, commonly used are single extractions with acetic acid or EDTA solutions, and three-step sequential extraction (in sequence: acetic acid, hydroxylamine hydrochloride, hydrogen peroxide solutions) developed by the former European Community Bureau of Reference (BCR), now going by the name of Standard Measurements and Testing Programme of the European Committee (SMT or BCR-SMT) [185, 186]. For fractionation study, dried materials are sieved through a 1 mm [67, 112] or 2 mm [135, 139] sieve or milled and sieved. Usually in sediment analysis the fraction smaller than 63 µm is taken [126, 134, 187] (after milling). Some solid samples as dust and flotation tailings are not ground, only the fraction smaller than 125 µm is used [188]. Dried material can be stored in darkness at ambient temperature until analysis for some months.

Table 1 Comparison of two sequential extractions applied for fractionation study in solid samples – BCR (BCR-SMT) and Tessier schemes.

Tessier scheme
1 g of solid sample

<u>Ion exchange and carbonate fraction</u>	<u>Ion exchange fraction</u> 0.5 h at room temperature Continuous mixing 8 mL 0.1 M MgCl ₂ pH 7(twice)
16 h at 22 ± 5°C Continuous mixing 40 mL 0.11 M CH ₃ COOH pH 4	
<u>Oxide fraction</u> 16 h at 22 ± 5°C Continuous mixing 40 mL 0.1 M NH ₂ OH·HCl pH 2	<u>Carbonate fraction</u> 5 h continuous mixing 8 mL 1 M CH ₃ COONa pH 5
<u>Organic fraction</u> Substep (1) 2 h water bath 85 ± 2°C 10 mL 8.8 M H ₂ O ₂ (twice) pH 2 or pH 3 Substep (2) 16 h 22 ± 5°C Continuous mixing 50 mL 1 M CH ₃ COONH ₄ pH 2	<u>Iron and manganese oxide fraction</u> 5 h at 96 ± 3°C 20 mL 0.04 M NH ₂ OH·HCl in 25% CH ₃ COOH pH 2
<u>Residual fraction</u> Mineralization with mixtures of conc. acids (HF, HNO ₃ , HClO ₄)	<u>Organic fraction</u> Substep (1) 2 h water bath at 85 ± 2°C 3 mL 0.02 M HNO ₃ + 5 mL 30% H ₂ O ₂ pH 2 Substep (2) 3 h water bath at 85 ± 2°C 3 mL 30% H ₂ O ₂ Substep (3) after cooling 0.5 h Continuous mixing 5 mL 3.2 M NH ₄ OAc in 20% HNO ₃ <u>Residual fraction</u> Mineralization with mixtures of conc. acids HCl + HNO ₃ (1:3)

Note: M, mol/L.

German Environmental Bank (UPB) stores the samples of soil in liquid nitrogen and then the material is cryogenically ground, sieved, and dried using lyophilization. Only a portion of the material is analyzed for the purpose of long-term monitoring [71, 94].

6 Conclusion

There are not many reference materials available, for which sampling and pretreatment of samples for speciation analysis is proposed. Only Cr(III) and Cr(VI) in water and soil samples, as well as volatile Hg and MeHg in water, fish tissues, and soil were studied in the context of routine analysis. In case of other objects it is beneficial to become familiar with guidelines for the analysis of specific groups of analytes for their total content. Recommendations are published by institutions such as US EPA, Joint Research Centre Institute for Reference Materials and Measurements, and USGS[69, 189, 190], together with standard operating procedures for the collection of representative surface water samples from streams, rivers, lakes, ponds, lagoons, and surface impoundments [191]. There are no details regarding speciation analysis, because it is done in routine only for chromium and mercury. In case of other elements one has to choose the procedure of sample pretreatment according to their own best knowledge. Certified materials are not meant for validation of sampling and sample pretreatment before the analysis. Therefore, high experience of the analyst is of crucial importance, together with his awareness of possible mistakes. Adapting methods already published in the literature could prevent us from “reinventing the wheel.” However, all of the procedures should be carefully checked, as sampling, sample transport, and conservation of the speciation are really difficult tasks.

Therefore, each sample and each analytic target are always a new challenge.

References

- [1] Cornelis R, Caruso J, Crews H, Heumann K. *Handbook of Elemental Speciation: Techniques and Methodology*. John Wiley & Sons, Ltd, 2003.
- [2] Smedley PL, Kinniburgh DG. *A review of the source, behaviour and distribution of arsenic in natural waters*. Appl Geochem 2002, 17, 517–68.
- [3] Morita M, Edmonds JS. *Determination of arsenic species in biological and environmental samples (Technical Report)*. Pure Appl Chem 1992, 64, 575–90.

[4] Amaral CDB, Nóbrega JA, Nogueira ARA. Investigation of arsenic species stability by HPLC-ICP-MS in plants stored under different conditions for 12 months. *Microchem J* 2014, 117, 122–6.

[5] Cuderman P, Stibilj V. Stability of Se species in plant extracts rich in phenolic substances. *Anal Bioanal Chem* 2010, 396, 1433–9.

[6] Feldmann J, Lai VW, Cullen WR, Ma M, Lu X, Le XC. Sample preparation and storage can change arsenic speciation in human urine. *Clin Chem* 1999, 45, 1988–97.

[7] Nischwitz V, Michalke B, Kettrup A. Investigations on extraction procedures for Pt species from spiked road dust samples using HPLC-ICP-MS detection. *Anal Chim Acta* 2004, 521, 87–98.

[8] Parker JL, Bloom NS. Preservation and storage techniques for low-level aqueous mercury speciation. *Sci Total Environ* 2005, 337, 253–63.

[9] Jabłońska-Czapla M. Arsenic, antimony, chromium, and thallium speciation in water and sediment samples with the LC-ICP-MS technique, arsenic, antimony, chromium, and thallium speciation in water and sediment samples with the LC-ICP-MS technique. *Int J Anal Chem* 2015, e171478.

