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1 Introduction

Optimization in engineering is the search for the “best” solution to a specific problem. Criteria to determine
whether the solution is the “best” or not vary widely and are defined by an engineer (researcher) based on
their experience, the problem’s objectives, common sense, etc. For example, while optimizing the performance
of a synthesis reactor, it’s often desired to maximize the possible yield of the final product; or in the case of
equipment design, it is common to reduce the total cost while keeping a unit’s performance at the desired
level.

Engineering optimization can be classified by the number of objectives: either single-objective optimization
(SOO) or multi-objective optimization (MOO). The SOO approach has a longer history. Essentially, it is based
on the formulation of a unified function that represents the overall effect. Most of the objective functions in
SOO are related to the economic efficiency of the process or unit. A classical example is the optimization of
insulation thickness. Insulation saves money through reduced heat loss, but insulation can be very costly at the
same time. One has to compare the total cost of new insulation with the savings from energy losses to find an
optimal thickness; the ratio between these two factors can be an objective function to be minimized (Figure 1)
[1]. It can be said that SOO methods are mainly aimed at a search for an extreme point (minimum or maximum)
in a search space.

Figure 1: Overall economic effect of heat insulation.

However, it is not always possible to formulate a single objective for a particular problem that can adequately
represent a meaningful and optimal solution. MOO methods appeared in order to overcome this drawback. One
can deal with more than one objective, and these objectives are not necessarily economic-related parameters.
For example, consider a very common reaction engineering problem in chemical engineering – simultaneous
yield maximization of a goal (desired) product and the minimization of an undesirable side product. Such cases
are quite common for oil refining, the petrochemical and polymer industry, organic synthesis, etc. Consider a
simple parallel reaction, where we are targeting species B (desired) while species C is a side product (undesired):

Ajay K. Ray is the corresponding author.
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Operating conditions might have a similar effect on the yield of both products, e.g. an increase in process
temperature, an increase in the percentage of both desired and side products in the outflow. Plotting this trend
(concentration vs. temperature) (see Figure 2), it is possible to visualize the conflictive nature of our objectives:
one cannot increase the concentration of B (desired) and decrease concentration of C (undesired) simultane-
ously. If we apply a classical single-objective approach, we would probably formulate the objective function in
some way relating to the price of production to the concentrations of species. But, this type of objective func-
tion (cost minimization or profit maximization) usually is time- and/or site-specific. The cost of raw material
or revenue generated from selling a product is site-dependent (price varies from one region to another around
the globe) and time dependent (price varies from year to year).

Figure 2: Effect of temperature on concentration of species in parallel reaction scheme.

Applying MOO methods allow one to solve such problem; one can directly treat product concentrations
as objectives instead of a single objective function expressed in terms of economic effect (cost minimization
or profit maximization). This is why a multi-objective approach is superior to a “classical” single objective
approach.

In the current work, we will briefly consider the general ideas and concepts in use for MOO, the methods
applied – especially more recent and state-of art ones – and complete a review of its applications in chemical
reactor engineering.

2 Multi-objective optimization

2.1 Concept of multi-objective optimization

The multi-objective optimization (MOO) concept originates from economics and was developed by the Italian
economist, engineer and philosopher Vilfredo Pareto. First let us consider the definition of multi-objective op-
timization of a minimization problem (here and throughout the chapter we will discuss minimization MOO
problems, since any maximization problem can be converted into a minimization one quite easily):

minimize
𝑥∈𝑆

𝐼 (𝑥) = [𝐼1 (𝑥) , 𝐼2 (𝑥) , … , 𝐼𝑛 (𝑥)] , (1)
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subject to:

𝑔𝑘 (𝑥) ≤ 0, 𝑖 = 1, 2, … , 𝐾,
ℎ𝑗 (𝑥) = 0, 𝑗 = 1, 2, … , 𝐽,

where n is the number of objectives, K and J are the number of inequality and equality constraints respectively,
x is a vector of decision variables in a search space S. A general solution for such an optimization problem is
a set of points instead of a single one such as in SOO problems. However, in some special cases, a single point
solution is also possible, which we will not consider for this trivial case. The set of points is called a Pareto set
(front or distribution).

Definition of a Pareto optimal point

A point x is called a Pareto optimal point if and only if such a point x* doesn’t exist in a search space in which
Ii (x*) is “better” than Ii (x) for all objectives simultaneously. By “better” it is necessary to assume mathematical
operators ≤ or ≥ depending on the particular problem formulation.

