Abstract
Throughout the lithium ion battery (LIB) history, since they were mass produced by Sony in 1991, graphite-based materials have been the anode material of choice. There have been enormous efforts to search for ways of tapping higher energy with alternative anode materials to work in LIBs. Yet, those materials have always been subjected to detrimental mechanisms that hinder their applications in LIBs. Will nanotechnology and nanostructured anode materials change the energy storage technologies markedly in the future?
References
[1] Schalkwijk WV, Scrosati B. Advances in lithium-ion batteries. Springer: Berlin, 2007.Search in Google Scholar
[2] Yoshio M, Brodd RJ, Kozawa A. Lithium-ion batteries: science and technologies. Berlin: Springer, 2010Search in Google Scholar
[3] Xia X, Liu YH, Zhang J. Lithium-ion batteries: advanced materials and technologies. New York: CRC Press, 2016.Search in Google Scholar
[4] Goriparti S, Miele E, De Angelis F, Di Fabrizio E, Proietti Zaccaria R, Capiglia C. Review on recent progress of nanostructured anode materials for Li-ion batteries. J Power Sources. 2014;257:421–3.10.1016/j.jpowsour.2013.11.103Search in Google Scholar
[5] Fujimoto H, Tokumitsu K, Mabuchi A, Chinnasamy N, Kasuh T. The anode performance of the hard carbon for the lithium ion battery derived from the oxygen-containing aromatic precursors. J Power Sources. 2010;195:7452–6.10.1016/j.jpowsour.2010.05.041Search in Google Scholar
[6] Yang J, Zhou X-Y, Li J, Zou Y-L, Tang J-J. Study of nano-porous hard carbons as anode materials for lithium ion batteries. Mater Chem Phys. 2012;135:445–50.10.1016/j.matchemphys.2012.05.006Search in Google Scholar
[7] Bridges CA, Sun X-G, Zhao J, Paranthaman MP, Dai S. In situ observation of solid electrolyte interphase formation in ordered mesoporous hard carbon by small-angle neutron scattering. J Phys Chem C. 2012;116:7701–11.10.1021/jp3012393Search in Google Scholar
[8] Meunier V, Kephart J, Roland C, Bernholc J, Initio A. Phys Rev Lett. 2002;88:075506.10.1103/PhysRevLett.88.075506Search in Google Scholar PubMed
[9] Nishidate K, Hasegawa M. Energetics of lithium ion adsorption on defective carbon nanotubes. Phys Rev B. 2005;71:245418.10.1103/PhysRevB.71.245418Search in Google Scholar
[10] Hou J, Shao Y, Ellis MW, Moore RB, Yi B. Graphene-based electrochemical energy conversion and storage: fuel cells, supercapacitors and lithium ion batteries. Phys Chem Chem Phys. 2011;13:15384–402.10.1039/c1cp21915dSearch in Google Scholar PubMed
[11] Chen Z, Belharouak I, Sun YK, Amine K. Titanium-based anode materials for safe lithium-ion batteries. Adv Funct Mater. 2013;23:959–69.10.1002/adfm.201200698Search in Google Scholar
[12] Szczech JR, Jin S. Nanostructured silicon for high capacity lithium battery anodes. Energy & Env Sci. 2011;4:56–72.10.1039/C0EE00281JSearch in Google Scholar
[13] Rudawski NG, Yates BR, Holzworth MR, Jones KS, Elliman RG, Volinsky AA. Ion beam-mixed ge electrodes for high capacity li rechargeable batteries. J Power Sources. 2013;223:336–40.10.1016/j.jpowsour.2012.09.056Search in Google Scholar
[14] Bruce PG, Scrosati B, Tarascon J-M. Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed. 2008;47:2930–46.10.1002/anie.200702505Search in Google Scholar
[15] Park C-M, Kim J-H, Kim H, Sohn H-J. Li-alloy based anode materials for Li secondary batteries. Chem Soc Rev. 2010;39:3115–41.10.1039/b919877fSearch in Google Scholar PubMed
[16] Wang Z, Zhou L, Lou XW. Metal oxide hollow nanostructures for lithium-ion batteries. Advanced Mater. 2012;24:1903–11.10.1002/adma.201200469Search in Google Scholar
[17] Jiang J, Li Y, Liu J, Huang X, Yuan C, Lou XW. Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage. Advanced Mater. 2012;24:5166–80.10.1002/adma.201202146Search in Google Scholar
[18] Prosini PP, Carewska M, Loreti S, Minarini C, Passerini S. Lithium iron oxide as alternative anode for li-ion batteries. Int J Inorg Mater. 2000;2:365–70.10.1016/S1466-6049(00)00028-3Search in Google Scholar
[19] Ji L, Lin Z, Alcoutlabi M, Zhang X. Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy & Env Sci. 2011;4:2682–99.10.1039/c0ee00699hSearch in Google Scholar
[20] Lai C-H, Lu M-Y, Chen L-J. Metal sulfide nanostructures: synthesis, properties and applications in energy conversion and storage. J Mater Chem. 2012;22:19–30.10.1039/C1JM13879KSearch in Google Scholar
