Han Wei / Tang Junhong / Li Yongfeng

Utilization of food waste for fermentative hydrogen production

DOI: 10.1515/psr-2016-0050

1 Introduction

Current imperative global issues such as petroleum depletion and global warming are leading to new developments in fuel markets all over the world [1]. Interest in the development of renewable energy to reduce the reliance on fossil fuels and achieve sustainable development in energy consumption is increasing [2, 3]. Hydrogen is a promising alternative to fossil fuels because it is clean and renewable [4]. The energy yield of hydrogen is 122 kJ/g, which is 2.75 times higher than fossil fuel [5]. Moreover, hydrogen can be directly used to produce electricity via fuel cells [6]. Therefore, hydrogen is considered to be a promising energy carrier of the future.

The best-known industrial ways of hydrogen production are steam reformation of natural gas, coal gasification and splitting water with electricity [7, 8]. However, these industrial processes could also release carbon dioxide and other greenhouse gases and pollutants as byproducts [9]. Recently, biological hydrogen production has attracted considerable attention since it could deal with the conversion of low cost residues or organic waste/wastewater to hydrogen [10, 11]. Biological hydrogen production processes are considered to be more environmentally friendly and less energy intensive compared to thermochemical and electrochemical processes [12]. Generally, biological hydrogen production can be divided into two categories: photosynthesis and dark fermentation [13]. Dark fermentation seems to be a more feasible biotechnology for hydrogen production than photosynthesis due to lower energy consumption and no light limitation [14]. However, the low hydrogen production rate and high cost are the dominant obstacles for large-scale dark fermentative hydrogen production [15]. Utilization of raw waste/wastewater as substrate for fermentative hydrogen production (such as food waste) could effectively enhance the economic benefit which is regarded as a promising solution [16].

Food waste is a promising raw material for biofuel production because of its high organic content and availability. It mainly consists of starch, protein and fat which are good carbon sources for fermentative hydrogen production [17]. Fermentative bacteria hydrolyze and ferment carbohydrates, protein and lipids to volatile fatty acids which are then further converted into acetate, carbon dioxide and hydrogen by acetogenic bacteria [18]. Hydrogen and ATP are produced by fermentative bacteria such as *Clostridium sp.* during the degradation process. The limiting factor for biohydrogen production from food waste is the hydrolysis rate [19]. Kim et al. [20] found that heat-pretreated food waste could accelerate the hydrolysis rate of food waste and produce high biohydrogen yield when compared to untreated food waste. Similarly, sonication of food waste with heat and without inoculum was applied by Elbeshbishy et al. [21] for biohydrogen production. This research showed that pretreatment of food waste could enhance biohydrogen production efficiency and therefore can be regarded as an important parameter influencing biohydrogen production. Enzymatic hydrolysis could release nutrients (such as glucose and free amino nitrogen) from food waste with the advantage of a high hydrolysis rate and mild reaction conditions [22, 23].

Therefore, this chapter presents an updated review on dark fermentative hydrogen production from food waste. The analysis performed in the present chapter was focused on the following issues: (1) metabolic pathway of fermentative hydrogen production, (2) characteristics of food waste affecting the performance of fermentative hydrogen production, (3) pretreatment of food waste for fermentative hydrogen production.

Automatically generated rough PDF by ProofCheck from River Valley Technologies Ltd

2 Metabolic pathway of fermentative hydrogen production

2.1 Process yield and conversion efficiency

The concept of conversion efficiency derives from the existence of a fermentation barrier to hydrogen production from organic substrates. If the complete conversion reaction to hydrogen is taken into account (Eq. (1)), it is concluded that theoretically 12 mol hydrogen could be generated from 1 mol glucose [24, 25].

$$C_6H_{12}O_6 + 6H_2O \to 12H_2 + 6CO_2$$
 (1)

However, this reaction is energetically unfavorable with respect to biomass growth and would occur only with extremely low hydrogen concentration. The optimal conversion of glucose into hydrogen is limited by acetate production. As a result, one third of the theoretical hydrogen production can be achieved in practice because part of the reducing equivalents in the original substrate remains as acetate (Eq. (2)) [26].

$$C_6H_{12}O_6 + 2H_2O \rightarrow 4H_2 + 2CO_2 + 2CH_3COOH$$
 (2)

In practice, organic intermediates act as electron scavengers, which give rise to the production of more reduced fermentation products compared to acetate, including propionate, butyrate and ethanol, with an associated decrease in the hydrogen yield. In case the butyrate fermentation pathway is established, the conversion efficiency is reduced to 2 mol H_2/mol glucose (Eq. (3)) [27].