[10] Cai Q, Khoo SB. Determination of trace thallium after accumulation of thallium(III) at a 8-hydroxyquinoline-modified carbon paste electrode. *Analyst* 1995, 120, 1047–53.

[11] Henze G, Wagner W, Sander S. Speciation of arsenic(V) and arsenic(III) by cathodic stripping voltammetry in fresh water samples. *Fresenius J Anal Chem* 1997, 358, 741–4.

[12] Zen J-M, Wu J-W. Square-wave voltammetric stripping analysis of thallium(III) at a poly(4-vinylpyridine)/mercury film electrode. *Electroanalysis* 1997, 9, 302–6.

[13] Beata Krasnodębska-Ostręga B, Pałdyna J, Wawrzynska M, Stryjewska E. Indirect anodic stripping voltammetric determination of Tl(I) and Tl(III) in the Baltic Seawater samples enriched in Thallium species. *Electroanalysis* 2011, 23, 605–10.

[14] Pałdyna J, Beata Krasnodębska-Ostręga B, Sadowska M, Gołębiewska J. Indirect speciation analysis of thallium in plant extracts by anodic stripping voltammetry. *Electroanalysis* 2013, 25, 1926–32.

[15] Ochsenkühn-Petropoulou M, Tsopelas F. Speciation analysis of selenium using voltammetric techniques. *Anal Chim Acta* 2002, 467, 167–78.

[16] Grabarczyk M. Ultraselective and sensitive determination of Cr(VI) in the presence of a high excess of Cr(III) in natural waters with a complicated matrix. *Electroanalysis* 2008, 20, 1495–8.

[17] Grabarczyk M. A catalytic adsorptive stripping voltammetric procedure for trace determination of Cr(VI) in natural samples containing high concentrations of humic substances. *Anal Bioanal Chem* 2007, 390, 979–86.

[18] Peacock CL, Moon EM. Oxidative scavenging of thallium by birnessite: Explanation for thallium enrichment and stable isotope fractionation in marine ferromanganese precipitates. *Geochim Cosmochim Acta* 2012, 84, 297–313.

[19] Scheckel KG, Lombi E, Rock SA, McLaughlin MJ. In vivo synchrotron study of thallium speciation and compartmentation in *Iberis* intermedia. *Environ Sci Technol* 2004, 38, 5095–100.

[20] Voegelin A, Pfenninger N, Petrikis J, Majzlan J, Plötze M, Senn A-C, Mangold S, Steininger R, Göttlicher J. Thallium speciation and extractability in a thallium- and arsenic-rich soil developed from mineralized carbonate rock. *Environ Sci Technol* 2015, 49, 5390–8.

[21] Wagner B, Bulska E, Stahl B, Heck M, Ortner HM. Analysis of Fe valence states in iron-gall inks from XVIth century manuscripts by ⁵⁷Fe Mössbauer spectroscopy. *Anal Chim Acta* 2004, 527, 195–202.

[22] Prange A, Modrow H. X-ray absorption spectroscopy and its application in biological, agricultural and environmental research. *Rev Environ Sci Biotechnol* 2002, 1, 259–76.

[23] Gardea-Torresdey JL, Peralta-Videa JR, de la Rosa G, Parsons JG. Phytoremediation of heavy metals and study of the metal coordination by X-ray absorption spectroscopy. *Coord Chem Rev* 2005, 249, 1797–810.

[24] Bulska E, Wysocka IA, Wierzbicka MLGH, Proost K, Janssens K, Falkenberg G. In vivo investigation of the distribution and the local speciation of selenium in *Allium cepa* L. by means of microscopic X-ray absorption near-edge structure spectroscopy and confocal microscopic X-ray fluorescence analysis. *Anal Chem* 2006, 78, 7616–24.

[25] Proost K, Janssens K, Wagner B, Bulska E, Schreiner M. Determination of localized Fe²⁺/Fe³⁺ ratios in inks of historic documents by means of μ -XANES. *Nuclear instruments and methods in physics research section B: Beam interactions with materials and atoms* 2004, 213, 723–28.

[26] Proost K, Vincze L, Janssens K, Gao N, Bulska E, Schreiner M, Falkenberg G. Characterization of a polycapillary lens for use in micro-XANES experiments. *X-Ray Spectrom.* 2003, 32, 215–22.

[27] Mandal BK, Suzuki KT. Arsenic round the world: a review. *Talanta* 2002, 58, 201–35.

[28] Mattusch J, Wennrich R, Schmidt AC, Reisser W. Determination of arsenic species in water, soils and plants. *Fresenius J Anal Chem* 2000, 366, 200–3.

[29] Tossell JA. Theoretical studies on arsenic oxide and hydroxide species in minerals and in aqueous solution. *Geochim Cosmochim Acta* 1997, 61, 1613–23.

[30] Doušová B, Martaus A, Filippi M, Koloušek D. Stability of arsenic species in soils contaminated naturally and in an anthropogenic manner. *Water Air Soil Pollut* 2007, 187, 233–41.

[31] Caruso JA, Klaue B, Michalke B, Rocke DM. Group assessment: Elemental speciation. *Ecotoxicol Environ Saf* 2003, 56, 32–44.

[32] Komorowicz I, Barałkiewicz D. Arsenic and its speciation in water samples by high performance liquid chromatography inductively coupled plasma mass spectrometry—last decade review. *Talanta* 2011, 84, 247–61.

[33] Lavilla I, Capelo JL, Bendicho C. Determination of cadmium and lead in mussels by electrothermal atomic absorption spectrometry using an ultrasound-assisted extraction method optimized by factorial design. *Fresenius J Anal Chem* 1999, 363, 283–8.

[34] Quevauviller P, Rauret G, Ure A, Rubio R, López-Sánchez J.-F.; Fiedler H, Muntau H. Preparation of candidate certified reference materials for the quality control of EDTA- and acetic acid-extractable trace metal determinations in sewage sludge-amended soil and terra rossa soil. *Mikrochim Acta* 1995, 120, 289–300.