[21] Boyanov S, Annou K, Villevieille C, Pelosi M, Zitoun D, Monconduit L. Nanostructured transition metal phosphide as negative electrode for lithium-ion batteries. Ionics. 2008;14:183–90.10.1007/s11581-007-0170-3Search in Google Scholar
[22] Inaba M, Yoshida H, Ogumi Z, Abe T, Mizutani Y, Asano M. In situ Raman study on electrochemical li intercalation into graphite. J Electrochem Soc. 1995;142:20–6.10.1149/1.2043869Search in Google Scholar
[23] Whitehead AH, Edström K, Rao N, Owen JR. In situ X-ray diffraction studies of a graphite-based Li-ion battery negative electrode. J Power Sources. 1996;63:41–5.10.1016/S0378-7753(96)02440-8Search in Google Scholar
[24] Schauerman CM, Ganter MJ, Gaustad G, Babbitt CW, Raffaelle RP, Landi BJ. Recycling single-wall carbon nanotube anodes from lithium ion batteries. J Mater Chem. 2012;22:12008–15.10.1039/c2jm31971cSearch in Google Scholar
[25] Zhao J, Buldum A, Han J, Ping Lu J. First-principles study of li-intercalated carbon nanotube ropes. Phys Rev Lett. 2000;85:1706–9.10.1103/PhysRevLett.85.1706Search in Google Scholar PubMed
[26] Goriparti S, Miele E, Prato M, Scarpellini A, Marras S, Monaco S, et al. Direct synthesis Of carbon-doped Tio2–bronze nanowires As anode materials For high performance lithium-ion batteries. ACS Appl Mater Interfaces. 2015;7:25139–4610.1021/acsami.5b06426Search in Google Scholar PubMed
[27] Claudio C, Remo Proietti Z, Subrahmanyam G, Miele E, De Angelis F. Direct synthesis of carbon-doped TiO2–bronze nanostructures as anode materials for high performance lithium batteries. PCT WO 2017/060407 A1Search in Google Scholar
[28] Kasavajjula U, Wang C, Appleby AJ. Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells. J Power Sources. 2007;163:1003–9.10.1016/j.jpowsour.2006.09.084Search in Google Scholar
[29] Chan CK, Peng H, Liu G, McIlwrath K, Zhang XF, Huggins RA, et al. High-performance lithium battery anodes using silicon nanowires. Nat Nanotechnol. 2007;3:31.10.1142/9789814317665_0026Search in Google Scholar PubMed
[30] Miele E, Goriparti S, Messina GC, Prato M, Ansaldo A, Barone A, et al. Porous silicon as nanostructured anode material for lithium ion batteries. ECS Trans. 2014;62:25–34.10.1149/06201.0025ecstSearch in Google Scholar
[31] Yang J, Takeda Y, Imanishi N, Capiglia C, Xie JY, Yamamoto O. SiOx-based anodes for secondary lithium batteries. Solid State Ionics. 2002;152–153:125–9.10.1016/S0167-2738(02)00362-4Search in Google Scholar
[32] Goriparti S, Miele E, Scarpellini A, Marras S, Prato M, Ansaldo A, et al. Germanium nanocrystals-MWCNTs composites as anode materials for lithium ion batteries. ECS Trans. 2014;62:19–24.10.1149/06201.0019ecstSearch in Google Scholar
[33] Goriparti S, Gulzar U, Miele E, Palazon F, Scarpellini A, Marras S, et al. Facile synthesis of Ge-MWCNT nanocomposite electrodes for high capacity lithium ion batteries. J Mater Chem. 2017;5:19721–8.10.1039/C7TA04971DSearch in Google Scholar
[34] Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature. 2000;407:496.10.1038/35035045Search in Google Scholar PubMed
© 2018 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Raman microspectroscopy for Cultural Heritage studies
- Fundamental principles of battery design
- Nanostructured anode materials
- Photocatalysis with nucleic acids and peptides
- Size-controlled atomically precise copper nanoclusters: Synthetic protocols, spectroscopic properties and applications
- 10.1515/psr-2017-0178
- Synthesis and characterization of size-controlled silver nanowires
- Synthesis of “three-legged” tri-dentate podand ligands incorporating long-chain aliphatic moieties, for water remediators, and for isolating metal ions in non-aqueous solution
- Size and shape control of metal nanoparticles in millifluidic reactors
Articles in the same Issue
- Raman microspectroscopy for Cultural Heritage studies
- Fundamental principles of battery design
- Nanostructured anode materials
- Photocatalysis with nucleic acids and peptides
- Size-controlled atomically precise copper nanoclusters: Synthetic protocols, spectroscopic properties and applications
- 10.1515/psr-2017-0178
- Synthesis and characterization of size-controlled silver nanowires
- Synthesis of “three-legged” tri-dentate podand ligands incorporating long-chain aliphatic moieties, for water remediators, and for isolating metal ions in non-aqueous solution
- Size and shape control of metal nanoparticles in millifluidic reactors