$$C_6H_{12}O_6 \rightarrow 2H_2 + 2CO_2 + CH_3CH_2CH_2COOH$$

2.2 Metabolic pathway for fermentative hydrogen production

The carbohydrate must undergo liquefaction by extracellular enzymes before being taken up by acidogenic bacteria. The rate of hydrolysis is a function of several factors, such as pH and temperature [28, 29]. After that, soluble organic components, including the products of hydrolysis, are converted into organic acids, ethanol, hydrogen and carbon dioxide by acidogens (Figure 1). The products of acidogenesis are then converted into acetate, hydrogen and carbon dioxide [30].

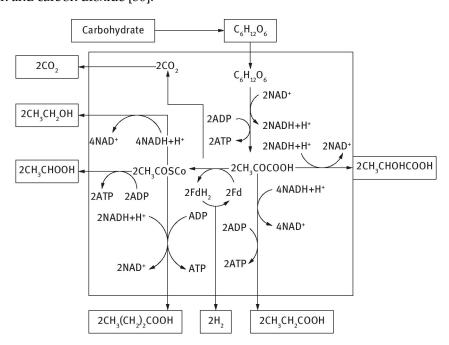


Figure 1: Metabolic pathway and byproducts in fermentative hydrogen production [58].

Fermentative hydrogen production is carried out by anaerobic acidogenic bacteria with highly diverse fermentation characteristics and hydrogen production capabilities. Performance of fermentative hydrogen production depends on a number of parameters, such as pH, temperature, and organic loading rate [31–33]. The variations of parameters would lead to various microbial communities which finally result in diverse fermentation types [34]. There are four main fermentation types in the anaerobic acidogenesis, namely acetate type fermentation, butyrate type fermentation, ethanol type fermentation and propionate type fermentation [35–37]. Manymicrobial communities exhibit acetate fermentation with acetate as the major product (Eq. (4)). The major products of propionate type fermentation are propionate and acetate (Eq. (5)), while the products of ethanol type fermentation are ethanol and acetate (Eq. (6)). As for butyrate type fermentation, butyrate and acetate are the primary fermentation products (Eq. (7)).

$$C_6H_{12}O_6 + 2H_2O \rightarrow 2CH_3COOH + 4H_2 + 2CO_2$$

$$C_6H_{12}O_6 \rightarrow 2CH_3CH_2COOH + 2CO_2$$

$$C_6H_{12}O_6 + H_2O \rightarrow CH_3CH_2OH + CH_3COOH + 2H_2 + 2CO_2$$

$$C_6H_{12}O_6 \rightarrow CH_3(CH_2)_2COOH + 2H_2 + 2CO_2$$

Equations (4)–(7) show that hydrogen is produced from acetate, butyrate and ethanol type fermentations. Propionate type fermentation could not generate hydrogen. However, propionate type fermentation is concurrent with other fermentation types capable of producing hydrogen in a mixed microbial community [38, 39]. Therefore, hydrogen could also be generated from anaerobic fermentation when the production of propionate is still high.

In many papers, butyrate type fermentation is considered as the most common pathway for fermentative hydrogen production. Relative research about ethanol type fermentation remains deficient. Based on the equilibrium of the NADH/NAD+ ratio inside the bacteria cell, Ren et al. [40] proposed that the ethanol type pathway induced at pH 4.5 is a better and more stable metabolic pathway than the butyrate type pathway induced at pH 5.0. Although the theoretical yield of hydrogen is 2 mol hydrogen/mol glucose in butyrate type fermentation (Reaction 7), which is same as that of the ethanol type fermentation (Reaction 6), butyrate type fermentation lacks the stability for NADH accumulation because part of the produced NADH can be utilized rapidly by cellular synthesis or converted to hydrogen and NAD+ under the presence of acetyl-CoA [41]. So, the butyrate production pathway has the potential to change to the butanol production pathway, where hydrogen may be consumed [42, 43]. Conversely, it can be inferred from Figure 2 that ethanol type fermentation is able to preserve a balance of NADH + H⁺/NAD⁺. The carbohydrate is first degraded to glucose which is further converted to pyruvate (CH₃COCOH). Pyruvate is oxidized to CH₃COSCoA by depletion of NAD+ with molecular hydrogen and carbon dioxide generation. In order to keep sequential production of hydrogen, the metabolism product NADH + H⁺ must be utilized to regenerate NAD⁺ to compensate for equilibrium between the NADH+ H⁺ and NAD⁺ by the reaction of the ethanol-acetate pathway [44]. This fermentation pathway can reduce acidic terminal products by producing neutral matter of ethanol and make the acidogenic fermentation process favorable for hydrogen production [45]. This shows that ethanol type fermentation can obtain better stability and no pH regulation was required for this fermentation during the whole operation process. Therefore, ethanol type fermentation is the optimal choice for maximum hydrogen production by mixed culture [46–48]. Despite the potential advantages, further deep studies are wort doing to examine the metabolic pathway using genetic modification of hydrogen-producing bacteria and further clarify in more detail the control strategy of ethanol type fermentation.