[35] US EPA O. Ground Water Sampling for Metal Analyses <http://www2.epa.gov/remedytech/ground-water-sampling-metal-analyses>.

[36] Ahmed R, Stoeppeler M. Decomposition and stability studies of methylmercury in water using cold vapour atomic absorption spectrometry. *Analyst* 1986, 111, 1371–4.

[37] USGS National Field Manual for the Collection of Water-Quality Data. Techniques of Water-Resources Investigations. Book 9 Handbook for Water-Resources Investigations; 2015.

[38] Behlke MK, Uden PC, Schantz MM. Investigations of sulfur interferences in the extraction of methylmercury from marine tissues. *Anal Commun* 1996, 33, 91–2.

[39] Woller Å, Garraud H, Martin F, Donard OFX, Fodor P. Determination of total mercury in sediments by microwave-assisted digestion-flow injection-inductively coupled plasma mass spectrometry. *J Anal At Spectrom* 1997, 12, 53–6.

[40] Harrington CF, Catterick T. Problems encountered during the development of a method for the speciation of mercury and methylmercury by high-performance liquid chromatography coupled to inductively coupled plasma mass spectrometry. *J Anal At Spectrom* 1997, 12, 1053–6.

[41] Bloom NS. Analysis and stability of mercury speciation in petroleum hydrocarbons. *Fresenius J Anal Chem* 2000, 366, 438–43.

[42] Epstein MS, Diamondstone BI, Gills TE. A new river sediment standard reference material. *Talanta* 1989, 36, 141–50.

[43] US EPA, R. o8 Quick Guide to Drinking Water Sample Collection <http://www2.epa.gov/region8-waterops/quick-guide-drinking-water-sample-collection>

[44] Mohammadkhani S, Gholami MR, Aghaie M. Thermodynamic study of Cr+3 ions removal by "MnO₂/MWCNT" nanocomposite. *Orient J Chem* 2015, 31, 1429–36.

[45] Tyson J. High-performance, flow-based, sample pre-treatment and introduction procedures for analytical atomic spectrometry. *Journal of Analytical Atomic Spectrometry* 1999, 14, 169–78.

[46] Anschutz P, Dedieu K, Desmazes F, Chaillou G. Speciation, oxidation state, and reactivity of particulate manganese in marine sediments. *Chem Geol* 2005, 218, 265–79.

[47] Chao TT. Selective dissolution of manganese oxides from soils and sediments with acidified hydroxylamine hydrochloride. *Soil Sci Soc Am J* 1972, 36, 764–8.

[48] Golimowski J, Beata Krasnodębska-Ostręga B. Voltammetric determination of heavy metals leached from ceramics. *Fresenius J Anal Chem* 1998, 361, 65–8.

[49] Rasmussen RR, Qian Y, Sloth JJ. SPE HG-AAS method for the determination of inorganic arsenic in rice—results from method validation studies and a survey on rice products. *Anal Bioanal Chem* 2013, 405, 7851–7.

[50] Sahinkaya E, Kilic A, Altun M, Komnitsas K, Lens PNL. Hexavalent chromium reduction in a sulfur reducing packed-bed bioreactor. *J Hazard Mater* 2012, 219–20, 253–9.

[51] Tokaloğlu S, Arsal S, Delibaş A, Soykan C. Indirect speciation of Cr(III) and Cr(VI) in water samples by selective separation and preconcentration on a newly synthesized chelating resin. *Anal Chim Acta* 2009, 645, 36–41.

[52] Reinholdsson F, Briche C, Emteborg H, Baxter DC, Frech W. Determination of mercury species in natural waters. In: CANAS'95 Colloquium Analytische Atomspktroskopie, B. Welz (Ed.), Bodenseewerk Perkin-Elmer GmbH, Überlingen 1996, 399–405.

[53] Karlsson U, Karlsson S, Düker A. The effect of light and iron(II)/iron(III) on the distribution of Tl(I)/Tl(III) in fresh water systems. *J Environ Monit* 2006, 8, 634–40.

[54] Golimowski J, Golimowska K. UV-photooxidation as pretreatment step in inorganic analysis of environmental samples. *Anal Chim Acta* 1996, 325, 111–33.

[55] Li D, Gao Z, Zhu Y, Yu Y, Wang H. Photochemical reaction of Tl in aqueous solution and its environmental significance. *Geochem J* 2005, 39, 113–9.

[56] Quevauviller P, Drabaek I, Muntau H, Griepink B. Improvements in methylmercury determination prior to the certification of two tuna fish materials. *Appl Organometal Chem* 1993, 7, 413–20.

[57] Kebbekus B.B. Chapter 5, Preparation of samples for metals analysis, p. 227 in S. Mitra (ed.), *Sample preparation techniques in analytical chemistry*, 162 (2003). John Wiley & Sons, Inc., Hoboken 2003.

[58] Zago C, Capodaglio G, Ceradini S, Ciceri G, Abelmoschi L, Soggia F, Cescon P, Scarponi G. Benthic fluxes of cadmium, lead, copper and nitrogen species in the northern Adriatic Sea in front of the River Po outflow, Italy. *Sci Total Environ* 2000, 246, 121–37.

[59] Eary LE, Rai D. Kinetics of chromium(III) oxidation to chromium(VI) by reaction with manganese dioxide. *Environ Sci Technol* 1987, 21, 1187–93.

[60] Huang J-H, Hu K-N, Ilgen J, Ilgen G. Occurrence and stability of inorganic and organic arsenic species in wines, rice wines and beers from Central European market. *Food Addit Contam* 2012, 29, 85–93.

[61] Garboś S, Rzepecka M, Bulska E, Hulanicki A. Microcolumn sorption of antimony(III) chelate for antimony speciation studies. *Spectrochim Acta, Part B* 1999, 54, 873–81.