A Pareto set can be presented in terms of decision variables (set of x) or objectives (set of I(x)). For a better
understanding, let’s illustrate a Pareto concept for a two objective function problem (Figure 3). If the problem
requires simultaneous maximization of both objectives A and B, Figure 3 describes the Pareto set obtained with
respect to decision-variable limits and equality and inequality constraints. If we move from point 1 to point 2,
objective A is increasing (desired) while objective B is decreasing (undesired). It is said that these two points
like any other points on the curve are non-inferior (non-superior or equally good) to each other. If we move
from point 3 in the direction of Pareto, one can see that both objectives A and B are improving, thus point 3 is
not a Pareto point.

Figure 3: Pareto set for two conflicting objectives.

2.2 MOO methods

When we have determined a solution for a MOO problem in the form of a Pareto set, let us turn our attention to
methods utilized for its search. There are a number of different techniques; later, we will provide the accepted
classification of them for better understanding [2–4]. The classification is based on a decision maker’s (DM) role
in the optimization search. Here the DM is a person familiar with the formulated problem; he/she can impact
on the preference of objectives or solutions. Therefore, methods are divided into:

– no-preference;

– a priori;

– a posteriori;

– interactive.

The first group excludes any influence of the DM on a search of Pareto points while the next two take it into
account. The latter case is a group of currently developing methods in which DM is directly involved in the
optimization search and is able to alter the preferences until the best solution is found. Just note here as a
remark that the classification is not strict because the same methods can be referred to by more than one group;
this will be shown later. From here we provide further a concise review of introduced methods.
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3 No-preference methods

If preferences are hard or impossible to define by DM, no-preference methods can be applied. They allow for
finding “average” solutions regardless of any preference; no extra knowledge has to be provided by DM to solve
such a MOO problem.

3.1 Neutral compromised solution

The neutral compromised solution method allows for finding optimal solutions “somewhere in the middle” of
a Pareto set. To apply this technique, it is required to define the norm in an objective domain, which will be a
measure of distance for the “middle” solution and the selection of a reference point from which the distance
shall be minimized [5]. However, we can say that the DM expresses preferences by choosing the norm and
reference point, but he/she is not doing it in an explicit way. For MOO problems, it is necessary for all objectives
to be of the same dimension or dimensionless. The commonly used norms are p-norm, Chebyshev norm or an
augmented Chebyshev norm. The following problems are to be minimized respectively:

minimize
𝑥∈𝑆

⎡⎢
⎣

𝑛
∑
𝑖=1

∣𝐼𝑖,up − 𝐼𝑖∣
𝑝

∣𝐼𝑖, up − 𝐼𝑖, low∣𝑝
⎤⎥
⎦

1/𝑝

, 1 ≤ 𝑝 ≤ ∞,

minimize
𝑥∈𝑆

max
1≤𝑖≤𝑛

∣𝐼𝑖, up − 𝐼𝑖∣
∣𝐼𝑖,up − 𝐼𝑖,low∣

,

minimize
𝑥∈𝑆

max
1≤𝑖≤𝑛

∣𝐼𝑖, up − 𝐼𝑖∣
∣𝐼𝑖, up − 𝐼𝑖,low∣

+ 𝜀
𝑛

∑
𝑖=1

∣𝐼𝑖,up − 𝐼𝑖∣
∣𝐼𝑖, 𝑢𝑝 − 𝐼𝑖, low∣

,

(2)

where ε is a small number > 0. The denominator in each term plays the role of a scaling factor for minimizing
the distance between upper Ii,up and lower Ii,lower values for each objective function. Also, a method of global
criterion is one of such methods but will be considered in section on a priori methods below with some remarks.

4 A priori methods

A priori methods require the DM to state his preference in a MOO problem. This has to be done prior to deter-
mining the Pareto set. One can specify the priority of objectives (or aims) to be achieved. Since a DM is a person
familiar with a particular problem, sometimes it becomes possible to single out more important objectives or
put them in an order of preference.

4.1 Method of Weighted global criterion

This method with some variations is the most popular technique for a MOO. The idea is to transform objective
functions into a single one, thereby scalarizing the search space. In the most general form, this method can be
written as

minimize
𝑥∈𝑆

𝑛
∑
𝑗=1

𝐹 (𝐼𝑗 (𝑥) , 𝑤𝑗) . (3)

A scalarized function represents the sum of composite functions of objective Ii (x) and weighting factor wi.
The latter itself is a measure of the DM’s preferences for a particular objective. Usually weighting factors are
assigned in such a way that ∑𝑛

𝑗=1 𝑤𝑗 = 1 and wj > 0. In a simplest form, the expression (1) can be written as a
weighted exponential sum [4]:
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minimize
𝑥∈𝑆

𝑛
∑
𝑗=1

𝑤𝑗[𝐼𝑗 (𝑥)]
𝑝
, 𝐼𝑗 (𝑥) > 0,

minimize
𝑥∈𝑆

𝑛
∑
𝑗=1

[𝑤𝑗𝐼𝑗 (𝑥)]
𝑝
, 𝐼𝑗 (𝑥) > 0.