3 Biohydrogen production from food waste

There are two main ways of biological hydrogen production from carbohydrate: dark fermentation and photosynthesis [49]. The major substrates used for dark fermentation are simple sugars, such as glucose and sucrose. However, the substrates used for photosynthesis are organic acids, such as acetate and butyrate [50]. Dark fermentation is considered to be a more feasible biotechnology for hydrogen production than photosynthesis due to lower energy consumption and no light limitation [51]. However, the low hydrogen production rate and high cost are the dominant obstacles for large-scale dark fermentative hydrogen production [52]. Utilization of raw waste/wastewater as substrate for fermentative hydrogen production (such as food waste) could effectively enhance the economic benefit which is regarded as a promising solution [53].

Figure 2: Amended ethanol type fermentation route by acidogenic bacteria [22, 33].

Food waste is one of the most severe environmental problems all over the world [54]. Over a billion tons of food waste is generated per year which accounts for 33% of annual global food production [55]. Therefore, disposal and utilization of food waste is becoming one of the major global challenges. Food waste consists mainly of starch and protein which make food waste an economical source for biofuel production [56]. Utilization of food waste for hydrogen production could not only solve the food waste problem, but also produce an alternative energy source simultaneously [16, 57]. However, nutrients stored in food waste are in the form of macromolecules (such as starch and protein) which have to be broken into utilizable forms (glucose and free amino nitrogen) before being utilized by microorganisms for fermentative hydrogen production [24, 58]. Generally, there are two main stages in fermentative hydrogen production from food waste (hydrolysis and fermentation). Separate hydrolysis and fermentation is the process in which food waste is first hydrolyzed by pretreatments to obtain micro-molecules. Then, the nutrients solution is subjected to dark fermentation for hydrogen production. The hydrolysis stage of complex substrate is the rate limiting step in most of the bioprocesses [59]. However, hydrolysis of food waste in a separate process could overcome this problem. The operating conditions in pretreatment can be optimized to get the maximum food waste to nutrients solution conversion rate [60].

3.1 Carbohydrate

Food waste is considered to be a suitable substrate for fermentative hydrogen production since it is rich in carbohydrate. The carbohydrate has to be hydrolyzed by hydrolytic bacteria to produce simple sugars, such as glucose and sucrose, before being utilized as substrate for fermentative hydrogen production. The product of carbohydrate hydrolysis mainly depends on the microorganisms present in the culture broth. The speed of carbohydrate hydrolysis is faster than that for lipid and protein. Lay et al. [61] indicated that the yield of hydrogen production from carbohydrate rich substrate is 20 times higher than using lipid and protein rich substrate. Sagnak et al. [62] applied both acid and heat treatments to get monomeric sugar for fermentative hydrogen production. Han et al. [63] added glucoamylase and protease to the food waste before hydrogen production to increase the efficiency of starch and protein hydrolysis.

3.2 Fats

Oils are sources of lipids in food waste [16]. The presence of lipids in anaerobic fermentation could lead to flotation and mass transfer problems. The process of fermentative hydrogen production from lipid hydrolysis would be slower than carbohydrate hydrolysis because of the ability of hydrogenotrophic methanogens to consume hydrogen-producing bacteria [34]. Therefore, it is acknowledged that lipids are not suitable to be utilized as the sole substrate for fermentative hydrogen production.

3.3 Protein

Food waste contains significant amounts of protein which are polypeptides formed by joining covalently linked amino acid [53]. The hydrolysis of protein is performed to produce amino acids by proteases excreted by microorganisms. Then, the amino acids are further utilized to generate volatile fatty acids, carbon dioxide and hydrogen. The speed of protein hydrolysis is slower than carbohydrate and lipid hydrolysis. Therefore, it is not suitable to use protein as sole substrate for fermentative hydrogen production.