[62] Gasparatos D, Mavromati G, Kotsovilis P, Massas I. Fractionation of heavy metals and evaluation of the environmental risk for the alkaline soils of the Thriassio plain: A residential, agricultural, and industrial area in Greece. *Environ Earth Sci* 2015, 74, 1099–108.

[63] Wang Y, Zeng X, Lu Y, Su S, Bai L, Li L, Wu C. Effect of aging on the bioavailability and fractionation of arsenic in soils derived from five parent materials in a red soil region of Southern China. *Environ Pollut* 2015, 207, 79–87.

[64] Lou C, Liu X, Nie Y, Emslie SD. Fractionation distribution and preliminary ecological risk assessment of As, Hg and Cd in ornithogenic sediments from the Ross Sea region, East Antarctica. *Sci Total Environ* 2015, 538, 644–53.

[65] Zan F, Huo S, Zhang J, Zhang L, Xi B, Zhang L. Arsenic fractionation and contamination assessment in sediments of thirteen lakes from the East Plain and Yungui Plateau Ecoregions, China. *J Environ Sci* 2014, 26, 1977–84.

[66] Beata Krasnodębska-Ostręga B, Pałdyna J, Kowalska J, Jedynak Ł, Golimowski J. Fractionation study in bioleached metallurgy wastes using six-step sequential extraction. *J Hazard Mater* 2009, 167, 128–35.

[67] Pałdyna J, Beata Krasnodębska-Ostręga B, Kregielewska K, Kowalska J, Jedynak Ł, Golimowski J, Grobelski T, Farbiszewska-Kiczma J, Farbiszewska T. The assessment of environmental pollution caused by mining and metallurgy wastes from highly polluted post-industrial regions in Southern Poland. *Environ Earth Sci* 2012, 68, 439–50.

[68] USGS; Smith DB, Cannon WF, Woodruff LC, Solano F, Kilburn JE, Fey DL. Geochemical and mineralogical data for soils of the conterminous United States.

[69] US EPA US Environmental Protection Agency, <http://www3.epa.gov/> (accessed October 16, 2015).

[70] ISO – International Organization for Standardization, <http://www.iso.org/iso/home.html>

[71] Arunachalam J, Emons H, Krasnodębska B, Mohl C. Sequential extraction studies on homogenized forest soil samples. *Sci Total Environ* 1996, 181, 147–59.

[72] Beata Krasnodębska-Ostręga B, Emons H, Golimowski J. Selective leaching of elements associated with Mn-Fe oxides in forest soil, and comparison of two sequential extraction methods. *Fresenius J Anal Chem* 2001, 371, 385–90.

[73] Beata Krasnodębska-Ostręga B, Emons H, Golimowski J. Element fractionation in soil from urban-industrialized areas using sequential extraction. *J Soils Sediments* 2004, 4, 43–8.

[74] Zhang W, Cai Y, Tu C, Ma LQ. Arsenic speciation and distribution in an arsenic hyperaccumulating plant. *Sci Total Environ* 2002, 300, 167–77.

[75] Rubio R, Ure AM. Approaches to sampling and sample pretreatments for metal speciation in soils and sediments. *Int J Environmental Analytical Chemistry* 1993, 51, 205–217.

[76] Pickering WF. Metal ion speciation — soils and sediments (a review). *Ore Geol Rev* 1986, 1, 83–146.

[77] Shuman LM. Separating soil iron- and manganese-oxide fractions for microelement analysis. *Soil Sci Soc Am J* 1982, 46, 1099–102.

[78] Godlewska-Żyłkiewicz B, Leśniewska BA, Hulanicki A. The study of magnesium speciation in serum by liquid chromatography and graphite furnace atomic absorption techniques. *Anal Chim Acta* 1998, 358, 185–93.

[79] Emons H. Artefacts and facts about metal(loid)s and their species from analytical procedures in environmental biomonitoring. *Trends Anal Chem* 2002, 21, 401–11.

[80] Emons H. Challenges from speciation analysis for the development of biological reference materials. *Fresenius J Anal Chem* 2001, 370, 115–19.

[81] Sadowska M, Biaduń E, Beata Krasnodębska-Ostręga B. Stability of Tl(III) in the context of speciation analysis of thallium in plants. *Chemosphere* 2016, 144, 1216–23.

[82] Dahl L, Molin M, Amlund H, Meltzer HM, Julshamn K, Alexander J, Sloth J. Stability of arsenic compounds in seafood samples during processing and storage by freezing. *Food Chem* 2010, 123, 720–7.

[83] Godlewska-Żyłkiewicz B, Leśniewska B, Golimowski J. Systematic errors in the determination of trace metals by GFAAS technique, Part I. *Microchim Acta* 2003, 143, 13–7.

[84] Le SXC, Cullen WR, Reimer KJ. Speciation of arsenic compounds in some marine organisms. *Environ Sci Technol* 1994, 28, 1598–604.

[85] Kowalska J, Kińska K, Sadowska M, Biesaga M, Beata Krasnodębska-Ostręga B. The role of phytochelatins in *Sinapis alba* L. response to stress caused by two toxic elements As and Tl. *Int J Environ Anal Chem* 2015, 95, 1148–56.

[86] Sneller FEC, van Heerwaarden LM, Koevoets PLM, Vooijs R, Schat H, Verkleij JAC. Derivatization of phytochelatins from *Silene vulgaris*, induced upon exposure to arsenate and cadmium: Comparison of derivatization with Ellman's reagent and monobromobimane. *J Agric Food Chem* 2000, 48, 4014–19.

[87] Bluemlein K, Raab A, Meharg AA, Charnock JM, Feldmann J. Can we trust mass spectrometry for determination of arsenic peptides in plants: comparison of LC-ICP-MS and LC-ES-MS/ICP-MS with XANES/EXAFS in analysis of *Thunbergia alata*. *Anal Bioanal Chem* 2007, 390, 1739–51.