(4)

Note that in the case of Eq. (3) with p = 1 (because of its simplicity), it is called the method of a weighted sum
and widely used in applied chemical engineering problems [6].

Some other modifications are required for the idea of a utopia point, Iutopia(x); the imaginary point in a search
space where all the objectives reach a minimum value simultaneously. The aim is to minimize the weighted
distance between the objectives and that point [7]. Different metrics can be used as a distance measure. Often
this group of techniques is called weighted metrics [3]. Here we provide some of them:

minimize
𝑥∈𝑆

⎡⎢
⎣

𝑛
∑
𝑗=1

𝑤𝑗(𝐼𝑗 (𝑥) − 𝐼utopia
𝑗 (𝑥))

𝑝⎤⎥
⎦

1/𝑝

,

minimize
𝑥∈𝑆

⎡⎢
⎣

𝑛
∑
𝑗=1

𝑤𝑝
𝑗
(𝐼𝑗 (𝑥) − 𝐼utopia

𝑗 (𝑥))
𝑝⎤⎥
⎦

1/𝑝

.

(5)

Note here that instead of a utopia point, the DM can determine a set of objectives that one desires to reach. This
makes sense from a practical point of view, or when the real utopia point is unknown.

Remarks: A group of weighted global criterion methods is also a popular a posteriori technique. By varying
the weights, it is possible to obtain a Pareto set instead of a single point. These methods always converge to
a Pareto optimal solution, but an entire Pareto set can not be found if the problem is not convex [3]. If one
assigns all weights, wi, equal to 1, the approach can be classified as no-preference; but the drawback remains
the same. In addition, the magnitudes of objective values should be commensurable with each other to avoid
overemphasis of one over the other. Hence, normalization is required for applying this technique [3].

4.2 Lexicographic method

Lexicographic methods require the DM to sequentially organize objectives from 1 to N in terms of preferences
[8]. The following problem has to be solved [4]:

minimize
𝑥∈𝑆

𝐼𝑖 (𝑥) , (6)

subject to:

𝐼𝑘 (𝑥) < 𝐼𝑘 (𝑥∗
𝑘) 𝑘 = 1, 2, … , 𝑖 − 1; 𝑖 = 1, 2, … , 𝑛,

where k is the function order in a preference list, 𝐼𝑘 (𝑥∗
𝑘) the constraint’s limit received at kth step. The first

objective in the list should be minimized with the original constraints. If the DM obtains a single solution, one
can accept it as an optimum. If not, the new constraint 𝐼𝑘 (𝑥∗

𝑘) has to be accepted to keep the kth objective’s
optimal values. The procedure continues with the next objective function (e.g. second function in a list, third
function in a list, etc.), until the optimum is reached.

In reality, it is often difficult for a DM to distinctly organize objectives in an order of importance on account
of the complexity of a MOO problem. Another drawback with this technique is that a unique solution is of-
ten found before the best optimal solution is reached. It means that some of the objectives are not taken into
consideration at all [3].

4.3 Goal Programming (GP)

This method was developed by Charnes and Cooper [9]. The DM defines a set of goals G that should be achieved
for each objective Ii (x). Even if all these goals are unattainable simultaneously, it is still desired to reach them

5
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“as close as possible”. It is proposed to minimize the distance between vectors I(x) and G. Such a weighted GP
problem formulation is written as:

minimize
𝑥∈𝑆

𝑛
∑
𝑖=1

𝑤𝑖𝛿𝑖,

𝛿𝑖 = 𝐼𝑖 (𝑥) − 𝑔𝑖, 𝑖 = 1, 2, … , 𝑛,
(7)

where wi is a weighting factor for objective I, is a deviation of objective Ii (x) from goal gi. The formulation of this
goal programming problem doesn’t necessarily require the solution to be Pareto optimal. The solution obtained
can be referred to as: (a) efficient; (b) inefficient; or (c) an unbounded solution. An efficient solution belongs to a
Pareto front while an inefficient solution can be improved for two or more objectives simultaneously. The latter
case is a solution located too far from a Pareto front [10].

Setting goals is a clear approach for a DM (unlike, for example, the use of a utopia point in the global criterion
method). However, the further procedure for an optimum search is not necessarily easy, e.g. weights assignment
can be more difficult. Some GP methods are combined with a lexicographic method, where deviations are
structured in preference order and then minimized. The DM has to be aware of all the drawbacks of GP methods
and choose the proper technique for finding an optimal solution.

5 A posteriori methods

In contrast to other methods discussed so far, an a posteriori method generates a Pareto set first, when the DM is
given the opportunity to choose acceptable ones. It is reasonable if the DM is unsure about his/her preferences,
or the problem definition is vague about the relative importance of objectives.