Automatically generated rough PDF by *ProofCheck* from River Valley Technologies Ltd

4 Pretreatment of food waste for fermentative hydrogen production

Depending on the food waste structure, pretreatment could be applied in single or multiple steps, including physical, chemical and enzymatic pretreatments. Physical pretreatment is related to size reduction or the contribution of a physical force to decompose the food waste structure. Chemical pretreatment is usually applied in severe acidic or alkaline conditions. Enzymatic pretreatment could be accomplished at ambient operation conditions with higher conversion rate and yield.

4.1 Physical pretreatment

Physical pretreatment of food waste could reduce the size of food waste by physical forces without chemicals or microorganisms [51]. Comminution is the most common physical pretreatment. The main objective of physical pretreatment is to improve the available surface area by reducing the substrate size. It enables a more efficient chemical or microbial hydrolysis of the substrate matrix and decreases hydrolytic enzyme limitations. Physical pretreatment is one of the most common ways applied in fermentative hydrogen production from food waste. Reducing the size of food waste by mechanical comminution is an energy intensive process which could be achieved by different devices, such as shredders and grinders.

4.2 Chemical pretreatment

Chemical pretreatment is the process to depolymerize the food waste using chemicals [28]. The goal of chemical pretreatment is to enable enzymatic access to fermentable sugars by breaking down the macromolecules into micromolecules. Acid and alkaline are the most commonly applied chemical pretreatment. Dilute acid hydrolysis includes HCl, $\rm H_2SO_4$, and $\rm HNO_3$. Dilute acid hydrolysis can be accomplished at $100-250^{\circ}\rm C$, 0.5-30 min with 0.5-3% acid concentrations [55]. The main disadvantages of acid hydrolysis are the toxic byproducts, such as furfural, whichwould inhibit the performance of hydrogen production in the fermentation step.

4.3 Enzymatic pretreatment

Food waste could be used as substrate for fermentative hydrogen production after physical or chemical pretreatment processes [10]. However, it has been observed that physical or chemical pretreatment could require intensive energy, chemicals and severe operation conditions leading to wastewater and toxic byproduct formation. Therefore, the selection of an environmental friendly and sustainable process is of great importance. Enzymatic pretreatment is regarded as an alternative option to physical and chemical pretreatment of food waste.

Microorganisms, such as fungi (*Aspergillus awamori* and *Aspergillus oryzae*) and some bacteria (*Clostridium thermocellum*), can produce glucoamylase and protease which could degrade macromolecules (starch and protein) to release fermentable nutrients from food waste [31]. Compared to physical and chemical pretreatments, enzymatic pretreatment could operate under mild condition without toxic byproduct formation. Glucoamylase could degrade starch into glucose which can further be utilized as substrate for fermentative hydrogen production. Meanwhile, protease could hydrolyze protein into free amino nitrogen (FAN). Usually, food waste pretreatment starts with physical size reduction followed by diverse combinations of chemical and enzymatic processes.

Table 1: Comparison of the performance of hydrogen production from food waste.

Substrate	Microorganisms	Reactor type	$ m H_2$ yield (ml $ m H_2/g$ $ m VS_{added}$)	References
Food waste (grain, vegetables, meats and fish)	Sewage sludge	Continuous	205	[3]
Sonicated food waste	No inoculum	Batch	97	[62]
Food waste	Clostridium-rich composts	Batch	77	[61]
Food waste	Escherichia cloacae	Batch	52	[30]