[88] Bluemlein K, Raab A, Feldmann J. Stability of arsenic peptides in plant extracts: off-line versus on-line parallel elemental and molecular mass spectrometric detection for liquid chromatographic separation. *Anal Bioanal Chem* 2008, 393, 357–66.

[89] Jedynek Ł, Kowalska J, Leporowska A. Arsenic uptake and phytochelatin synthesis by plants from two arsenic-contaminated sites in Poland. *Polish J Environ Stud* 2012, 21, 1629–33.

[90] Landberg T, Greger M. No phytochelatin (PC2 and PC3) detected in *Salix viminalis*. *Physiol Plant* 2004, 121, 481–7.

[91] Namdjyan S, Namdjyan S, Kermanian H. Induction of phytochelatin and responses of antioxidants under cadmium stress in safflower (*Carthamus tinctorius*) seedlings. *Turkish J Bot* 2012, 36, 495–502.

[92] Backhaus F, Bagschik U, Burow M, Byrne AR, Froning M, Mohl C, Ostapczuk P, Rossbach M, Schladot JD, Stoeppler M, Waidmann E, Zeisler R. Two spruce shoot candidate reference materials from the German environmental specimen bank. *Sci Total Environ* 1993, 139–40, 447–58.

[93] Klein R, Bartel M, Paulus M, Quack M, Tarricone K, Teubner D, Wagner G, 2010. Guideline for sampling and sample treatment eelpout (*Zoarces viviparus*) in: Environment Protection Agency (Eds.), Guidelines for sampling, transport, storage and chemical characterisation of environmental- and human organ samples. Environment Protection Agency, Berlin.

[94] Beata Krasnodębska-Ostręga B, Golimowski J. Element fractionation in suspended matter in landfill leachate using single extractions. *Microchim Acta* 2004, 146, 7–11.

[95] Paulus M, Klein R, Wagner G, Müller P. Biomonitoring and environmental specimen banking. *Environ Sci Pollut Res* 1996, 3, 169–77.

[96] Rossbach M, Mohl C, Emons H. Analysis of soils and sediments for monitoring purposes within the environment specimen bank of Germany. *Heavy Met Environ* 1995, 2, 383–6.

[97] Rüdel H, Müller J, Quack M, Klein R. Monitoring of hexabromocyclododecane diastereomers in fish from European freshwaters and estuaries. *Environ Sci Pollut Res* 2011, 19, 772–83.

[98] Burgess J. Kinetic aspects of chemical speciation. *Analyst* 1992, 117, 605–11.

[99] Sanz-Medel A. Trace element analytical speciation in biological systems: importance, challenges and trends. *Spectrochim Acta, Part B* 1998, 53, 197–211.

[100] Templeton D, Ariese F, Cornelis R, Danielsson L, Muntau H, Van Leeuwen H, Lobinski R. Guidelines for terms related to chemical speciation and fractionation of elements. Definitions, structural aspects, and methodological approaches (IUPAC Recommendations 2000). *Pure Appl Chem* 2000, 72, 1453–70.

[101] Dai J, Ren F, Tao C. Adsorption of Cr(VI) and Speciation of Cr(VI) and Cr(III) in aqueous solutions using chemically modified chitosan. *Int Environ Res Public Health* 2012, 9, 1757–70.

[102] Ebdon L, Pitts L, Cornelis R, Crews H, Donard OFX, Quevauviller P. Trace element speciation for environment, food and health. In: *Trace Element Speciation for Environment, Food and Health*. Royal Society of Chemistry, Cambridge, 2001.

[103] Peterson ML, Carpenter R. Biogeochemical processes affecting total arsenic and arsenic species distributions in an intermittently anoxic fjord. *Mar Chem* 1983, 12, 295–321.

[104] Beata Krasnodębska-Ostręga B, Asztemborska M, Golimowski J, Strusińska K. Determination of thallium forms in plant extracts by anion exchange chromatography with inductively coupled plasma mass spectrometry detection (IC-ICP-MS). *J Anal At Spectrom* 2008, 23, 1632–5.

[105] Lin T-S, Nriagu JO. Thallium speciation in river waters with Chelex-100 resin. *Anal Chim Acta* 1999, 395, 301–7.

[106] Guéguen C, Dominik J. Partitioning of trace metals between particulate, colloidal and truly dissolved fractions in a polluted river: The Upper Vistula River (Poland). *Appl Geochem* 2003, 18, 457–70.

[107] Moon J, Cho J. Investigation of nano-colloid transport in UF membranes using flow field-flow fractionation (flow FFF) and an irreversible thermodynamic transport model. *Desalination* 2005, 179, 151–9.

[108] Fresenius W, Quentin KE, Schneider W. Water Analysis. A Practical Guide to Physico-chemical, Chemical and Microbiological Water Examination and Quality Assurance. Springer, Berlin, Heidelberg, 1988.

[109] Banks D, Markland H, Smith PV, Mendez C, Rodriguez J, Huerta A, Sæther OM. The effect of filtration on analyses of surface water samples. A study from the Salars of Coipasa and Uyuni, Bolivian Altiplano. *J Geochem Explor* 2005, 86, 104–18.

[110] Beata Krasnodębska-Ostręga B, Dmowski K, Stryjewska E, Golimowski J. Determination of thallium and other elements (As, Cd, Cu, Mn, Pb, Se, Sb, and Zn) in water and sediment samples from the vicinity of the zinc-lead smelter in Poland (3 pp). *J Soils Sediments* 2005, 5, 71–3.

[111] Nakatsuka S, Okamura K, Norisuye K, Sohrin Y. Simultaneous determination of suspended particulate trace metals (Co, Ni, Cu, Zn, Cd and Pb) in seawater with small volume filtration assisted by microwave digestion and flow injection inductively coupled plasma mass spectrometer. *Anal Chim Acta* 2007, 594, 52–60.