5.1 ε-Constraint Method

The ε-constraint method is a non-scalarizing approach. The original idea was reported by Yacov Haimes [11].
The more comprehensive explanation is provided by Chankong and Haimes [12]. It is proposed to solve the
following n-objective problem (Eq. (1)) to define a Pareto set:

minimize
𝑥∈𝑆

𝐼𝑖 (𝑥) , (8)

subject to:

𝐼𝑚 (𝑥) ≤ 𝜀𝑚, 𝑖 = {1, 2, … , 𝑛 \ 𝑚 ≠ 𝑖} ,
𝑔𝑘 (𝑥) ≤ 0, 𝑖 = 1, 2, … , 𝐾,
ℎ𝑗 (𝑥) = 0, 𝑗 = 1, 2, … , 𝐽,

where εm are user defined constraints. Note that any of the objective functions can be chosen for minimization.
By varying εm, the Pareto set can be reached. It is reported by authors that the current method can deal with
non-convex problems. However, drawbacks still exist. The choice of εm is not as easy for DM; the technique
also significantly increases computation time if the total number of equations (objectives and constraints) is
relatively high.

6 Interactive methods

As it follows from the name, interactive methods require some sort of interaction between the DM and the
MOO algorithm. Initially, no a priori information is required, and the DM specifies some objective-related pref-
erence information during a search process. Solutions in interactive methods move iteratively, providing the
DM with some new solution(s) and allowing the re-specification of his/her preferences, if needed. The inter-
active methods outcome is one or more Pareto optimal solutions, but not the entire Pareto set. Generally, many
other variations exist, which are a kind of extension of classical methods described here with the way how DM
should interact with an algorithm. There is a variety of such methods and we will not discuss it here providing
only references on some original sources and reviews:
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– interactive Surrogate Worth Trade-off (ISWT) [12];

– reference point methods [13];

– non-differentiable Interactive Multi-objective Bundle-based Optimization System (NIMBUS) [14];

– step method (STEM) [15].

For an overview of interactive methods, we refer the reader to outstanding reviews by Miettenen [16] and
Branke et al. [3].

7 Genetic algorithms

Genetic algorithms (GAs) are currently one of the most developing groups of methods in MOO. They are “based
on the mechanics of natural selection and natural genetics” [17]. Here, we would like to emphasise the power of
GAs and discuss them in more details. However, genetic algorithms belong to a posteriori methods; we discuss
GAs in an individual sub-chapter on account of their fundamental difference to the methods discussed above.

The original idea was proposed by Holland [18] as an adaptation concept. Thereafter, Goldberg evolved this
theory and formulated general regulations of GAs [17]. GAs have been developed intensively in recent years,
but the main principles remain the same. As indicated by Goldberg, main distinctions from classical methods
are:

– GAs work with a number of points (population) instead of a single one;

– GAs treat objective functions directly; there is no need for derivatives, utility functions, or any other auxiliary
knowledge;

– GAs operators are probabilistic in nature in contrast to deterministic ones used in all classical methods.

GAs are notable for their robustness. It is a superior search procedure in many aspects. Unlike many derivative-
based methods that can be trapped around local optima, GAs are a global optimum search procedure. They
can also treat discontinuous or discrete functions. they overcome issues with the convexity of a Pareto set as
well as deal with multi-modal objective functions [19].

7.1 About binary-coded variables

Preceding the explanation of GAs’ working principles, one has to know about binary-coded variables. The most
common representation of a variable utilized by GAs is a binary string. That variable is simply a certain length
sequence of ones and zeros (e.g. 1001). If a user deals with continuous variable (e.g. length, product yield, time,
etc.), it is required to discretize the variable. The procedure is quite simple. For example, the decision variable
x ∈ [Xmin, Xmax] has to be mapped into a binary string. The user decides to use 4 bits for each variable, in other
words, the length of binary string is set to 4 digits. Thereby, we have 24 = 16 possible combinations of strings.
Lower and upper bounds are assigned with the values Xmin → 0000 and Xmax → 1111. All other values are
mapped in between these two values (Figure 4).

Figure 4: Mapping of real value into binary variable.

The precision of discretization of variables is directly dependent on the string length; the longer the length,
the more binary variables can be mapped between the lower and upper limit. The precision π may be calculated
as [17]:

𝜋 =
𝑥max − 𝑥min

2𝑙str − 1
. (9)

7
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7.2 Simple Genetic Algorithm (SGA)

For a better understanding the GAs’ principle, let us consider a simple genetic algorithm (SGA) first. The main
components of a SGA include: (a) reproduction; (b) crossover; and (c) mutation of genetic operators. At the
beginning, the initial population is generated randomly. The population is a set of individuals; each of which
represents a single decision variable (or a vector). The reproduction operator is applied to the population to
create a “mating pool”. Individuals with a higher objective function value have a higher chance of being copied
into a matting pool. Classical and simple way to perform a reproduction operator is a roulette wheel [17].