	~	1
	٠	4
		ı
	u	١
	×	١
	ď.	J
	_	
	h	١
	v	
	_	
	_	4
-		
	_	١
	_	•
	~	ī
	-	
	_	
-	÷	١
	L	
	7	í
	Ф	J
H	_	
П		
	-	8
	'n	١
	u	J
-		
-		۱
	α	۹
	٠,	•
	2	•
	s	
	7	ţ
	ų.	J
	<	ĺ
	-	•
•	-	
0	~	•
	-	
	_	
	c	1
	$\overline{}$	۰
	Ξ	
	c	
	۲	•
	-	
	-	
	_	
	2	1
	_	
	>	4
	σ	
	ē	
-	_	
9		١
- 6	-	,
•	-	
		١
		1
	C	
	ς	
,	ξ	
	2	
•	2	
0	770	
	220	
	2	
	- 27	
	7	
	7 7 7	
	2 2 Z	
100	7 2 7 7	
	27 23 1 2 2	
	מעל על דו ע לפוב	
	70 10 T T T T T T T T T T T T T T T T T T	
	של אם דו שואי אים המ	
	שוליל על דר ול המוואה באיל	
	21 V 7 V 7 V 7 V 7 V 7 V	
	שובי אם דו דו האונה אינה אינה	
	Protect rough JUL by Jyo	
	מע אם דנות מסוומז הפוניופנ	
	Propreted rough PUL by Pro	
	שוליע על דנות לפווסז הפועיפים.	
	Appropriated rolleth PLIN Pro	
	generated rough UIT by yrd	
	/ generated rough DIDE by Dro	
	V Generated rough ULL by Dro	
	V Generated rough DIN By	
	V generated rolldh U Tr by Dro	
	A IV Generated rolldh VIII hv Vro	
	"S IV generated rough PIDE by Pro	
	Cally generated rough July byo	
	ICA IV Generated rough DIN BV DVC	
	1.C2 V Generated rough D 1 hV 2/C	
	TICALLY GENERATED FOLIGH DIT IN DYC	
	atically generated roller VI Jt by Dro	
	natically denerated rollah DIT by Dro	
	matically generated roller VI)t by Dro	
	matically generated roll of DIT by Dro	
	Charles IV generated rough DIJE hy Dro	
	tomatically generated roll aby Div	
	TOMBATICALLY GENERATED FOLIAN PLA	
	intompatically generated roll of DI by Dyo	
	Intomatically generated rolled DIDE by Dyo	
	Alltomatically generated roll of DI Dr. by Dyo	

Food waste	Sewage sludge	Continuous	165	[12]
Food waste	Anaerobic digester	Packed-bed reactor	249	[24]
Food waste	sludge Biohydrogen- bacterium R3	Batch	294.47	[63]

 VS_{added} : volatile solid_{added}.

5 Performance of biohydrogen production from food waste

Table 1 summarizes the comparison of the performance of fermentative hydrogen production from food waste. Lee and Chung [35] conducted a cost analysis of hydrogen production from food waste using two-phase hydrogen/methane fermentation and suggested that the abundance and low cost of food waste makes it economically more feasible than the other sources for H_2 production. Han et al. [63] developed a novel combination bioprocess of solid-state fermentation (SSF) and fermentative hydrogen production from food waste. Food waste was first utilized in solid-state fermentation by *Aspergillus awamori* and *Aspergillus oryzae* to produce glucoamylase and protease, respectively, which were used to hydrolyze food waste to obtain the food waste hydrolysate rich in glucose and free amino nitrogen (FAN). Then, the food waste hydrolysate was used as substrate for fermentative hydrogen production by heat pretreated sludge. The best hydrogen yield (52.4ml H_2 / g food waste or 294.47 ml H_2 /VS_{added}) was achieved at food waste mass ratio of 5%. The proposed combination bioprocess could effectively accelerate the hydrolysis rate, improve raw material utilization and enhance hydrogen yield.

6 Prospects and challenges of fermentative hydrogen production from food waste

Recently, fermentative hydrogen production from food waste has attracted great attention. According to the UN Food and Agriculture Organization, around 1.3 billion tons of food is wasted per year. Food waste, which is comprised mainly of starch, protein and fat, becomes a feasible source for fermentative hydrogen production. A survey was carried out to predict the development of the fermentative hydrogen production sector worldwide. It was found that China would get the largest fermentative hydrogen production market, following by the US, Japan, and India. Additional research is required to improve the efficiency of fermentative hydrogen production from food waste. It is hoped that the limitations to fermentative hydrogen production from food waste can be solved in the near future.

Acknowledgment

This article is also available in: Luque/Xu, Biomaterials. De Gruyter (2016), isbn http://www.degruyter.com/view/product/247439.