[112] Ospina-Alvarez N, Głaz Ł, Dmowski K, Beata Krasnodębska-Ostręga B. Mobility of toxic elements in carbonate sediments from a mining area in Poland. *Environ Chem Lett* 2014, 12, 435–41.

[113] Schäfer AI, Fane AG, Waite TD. Fouling effects on rejection in the membrane filtration of natural waters. *Desalination* 2000, 131, 215–24.

[114] Schäfer AI, Fane AG, Waite TD. Cost factors and chemical pretreatment effects in the membrane filtration of waters containing natural organic matter. *Water Res* 2001, 35, 1509–17.

[115] Beata Krasnodębska-Ostręga B, Jedynak Ł, Galus M, Pałdyna J, Kowalska J, Golimowski J. Fractionation of selected elements in water samples from the mining and smelting area. *Chem Anal* 2009, 54(5), 1009–19.

[116] Ospina-Alvarez N, Burakiewicz P, Sadowska M, Krasnodębska-Ostręga B. Tl and Tl(IV) presence in suspended particulate matter: Speciation analysis of thallium in wastewater. *Environ Chem* 2015, 12, 374–9.

[117] Shanker AK, Cervantes C, Loza-Tavera H, Avudainayagam S. Chromium toxicity in plants. *Environ Int* 2005, 31, 739–53.

[118] Singh HP, Mahajan P, Kaur S, Batish DR, Kohli RK. Chromium toxicity and tolerance in plants. *Environ Chem Lett* 2013, 11, 229–54.

[119] Jain CK, Sharma MK. Distribution of trace metals in the Hindon River system, India. *J Hydrol* 2001, 253, 81–90.

[120] Daus B, Weiss H, Mattusch J, Wennrich R. Preservation of arsenic species in water samples using phosphoric acid – Limitations and long-term stability. *Talanta* 2006, 69, 430–34.

[121] Kim MJ. Separation of inorganic arsenic species in groundwater using ion exchange method. *Bull Environ Contam Toxicol* 2001, 67, 46–51.

[122] Beata Krasnodębska-Ostręga B, Sadowska M, Ostrowska S. Thallium speciation in plant tissues—Tl(III) found in *Sinapis alba* L. grown in soil polluted with tailing sediment containing thallium minerals. *Talanta* 2012, 93, 326–9.

[123] Wolf RE, Morman SA, Hageman PL, Hoeven TM, Plumlee GS. Simultaneous speciation of arsenic, selenium, and chromium: species stability, sample preservation, and analysis of ash and soil leachates. *Anal Bioanal Chem* 2011, 401, 2733–45.

[124] Boszke L, Glosinska G, Siepak J. Some aspects of speciation of mercury in water environment. *Pol J Environ Stud* 2002, 11, 285–98.

[125] Morel FMM, Kraepiel AML, Amyot M. The chemical cycle and bioaccumulation of mercury. *Ann Rev Ecol System* 1998, 29, 543–66.

[126] Markert B. Sample preparation (cleaning, drying, homogenization) for trace element analysis in plant matrices. *Sci Total Environ* 1995, 176, 45–61.

[127] García-Salgado S, Quijano MÁ. Stability of toxic arsenic species and arsenosugars found in the dry alga *Hijiki* and its water extracts. *Talanta* 2014, 128, 83–91.

[128] Mir KA, Rutter A, Koch I, Smith P, Reimer KJ, Poland JS. Extraction and speciation of arsenic in plants grown on arsenic contaminated soils. *Talanta* 2007, 72, 1507–18.

[129] Pell A, Márquez A, Rubio R, López-Sánchez JF. Effects of sample processing on arsenic speciation in marine macroalgae. *Anal Methods* 2013, 5, 2543–50.

[130] Caruso JA, Heitkemper DT, B'Hymer C. An evaluation of extraction techniques for arsenic species from freeze-dried apple samples. *Analyst* 2001, 126, 136–40.

[131] Berrow ML, Stein WM. Extraction of metals from soils and sewage sludges by refluxing with aqua regia. *Analyst* 1983, 108, 277–85.

[132] Jansen B, Nierop KGJ, Kotte MC, de Voogt P, Verstraten JM. The applicability of accelerated solvent extraction (ASE) to extract lipid biomarkers from soils. *Appl Geochem* 2006, 21, 1006–15.

[133] Mossop KF, Davidson CM. Comparison of original and modified BCR sequential extraction procedures for the fractionation of copper, iron, lead, manganese and zinc in soils and sediments. *Anal Chim Acta* 2003, 478, 111–18.

[134] Quevauviller P, Rauret G, Muntau H, Ure AM, Rubio R, López-Sánchez JF, Fiedler HD, Crieppink B. Evaluation of a sequential extraction procedure for the determination of extractable trace metal contents in sediments. *Fresenius J Anal Chem* 1994, 349, 808–14.

[135] Quevauviller P, Maier EA, Crieppink B. Quality Assurance for Environmental Analysis. Volume 17, 1st edition. Elsevier Science 1995.

[136] Das AK, Chakraborty R, Cervera ML, de la Guardia M. Metal speciation in solid matrices. *Talanta* 1995, 42, 1007–30.

[137] Davidson CM, Delevoye G. Effect of ultrasonic agitation on the release of copper, iron, manganese and zinc from soil and sediment using the BCR three-stage sequential extraction. *J Environ Monit* 2001, 3, 398–403.

[138] Jaradat QM, Massadeh AM, Zaitoun MA, Maitah BM. Fractionation and sequential extraction of heavy metals in the soil of scrapyard of discarded vehicles. *Environ Monit Assess* 2006, 112, 197–210.

[139] Kersten M, Förstner U. Effect of sample pretreatment on the reliability of solid speciation data of heavy metals — implications for the study of early diagenetic processes. *Mar Chem* 1987, 22, 299–312.