Once the mating pool is formed, crossover and mutation operations are executed. In a single point crossover,
two individuals (called parent chromosomes) are chosen randomly to exchange “information” with each other.
They swap binary sequences after the arbitrary position p (which is randomly selected) and then generate
“daughter chromosomes” (Figure 5).

Figure 5: Representation of single point crossover between two binary strings.

Mutation is also aimed at altering the daughter chromosomes’ binaries but in a different manner. Like mu-
tation in nature, it occurs with a very small probability. Mathematically, it alters one cell in a sequence each time
from 0 to 1 or vice versa. It is absolutely necessary to keep diversity in the population [20]. For example, let’s
assume a case where all individuals in a population have 0 at kth position, under these conditions the crossover
operator cannot create 1 at this point. Mutation allows one to overcome this issue.

The best n daughter individuals are taken to form a new mating pool where crossover and mutation are
carried out again. This procedure repeats until the termination criterion is satisfied. Below we provide a gen-
eralized scheme of SGA (Figure 6).

Figure 6: Simple genetic algorithm.

7.3 Use of GA in MOO

If one has a SOO problem, it is easy to choose the best solutions from the population by comparing the single
objective values of individuals. When one deals with multiple objectives, it is not clear how to compare them.
To deal with this, Goldberg introduces the concept of non-dominated vectors [17]. Vector a is said to be less
than vector b if and only if these two conditions are satisfied simultaneously:

– all components of a are less or equal to corresponding components of b;

– at least one component of a is strictly less than corresponding element of b;

or, in other words (for a minimization MOO problem), a dominates b. If for the vector a there is no such vector
c that dominates it, vector a is called non-dominated. From this point of view, a Pareto set is a non-dominated
set.

Recent GAs’ modifications are more complex than a SGA. There is diversity of different algorithms pre-
sented in the open literature: Vector Evaluated Genetic Algorithm (VEGA) [21], Multi-objective GAs (MOGA)
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[22], Strength Pareto Evolutionary Algorithm (SPEA) [23], Niched-Pareto GAs [24], Predator-Prey Evolution
Strategy [25], Rudolph’s Elitist Evolutionary Algorithm [26], NSGA-II [27], Differential Evolution (DE) [28]
based methods and many others. We will not discuss most of them here, but refer readers to original sources.

We would like to emphasize one of the state-of-the-art algorithms: the non-dominated sorting genetic algo-
rithm II (NSGA-II). The reader can note that this algorithm was used in a majority of MOO problems solved in
the literature (Table 1). After development by Deb [27], it has been widely propagated in optimization problems
for chemical engineering as well as for many other fields. NSGA-II is notable for its characteristics, especially
its ability to find diverse solutions close to a real Pareto set and the speed of convergence [27]. Here are the
elements that contribute to its high performance.

– This algorithm uses the concept of elitism. After mating pool formation, N parents and N daughters’ chro-
mosomes are united into a single group of 2N. Selection is carried out over this pool and not only from the
original mating pool. If parents are better than their daughters, it allows them to not be excluded them from
population, but carry on in the next generation. This allows diversity.

– The Non-dominated Sorting Approach is used as a selection procedure. It divides an entire population into
groups of non-dominated individuals (non-dominated fronts). Any solution in front 1 is superior to any solu-
tion in front 2, and so on.

– To maintain the diversity of the population, authors introduced crowding distance. If some region in an
objective domain is too populated with individuals, it is reasonable to exclude some of them from the pop-
ulation. The crowding distance of point i represents an average side length of n-dimensional cuboid in
objective space, drawn out around point i where two neighboring points are taken as vertices. The higher
the crowding distance, the less crowded a region. Points from the same front but with less values than this
parameter have less chance to carry on into the next generation. A step-by-step guide to execute NSGA-II,
a performance of the algorithm in test problems or other characteristics can be found elsewhere [19, 27].

7.4 Constraint handling in GA

There are different techniques aimed at constraint handling in GAs. Constraints impose extra conditions on
a MOO problem, thereby limiting the search space. Based on this, solutions are divided into feasible and in-
feasible regions. An infeasible solution cannot be neglected in GAs in order to maintain diversity. Even if a
particular solution violates constraints, it should have a chance to remain in the population in order to have
a chance to move to a feasible region [19]. To do this, many techniques evaluate the extent of violation from
a feasible region. Two noteworthy techniques are discussed below, which have been utilized more frequently
while solving applied MOO problems in chemical engineering.