References

- [1] Abbasi T, Abbasi SA. Renewable hydrogen: prospects and challenges, Renew Sust Energ Rev, 2011, 15, 3034–40.
- [2] American Public Health Association (APHA), American Water Works Association (AWWA), Wa-ter Pollution Control Federation (WPCF). Standard methods for the examination of water and wastewater, 20th ed., 1998, Washington D.C.
- [3] Chu CF, Li YY, Xu KQ, Kong HN. A pH- and temperature- phase two-stage process for hydrogen and methane production from food waste, Int J Hydrogen Energy, 2008, 33, 4739–46.
- [4] Du CY, Lin SKC, Koutinas A, Wang RH, Dorado P, Webb C. A wheat biorefining strategy based on solid-state fermentation for fermentative production of succinic acid, Bioresour Technol, 2008, 99, 8310–5.
- [5] Elbershbishy E, Hafez H, Dhar BR, Nakhla G. Single and combined effect of various pretreat-ment methods for biohydrogen production from food waste, Int J Hydrogen Energy, 2011, 36, 11379–87.
- [6] Gioannis GD, Muntoni A, Polettini A, Pomi R. A review of dark fermentative hydrogen production from biodegradable municipal waste fractions, Waste Manage, 2013, 33, 1345–61.
- [7] Han SK, Shin HS. Biohydrogen production by anaerobic fermentation of food waste, Int J Hy-drogen Energy, 2004, 29, 569–77.
- [8] Han W, Wang B, Zhou Y, Li YF, Ren NQ. Fermentative hydrogen production from molasses wastewater in a continuous mixed immobilized sludge reactor, Bioresour Technol, 2012, 110, 219–23.