[140] Marguí E, Queralt I, Carvalho ML, Hidalgo M. Assessment of metal availability to vegetation (*Betula pendula*) in Pb-Zn ore concentrate residues with different features. *Environ Pollut* 2007, 145, 179–84.

[141] Thomas RP, Ure AM, Davidson CM, Littlejohn D, Rauret G, Rubio R, López-Sánchez JF. Three-stage sequential extraction procedure for the determination of metals in river sediments. *Anal Chim Acta* 1994, 286, 423–29.

[142] Pauwels J, Vandecasteele C. Determination of the minimum sample mass of a solid CRM to be used in chemical analysis. *Fresenius J Anal Chem* 1993, 345, 121–3.

[143] Lewis J, Stokes P, Brereton N, Baxter M, Macarthur R. Stability of arsenic speciation in fish muscle samples, under different storage and sample preparation conditions. *Microchem J* 2012, 105, 56–9.

[144] Dybczyński R, Polkowska-Motrenko H, Samczyński Z, Szopa Z. New Polish certified reference materials for multielement inorganic trace analysis. *Fresenius J Anal Chem* 1993, 345, 99–103.

[145] Marchandise H. Quality and accuracy in analytical chemistry. *Fresenius J Anal Chem* 1993, 345, 82–6.

[146] MacNaeidhe F. Procedures and precautions used in sampling techniques and analysis of trace elements in plant matrices. *Sci Total Environ* 1995, 176, 25–31.

[147] Steinnes E, Rühling Å, Lippo H, Mäkinen A. Reference materials for large-scale metal deposition surveys. *Accred Qual Assur* 1997, 2, 243–9.

[148] Jedynak Ł, Kowalska J, Kossykowska M, Golimowski J. Studies on the uptake of different arsenic forms and the influence of sample pretreatment on arsenic speciation in White mustard (*Sinapis alba*). *Microchem J* 2010, 94, 125–9.

[149] Mayeresse Y, de Cupere V, Veillon R, Brende J. Consideration for transferring a bulk freeze-drying process from a glass container to a tray. *Pharm Eng* 2009, Mar/Apr, 1–8.

[150] Marguí E, Salvadó V, Queralt I, Hidalgo M. Comparison of three-stage sequential extraction and toxicity characteristic leaching tests to evaluate metal mobility in mining wastes. *Anal Chim Acta* 2004, 524, 151–9.

[151] Pérez-Cid B, Lavilla I, Bendicho C. Use of ultrasonic energy for shortening the sequential extraction of metals from river sediments. *Int J Environ Anal Chem* 1999, 73, 79–92.

[152] Moturi MCZ, Rawat M, Subramanian V. Distribution and fractionation of heavy metals in solid waste from selected sites in the industrial belt of Delhi, India. *Environ Monit Assess* 2004, 95, 183–99.

[153] Tokalioglu Ş, Kartal Ş, Elçi L. Determination of heavy metals and their speciation in lake sediments by flame atomic absorption spectrometry after a four-stage sequential extraction procedure. *Anal Chim Acta* 2000, 413, 33–40.

[154] Schmöger MEV, Oven M, Grill E. Detoxification of arsenic by phytochelatins in plants. *Plant Physiol* 2000, 122, 793–802.

[155] Andra SS, Datta R, Sarkar D, Saminathan SKM, Mullens CP, Bach SBH. Analysis of phytochelatin complexes in the lead tolerant vetiver grass [*Vetiveria zizanioides* (L.)] using liquid chromatography and mass spectrometry. *Environ Pollut* 2009, 157, 2173–83.

[156] Chen L, Yang L, Wang Q. In vivo phytochelatins and Hg–phytochelatin complexes in Hg-stressed *Brassica chinensis* L. *Metallomics* 2009, 1, 101–6.

[157] Beata Krasnodębska-Ostręga B, Kowalska J. Use of ultrasound energy for shortening acetic acid extraction of metals from soils. *Chem Anal* 2003, 48, 967–74.

[158] Beata Krasnodębska-Ostręga B, Kaczorowska M, Golimowski J. Ultrasound-assisted extraction for the evaluation of element mobility in bottom sediment collected at mining and smelting Pb–Zn ores area in Poland. *Microchim Acta* 2006, 154, 39–43.

[159] Ruiz-Chancho MJ, Sabé R, López-Sánchez JF, Rubio R, Thomas P. New approaches to the extraction of arsenic species from soils. *Microchim Acta* 2005, 151, 241–8.

[160] Quaghebeur M, Rengel Z, Smirk M. Arsenic speciation in terrestrial plant material using microwave-assisted extraction, ion chromatography and inductively coupled plasma mass spectrometry. *J Anal At Spectrom* 2003, 18, 128–34.

[161] Kowalska J, Asztemborska M, Bystrzejewska-Piotrowska G. Platinum uptake by mustard (*Sinapis alba* L.) and maize (*Zea mays* L.) plants. *Nukleonika* 2004, 49, 31–4.

[162] Hawieczyk M, Bystrzejewska-Piotrowska B, Kowalska J, Asztemborska M. Platinum bioaccumulation by mustard plants (*Sinapis alba* L.). *Nukleonika* 2005, 59–61.

[163] Byrne AR, Ślejkovec Z, Stijve T, Fay L, Gössler W, Gailer J, Lrgolic KJ. Arsenobetaine and other arsenic species in mushrooms. *Appl Organometal Chem* 1995, 9, 305–13.

[164] Michalska-Kacymiro M, Kurek E, Smolis A, Wierzbicka M, Bulska E. Biological and chemical investigation of *Allium cepa* L. response to selenium inorganic compounds. *Anal Bioanal Chem* 2014, 406, 3717–22.

[165] Biswas D, Banerjee M, Sen G, Das JK, Banerjee A, Sau TJ, Pandit S, Giri AK, Biswas T. Mechanism of erythrocyte death in human population exposed to arsenic through drinking water. *Toxicol Appl Pharmacol* 2008, 230, 57–66.