Penalty function approach

The penalty function approach modifies the original objective functions by adding a constraint violation to
them as follows [20]:

minimize
𝑥∈𝑆

𝑃 (𝑥) = 𝐼𝑖 (𝑥) + Ω (𝑅, 𝑔 (𝑥) , ℎ (𝑥)) , (10)

where Ii (x) is the original objective function, Ω is a penalty term, R is a penalty parameter. The penalty term
represents the sum of constraint violations vi (x) from a feasible region:

Ω= 𝑅 ∑ 𝑣𝑖 (𝑥).

Constraint violations vi (x) could be defined as:

𝑣𝑖 (𝑥) = {∣𝑔𝑘 (𝑥)∣ , if 𝑔𝑘 (𝑥) ,
0, otherwise,

� (11)

or

𝑣𝑖 (𝑥) = ∣ℎ𝑖 (𝑥)∣2. (12)
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The penalty parameter R is used to have values Ii (x) andΩ of a similar magnitude. Hence, if a particular solution
overruns a feasible region, the value of the penalty function P(x) increases even if the value of the original
objective function Ii (x) is small. The solution becomes inferior and has a higher chance of being excluded from
the population. One of the main drawbacks of this method is that the penalty function distorts the Pareto front
of the original function which cause difficulties finding a true Pareto set.

Constrained tournament method

The constrained tournament method is a methods developed for use with GAs only. The approach can treat
constraints directly instead of using any objective function transformation. It modifies the tournament selection
of individuals for the formation of a mating pool. Now solutions are checked for constraint violation in addition
to dominance. Between two infeasible solutions, the one chosen is the one with less constraint violations. When
two individuals are picked for a tournament selection, the following “constraint-domination” rules have to be
kept:

– the feasible individual is always superior to the infeasible individual;

– between two infeasible individuals the one with smaller constraint violation should be given priority; and

– if both individuals are feasible, the regular (non-constraint) approach should be applied.

The generic “constraint-domination” principle can be used with any GAs and doesn’t require extra computational
time [19].

4.8 Simulated annealing

Simulated annealing (SA) is another stochastic-based method of search and, like GAs, belongs to a posteriori
methods. The procedure mimics the behavior of molten metals cooling. At high temperatures, metals behave
like a liquid where atoms are in chaotic motion. When the cooling is started, atoms lose mobility and begin to
form crystalline lattice of solid metal. The rate of cooling strongly affects the structure of crystal, the slower the
rate, the more uniformed the structure. Uniformed mono-crystalline structure is more stable (i.e. has minimum
energy).

SA for optimization was considered in [29]. They applied principles of statistical mechanics of systems in
thermal equilibrium to solve the optimization problem. The main principle is based on the Boltzmann proba-
bility distribution function. At a given temperature T, the probability of the system to have energy E1 is propor-
tional to exp(−𝐸1

𝑘𝑇 ), where k is the Boltzmann constant. In this context, probability for a system to move from
state 1 to state 2 is given as:

state 1
state 2 = exp (− (𝐸2 − 𝐸1)

𝑘𝑇 ) . (13)

Hence, if E2 is lower than E1, then the system definitely turns to state 2. At the same time, if E2 − E1 > 0 a finite
probability for transition from 1 to 2 still exists. The higher temperatures T correspond to higher probabilities
of state 2 to exist. For energies in Boltzmann distribution equations, the reader has to consider objective values.

SA in the simplest form can be described in the following way: the algorithm starts with an initial point
x0 (usually random). The random point x1 is generated in the neighborhood of x0 and the objective values are
compared at these points. If a new point improves our objectives, it is accepted instead of x0. If not, the point
x1 is accepted with the probability exp(−(𝐸2 − 𝐸1)

𝑘𝑇 ). During the search, the temperature T is slowly decreased
(“cooling”) which reduces the probability of a new point with worse objective being accepted. The search con-
tinues until some termination criteria are reached, for example, it can be an error between points in subsequent
iteration or minimal temperature. One run of SA yields one Pareto optimal solution. Thus multiple simulations
are required to obtain a Pareto set.

The same principle with some modifications can be applied for MOO problems [30–33]. Algorithms could
differ in probability functions or stopping criteria, or they have some operators for a better Pareto distribution.
The current technique is less popular than GAs but still has a significant interest in modern MOO applications.
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4.9 MOO problems in chemical engineering

The popularity of GA methods experienced significant growth since the end of the 1990s when they began to
be implemented. The majority of research in chemical engineering optimization used GAs as a main technique
in search of Pareto optimal solutions, however some other techniques were also used. Some comprehensive
reviews of early applications are provided at Bhaskar et al. and Nandasana et al. [6, 34]. Here we will focus
on a review of MOO problems and their solutions made in a recent decade for chemical reactors and process
engineering. Some more widely presented MOO problems in open literature will be described below. Other
MOO problems with objectives, methods and general remarks will be summarized in an auxiliary table at the
end of chapter. We recommend readers to refer to original sources if interested in order to have a detailed
description of a particular problem. Here we just summarize the main applied issues and concepts of MOO in
chemical engineering and of their solutions.