- [9] Han W, Liu DN, Shi YW, Tang JH, Li YF, Ren NQ. Biohydrogen production from food waste hy-drolysate using continuous mixed immobilized sludge reactors, Bioresour Technol, 2015, 180, 54–8.
- [10] Karagiannidis A, Perkoulidis G. A multi-criteria ranking of different technologies for the anaer-obic digestion for energy recovery of the organic fraction of municipal solid wastes, Bioresour Technol, 2009, 100, 2355–60.
- [11] Ramírez-Morales JE, Tapia-Venegas E, Nemestothy N, Bakonyi P, Belafi-Bako K, Ruiz-Filippi G. Evaluation of two gas membrane modules for fermentative hydrogen separation, Int J Hydrogen Energy, 2013, 38, 14042–52.
- [12] Kim DH, Kim SH, Shin HS. Hydrogen fermentation of food waste without inoculum addition, Enzyme Microb Technol, 2009, 45, 181–7.
- [13] Lay J, Fan K, Hwang J, Chang J, Hsu P. Factors affecting hydrogen production from food waste by Clostridium-rich composts, J Environ Eng, 2005, 131, 595–602.
- [14] Lee DH, Chiu LH. Development of a biohydrogen economy in the United States, China, Japan, and India: With discussion of a chicken-and-egg debate, Int J Hydrogen Energy, 2012, 37, 15736–45.
- [15] Lee KS, Hsu YF, Lo YC, Lin PJ, Lin CY, Chang JS. Exploring optimal environmental factors for fer-mentative hydrogen production from starch using mixed anaerobic microflora, Int J Hydrogen Energy, 2008, 33, 1565–72.
- [16] Leung CCJ, Cheung ASY, Zhang AYZ, Lam KF, Lin CSK. Utilisation of waste waste bread for fer-mentative succinic acid production, Biochem Eng J, 2012, 65, 10–5.
- [17] Logan BE, Oh S, Kim IS, Van-Ginkel S. Biological H2 production measured in batch anaerobic respirometers, Environ Sci Technol, 2002, 36, 2530–5.
- [18] Pleissner D, Lam WC, Han W, Lau KY, Lin CSK. Fermentative polyhydroxybutyrate production from a novel feedstock derived from bakery waste, Biomed Research Int, 2014, Volume 2014, Article ID 819474.
- [19] Pleissner D, Lam WC, Sun Z, Lin CSK. Food waste as nutrient source in heterotrophicmicroal-gae cultivation, Bioresour Technol, 2013, 137, 139–46.
- [20] Kim DH, Kim SH, Kim HW, Kim MS, Shin HS. Sewage sludge addition to food waste synergisti-cally enhances hydrogen fermentation performance, Bioresour Technol, 2011, 102, 8501–6.
- [21] Elbeshbishy E, Hafez H, Dhar BR, Nakhla G. Single and combined effect of various pretreat-ment methods for biohydrogen production from food waste, Int J Hydrogen Energy, 2011, 36, 11379–87.
- [22] Ren NQ, Wang DY, Yang CP, Wang L, Xu JL, Li YF. Selection and isolation of hydrogen-producing fermentative bacteria with high yield and rate and its bioaugmentation process, Int J Hydrogen Energy, 2012, 35, 2877–82.
- [23] Sagnak R, Kargi F, Kapdan IK. Bio-hydrogen production from acid hydrolyzed waste ground wheat by dark fermentation, Int J Hydrogen Energy, 2011, 36, 12803–9.
- [24] Shin HS, Kim SH, Han SK, Kim HW, Oh SE. Current technical development in continuous H2 and CH4 production from organic waste, J Environ EngManage, 2006, 16 (4), 217–24.
- [25] Show KY, Lee DJ, Tay JH, Lin CY, Chang JS. Biohydrogen production: current perspectives and the way forward, Int J Hydrogen Energy, 2012, 34, 15616–31.
- [26] Tapia-Venegaset E, Ramirez JE, Donoso-Bravo A, Jorquera L, Steryer JP, Ruiz-Filippi G. Bio-hydrogen production during acidogenic fermentation in a multistage stirred tank reactor, Int J Hydrogen Energy, 2013, 38, 2185–90.
- [27] Tawfik A, Salem A, El-Qelish M. Two stage anaerobic baffled reactor for biohydrogen production from municipal food waste, Bioresour Technol, 2011, 102, 8723–6.
- [28] Van-Ginkel SW, Oh SE, Logan BE. Biohydrogen gas production from food processing and do-mestic wastewaters, Int J Hydrogen Energy, 2005. 30. 1535–42.
- [29] Wang A, Sun D, Cao G, Wang H, Ren N, Wu WM, Logan BE. Integrated hydrogen production process from cellulose by combining dark fermentation, microbial fuel cells, and a microbial electrolysis cell, Bioresour Technol, 2011, 102, 4137–43.
- [30] Xiao LP, Deng ZY, Fung KY, Ng KM. Biohydrogen production from anaerobic digestion of food waste, Int J Hydrogen Energy, 2013, 38,
- [31] Zhang HS, Bruns MA, Logan BE. Biological hydrogen production by Clostridium acetobutylicum in an unsaturated flow reactor, Water Res, 2006, 40, 728–34.
- [32] Zhang S, Lee YH, Kim TH, Hwang SJ, Effects of OLRs and HRTs on hydrogen production from high salinity substrate by halophilic hydrogen producing bacterium (HHPB), Bioresour Technol, 2013, 141, 227–32.
- [33] Ren NQ, Guo WQ, Wang XJ. Effects of different pretreatment methods on fermentation types and dominant bacteria for hydrogen production, Int J Hydrogen Energy, 2008, 33(16), 4318–24.
- [34] Das D, Verziroglu TN. Hydrogen production by biological processes: a survey of literature, Int J Hydrogen Energy, 2001, 26, 13–28.
- [35] Hussy I, Hawkes FR, Dinsdale R, Hawkes DL. Continuous fermentative hydrogen production from sucrose and sugar beet, Int J Hydrogen Energy, 2005, 30, 471–83.
- [36] Li C, Fang HHP. Fermentative hydrogen production from wastewater and solid wastes by mixed cultures, Crit Rev Environ Sci Technol, 2007, 37(1), 1–39
- [37] Logan BE, Oh SE, Kim IS, Van Ginkel S. Biological hydrogen production measured in batch anaerobic respirometers, Environ Sci Technol, 2002, 36(11), 2530–5.
- [38] Lin CY, Lay CH. Effects of carbonate and phosphate concentrations on hydrogen production using anaerobic sewage sludge microflora, Int J Hydrogen Energy, 2004, 29(3), 275–81.
- [39] Wang J, Wan W. Factors influencing fermentative hydrogen production: A review, Int J Hydrogen Energy, 2009, 34(2), 799–811.
- [40] Ren NQ, Guo WQ, Wang XJ. Effects of different pretreatment methods on fermentation types and dominant bacteria for hydrogen production, Int J Hydrogen Energy, 2008, 33(16), 4318–24.
- [41] Hawkes FR, Hussy I, Kyazze G, Dinsdale R, Hawkes DL. Continuous dark fermentative hydrogen production by mesophilic microflora: principles and progress, Int J Hydrogen Energy, 2007, 32, 172–84.
- [42] Fan YT, Li CL, Lay JJ, Hou HW, Zhang GS. Optimization of initial substrate and pH levels for germination of sporing hydrogen-producing anaerobes in cow dung compost, Bioresour Technol, 2004, 91, 189–93.