[166] Morita M, Shibata Y. Chemical form of arsenic in marine macroalgae. *Appl. Organometal Chem* 1990, 4, 181–90.

[167] Ybánez N, Velez D, Tejedor W, Montoro R. Optimization of the extraction, clean-up and determination of arsenobetaine in manufactured seafood products by coupling liquid chromatography with inductively coupled plasma atomic emission spectrometry. *J Anal At Spectrom* 1995, 10, 459–65.

[168] Nolan A, Schaumlöffel D, Lombi E, Ouerdane L, Łobiski R, McLaughlin M. Determination of Tl-(I) and Tl-(III) by IC-ICP-MS and application to Tl speciation analysis in the Tl hyperaccumulator plant *Iberis intermedia*. *J Anal At Spectrom* 2004, 19, 757–61.

[169] Chu Y-L, Wang R-Y, Jiang S-J. Speciation analysis of thallium by reversed-phase liquid chromatography – inductively coupled plasma mass spectrometry. *J Chinese Chem Soc* 2012, 59, 219–25.

[170] Wang J. Wiley: Analytical Electrochemistry, 3rd Edition – Joseph Wang <http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0471678791.html> accessed October 23, 2015.

[171] Bobrowski A, Gawlicki M, Kapturski P, Mirceski V, Spasovski F, Zarębski J. The silver amalgam film electrode in adsorptive stripping voltammetric determination of palladium(II) as its dimethyldioxime complex. *Electroanalysis* 2009, 21, 36–40.

[172] Grabarczyk M, Korolczuk M. Development of a simple and fast voltammetric procedure for determination of trace quantity of Se(IV) in natural lake and river water samples. *J Hazard Mater* 2010, 175, 1007–13.

[173] Jakubowska M, Zembrzuski W, Lukaszewski Z. Thallium determination at the single picomole per liter level by flow-injection differential-pulse anodic stripping voltammetry. *Electroanalysis* 2008, 20, 1073–77.

[174] Grabarczyk M. Stripping voltammetric determination of As(III) in natural water samples containing surface active compounds. *Electroanalysis* 2010, 22, 2017–23.

[175] Anastassiades M, Lehotay S, Stajnbaher D, Schenck F. Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce. *J AOAC Int* 2003, 86, 412–31.

[176] Payá P, Anastassiades M, Mack D, Sigalova I, Tasdelen B, Oliva J, Barba A. Analysis of pesticide residues using the quick easy cheap effective rugged and safe (QuEChERS) pesticide multiresidue method in combination with gas and liquid chromatography and tandem mass spectrometric detection. *Anal Bioanal Chem* 2007, 389, 1697–14.

[177] AOAC Official Method 2007.01 Pesticide residues in foods by acetonitrile extraction and partitioning with magnesium sulfate. *Gas Chromatography/Mass Spectrometry and Liquid Chromatography/Tandem Mass Spectrometry First Action* 2007.

[178] Chen M-L, Ma L-Y, Chen X-W. New procedures for arsenic speciation: A review. *Talanta* 2014, 125, 78–86.

[179] Pérez S, Aga DS. Recent advances in the sample preparation, liquid chromatography tandem mass spectrometric analysis and environmental fate of microcystins in water. *Trends Anal Chem* 2005, 24, 658–70.

[180] Wolska L, Wiergowski M, Galer K, Górecki T, Namieśnik J. Sample preparation for GC analysis of selected pesticides in surface water. *Chemosphere* 1999, 39, 1477–86.

[181] Guo H-M, Liu C-H. Separation of inorganic arsenic species from aqueous solution by anion exchange column and its application in study of arsenic removal. *Chinese J of Anal Chem* 2013, 40, 1092–97.

[182] Cleyzes C, Tellier S, Astruc M. Fractionation studies of trace elements in contaminated soils and sediments: a review of sequential extraction procedures. *Trends Anal Chem* 2002, 21, 451–67.

[183] Tessier A, Campbell PGC, Bisson M. Sequential extraction procedure for the speciation of particulate trace metals. *Anal Chem* 1979, 51, 844–51.

[184] Quevauviller P, Ure A, Muntau H, Criepink B. Improvement of analytical measurements within the BCR-programme: Single and sequential extraction procedures applied to soil and sediment analysis. *Int J Environ Anal Chem* 1993, 51, 129–34.

[185] Rauret G, López-Sánchez JF, Sahuquillo A, Barahona E, Lachica M, Ure AM, Davidson CM, Gomez A, Lück D, Bacon J, Yli-Halla M, Muntau H, Quevauviller P. Application of a modified BCR sequential extraction (three-step) procedure for the determination of extractable trace metal contents in a sewage sludge amended soil reference material (CRM 483), complemented by a three-year stability study of acetic acid and EDTA extractable metal content. *J Environ Monit* 2000, 2, 228–33.

[186] Rusnak R, Halasz G, Horvath M, Remeteiova D. Preliminary results on the intensification of the BCR sequential extraction with sonication for sediments, soils, and gravitation dust sediment samples. *Toxicol Environ Chem* 2010, 92, 443–52.

[187] Wallmann K, Kersten M, Gruber J, Förstner U. Artifacts in the determination of trace metal binding forms in anoxic sediments by sequential extraction. *Int J Environ Anal Chem* 1993, 51, 187–200.

[188] Torelm I, Croon L-B, Kolar K, Schröder T. Production and certification of “fresh” reference material for macronutrient analysis. *Fresenius J Anal Chem* 1990, 338, 435–7.

[189] <http://ec.europa.eu> European Commission <http://ec.europa.eu>/.

[190] <http://www.usgs.gov> Welcome to the USGS – U.S. Geological Survey <http://www.usgs.gov>/

[191] US EPA R. 08 Standard Operating Procedure: Surface Water Sampling <http://www2.epa.gov/region8/standard-operating-procedure-surface-water-sampling>.