It can be seen that even though reactors have different designs and arrangements, the processes have dif-
ferent foundations – continuous or batch type, homogeneous or heterogeneous, in gas or liquid phases, etc.
Despite this fact, there are some general concepts that are used for MOO. For example, the most desired in-
tention is to increase the production of a main product (e.g. in terms of yield or selectivity) and minimize side
product formation. This usually affects some quality parameters of the product, which becomes a conflicting
objective. Additionally, it could be related to a change in heat duties of heat exchangers, the fuel rate into fur-
naces or other similar parameters. Different scenarios and conflicting objectives could make the formulation
very complex. Researchers/engineers are free to choose which objectives have higher importance and have to
be given more consideration from practical point of view. In some way, proper MOO formulation itself is an
“art” and can play a key role in finding meaningful and appropriate solutions.

4.9.1 Petroleum Processing Engineering

Noticeable contribution to GA and its application to MOO in petroleum processing was made by Kasat et al.
[35]. They introduced a genetic operator called a Jumping Gene (JG). A JG (or transposon) mimics the real
nature phenomena discovered in 1987 by McClintock. The main point of the discovery was that transposon is a
DNA sequence which can randomly migrate among chromosomes and replace existing sequences. One of the
transposon roles is providing for diversity in genotype. The jumping gene was introduced as a binary sequence
that can replace a part of the original individual. First, the chromosome is checked for carrying JG out with some
probability PJG. If the condition is satisfied, two positions of binaries, p and q, are randomly chosen in the current
chromosome with a total length lstr (p < q ≤ lstr). The random binary string of length (q − p − 1) is generated and
inserted between p and q. Another alternative for JG is to inverse binary sequences between chosen locations.
It is reported that these two modifications have the same performance. Authors suggested to implement a JG
operator after mutation and combine this operator with NSGA-II (NSGA-II-JG). Using benchmark problems,
they demonstrated that the proper choice of PJG (≈ 0.5 or more) provides a faster convergence to a Pareto front
and better distribution of the population along it. The JG concept was developed in some later works [36–38]
where new modifications with improved characteristics were introduced. We will not describe all of them in
detail; we refer readers to the original articles.

In their work, NSGA-II-JG was applied for multi-objective optimization of an industrial fluidized catalytic
cracking unit (FCCU). The FCC is very relevant for the petroleum processing industry since it is the main
process for gasoline production. Industrial FCCUs consist of a reactor-riser and catalyst regenerator. Authors
used a five-lump kinetic scheme with two steady state models of these units, previously developed and verified
by Arbel et al. [39] and Krishna and Parkin [40]. The two objectives were to maximize the yield of gasoline from
the FCCU and minimize coke content on the catalyst. The decision variables used were feed temperature and
the catalyst flow rate into the reactor, as well as air temperature and flow rate into the regenerator with lower
and upper bounds based on process technology. Again, the problem was solved with both NSGA-II and NSGA-
II-JG. The obtained results were compared with their previous work [41], where optimization was carried out
with original NSGA-II. The generated Pareto fronts ware similar but with a wider distribution of solutions
for NSGA-II-JG. Authors emphasized computational efficiency and the speed of convergence and proposed
methods for MOO problems in chemical engineering.

Some other petroleum processing MOO are presented in the open literature. Various researchers investi-
gate MOO problems for different types of naphtha catalytic reformers, such as conventional catalytic naphtha
reactor (CR) or the thermally coupled fluidized bed naphtha reactor (TCFBNR) [42–45]. Besides the designa-
tion for feed conversion into products, the naphtha reforming process could be aimed at a refinery’s hydrogen
supply. Because of this, objectives can vary from one reformer to another, depending on their roles in particular
productions. In the majority of research, it was proposed to maximize the production of aromatic compounds
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and hydrogen while other objectives differed. However, only Weifeng et al. [42] treated objectives directly with
a Neighbourhood and Achieved Genetic Algorithm (NAGA) to generate an entire Pareto set. Other researchers
used summation method to form the SO function, and solve it with methods of differential evolution. All of
them could provide improved objectives and propose a better operation conditions for naphtha reformers than
current ones.