- [43] de Vrije T, Budde MAW, Lips SJ, Bakker RR, Mars AE, Claassen PAM. Hydrogen production from carrot pulp by the extreme thermophiles Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana, Int J Hydrogen Energy, 2010, 35, 13206–13.
- [44] Han W, Wang XN, Ye L, Huang JG, Tang JH, Li YF, Ren NQ. Fermentative hydrogen production using wheat flour hydrolysate by mixed culture, Int J Hydrogen Energy, 2015, 40, 4474–4480.
- [45] Panagiotopoulos IA, Bakker RR, de Vrije T, Koukios EG. Effect of pretreatment severity on the conversion of barley straw to fermentable substrates and the release of inhibitory compounds, Bioresour Technol, 2011, 102, 11204–11.
- [46] Sagnak R, Kargi F, Kapdan IK. Bio-hydrogen production from acid hydrolyzed waste ground wheat by dark fermentation, Int J Hydrogen Energy, 2011, 36, 12803–9.
- [47] Koutinas AA, Wang R, Webb C. Restructuring upstream bioprocessing: technological and economical aspects for production of a generic microbial feedstock from wheat, Biotechnol Bioeng, 2004, 85(5), 524–38.
- [48] Arifeen N, Kookos IK, Wang R, Koutinas AA, Webb C. Development of novel wheat biorefining: Effect of gluten extraction from wheat on bioethanol production, Biochem Eng. J., 2009, 43, 113–21.
- [49] Zhang YZA, Sun Z, Leung CCJ, Han W, Lin SKC. Valorization of bakery waste for succinic acid production, Green Chem, 2012, 15, 690–5.
- [50] Han W, Ye M, Zhu AJ, Huang JG, Zhao HT, Li YF. A combined bioprocess based on solid-state fermentation for dark fermentative hydrogen production from food waste, J Clean Prod, 2015,
- [51] Han W, Lam WC, Melikoglu M, Wong MT, Leung HT, Ng CL, Yan P, Yeung SY, Lin SKC. Kinetic analysis of a crude enzyme extract produced via solid state fermentation of bakery waste, ACS Sustain Chem Eng, 2015, 3, 2043–2048.
- [52] Du CY, Lin SKC, Koutinas AA, Wang RH, Webb C. A wheat biorefining strategy based on solid-state fermentation for fermentative production of succinic acid, Bioresour Technol, 2008, 99, 8310–5.
- [53] Kountinas AA, Arifeen N, Wang R, Webb C. Cereal based biorefinery development: integrated enzyme production for cereal flour hydrolysis, Biotechnol Bioeng, 2007, 97, 61–72.
- [54] Ren NQ, Wang DY, Yang CP, Wang L, Xu JL, Li YF. Selection and isolation of hydrogen-producing fermentative bacteria with high yield and rate and its bioaugmentation process, Int J Hydrogen Energy, 2012, 35, 2877–82.
- [55] Wang R, Sharano SM, Gody LC, Melikoglu M, Webb C. Bioconversion of rapeseed meal for the production of a generic microbial feed-stock, Enzyme Microb Technol, 2010, 47, 77–83.
- [56] Lee KS, Hsu YF, Lo YC, Lin PJ, Lin CY, Chang JS. Exploring optimal environmental factors for fermentative hydrogen production from starch using mixed anaerobic microflora, Int J Hydrogen Energy, 2008, 33, 1565–72.
- [57] Akutsu Y, Li YY, Tandukar M, Kubota K, Harada H. Effects of seed sludge on fermentative characteristics and microbial community structures in thermophilic hydrogen fermentation of starch, Int J Hydrogen Energy, 2008, 33, 6541–8.
- [58] Ren NQ, Wang BZ, Hung JL. Ethanol-type fermentation from carbohydrate in high rate acidogenic reactor, Biotechnol Bioeng, 1997, 54, 428–33.
- [59] Ren NQ, Cao GL, Guo WQ, Wang AJ, Zhu YH, Liu BF, Xu JF. Biological hydrogen production from corn stover by moderately thermophile Thermoanaerobacterium thermosaccharolyticum W16, Int J Hydrogen Energy, 2010, 35, 2708–12.
- [60] Wang J, Wan W. Effect of concentration on fermentative hydrogen production by mixed cultures, Int J Hydrogen Energy, 2008, 33(4), 1215–20.
- [61] Lay JJ, Fan KS, Chang J, Ku CH. Influence of chemical nature of organic wastes on their conversion to hydrogen by heat-shock digested sludge, Int J Hydrogen Energy, 2003, 28, 1361–7.
- [62] Sagnak R, Kargi F, Kapdan IK. Bio-hydrogen production from acid hydrolyzed waste ground wheat by dark fermentation, Int J Hydrogen Energy, 2011. 36, 12803–9.
- [63] Han W, Ye M, Zhu AJ, Zhao HT, Li YF. Batch dark fermentation from enzymatic hydrolyzed food waste for hydrogen production, Bioresour Technol, 2015, 191, 24–9.