4.9.2 Steam Reforming

The first multi-objective optimization of a side-fired steam reformer was performed by Rajesh et al. [46]. They
combined the kinetic model of main reactions, a heat transfer model through a furnace tube wall and the dif-
fusion model in a catalyst pellet. The complex model was utilized for optimization. Authors assumed that the
rate of hydrogen production was kept at a required level. The main operational costs of steam reforming are: (a)
methane feed; (b) furnace fuel; and (c) steam. The first objective used was the minimization of the methane feed
rate. The second objective used was the maximization of CO in the reformer outflow. The reason for this was
that the higher the CO % in outflow, the more heat can be generated at the shift converter and, consequently,
more steam can be produced in heat exchangers at the exit of the unit. Decision variables used were the temper-
ature and pressure of the feed flow and its rate, steam/methane ratio (S/C), recycled hydrogen/methane ratio
(H/C) and temperature of the furnace gas. Additionally, the process was constrained by a maximum possible
furnace wall temperature. Thus, they came up with two objective problem formulations subjected to lower and
upper boundaries for decision variables based on process technology and one constraint. The objectives and
constraints were treated in the form of a penalty function. A Pareto set was obtained. It was noticed that most
of the decision variables didn’t differ significantly for an entire Pareto, but that the S/C ratio makes a signifi-
cant contribution to the objectives value and for the Pareto distribution. They also studied the effect of catalyst
deactivation on the change in optimal parameters. This change wasn’t important due to thermodynamically
controlled reactions. Generally it was shown in the work how to apply MOO with GAs to optimize the steam
reformer. More precise problem formulations (e.g. constraints, process parameters limits, etc.) for a particular
steam reformer can bring different results.

The work of Nandasana et al. [47] extended the optimization of a steam reformer dynamic regime. The exist-
ing model was modified as a non-steady state to study the effect of disturbances on the reformer. The objectives
of MOO were to minimize the reduction of loss of the total (a) hydrogen and (b) steam production caused by a
sudden change in some process parameters. Two disturbances were independently introduced to the system:
a step decrease of methane feed; and a drop in feed temperature. Authors reported the high computational
intensity of MOO problems. They could carry out 9 and 18 generations for the problem respectively.

In more recent research, Ebrahimi et al. [48] performed MOO of a steam reforming arrangement for the
synthesis gas production (mixture CO and H2). They modeled two combinations of top-fired methane steam
and auto-thermal reformers, parallel and in series. They formulated objectives similar to Rajesh et al. [46]: (a)
maximize production of syngas; (b) minimize furnace fuel consumption; and (c) minimize CO2 releases. Like in
previous research, the main constraint for the steam reforming operation was the maximum tube wall temper-
ature. Obtained Pareto sets showed that a parallel arrangement is superior for higher syngas production while
the configuration in series allows for a decrease of fuel consumption and CO2 release.

4.9.3 Polymer industry

MOO in polymer manufacturing has been an intensive research field in so far as such processes with multiple
objectives result in more meaningful solutions. Many works had been aimed at the optimization of polymeriza-
tion reactors’ and processes’ performances. One of the first MOO problems was solved for the Nylon 6 reactor
by Mitra et al. [49]. They utilized a kinetics scheme combined with a batch reactor model. Objectives to mini-
mize were (a) reaction time and (b) undesired product concentration. Constraints implemented were desired
monomer conversion and the degree of polymerization. For a solution of a current MOO problem, they used
NSGAs, and constraints were handled by penalty functions. Authors varied different GA parameters (e.g. num-
ber of generations, crossover probability) to show the stability of obtained Pareto sets because no significant
changes were observed. Earlier authors tried to carry out SOO for the same system with Pontryagin’s princi-
ple; this failed due to some numerical complexity. It was emphasized that NSGA allowed for the overcoming
of previous problems and generation of a reasonable set of optimal solutions.

An interesting discovery was found in Bhaskar et al. [50]. The authors carried out MOO for a polyethylene
terephthalate wiped-film reactor. They chose to minimize the (a) acid and (b) vinyl end group concentration
in the polymer product for a better polymer quality. Optimization with NSGA showed that the problem had
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a unique solution instead of a Pareto set. To confirm the results, they carried out the SOO problem for each
objective independently; it resulted in the same solution. Later, in another work by Bhaskar et al. [51], it was
pointed out that the unique solution was dependent on the seed random generator (a number used in computer
code to execute randomization). By varying this number, they always obtained different single optimal points.
Also they showed that NSGAs didn’t obtain an optimal point if more than one decision variable was used.
The conclusion was made that NSGAs failed to converge to global optimal solutions and some other search
technique is required. Current issues were resolved in Babu et al. [52], in which the authors used a multi-
objective differential evolution (MODE) for the optimization of the same system. Different MOO cases were
considered and MODE converged to a Pareto front in each of them.

Many other similar works for optimization of industrial continuous or batch polymerization processes are
made. In general, it can be noted that the main objectives in MOO problems could be:

– maximization of monomer conversion;

– minimization of the concentration of side products or some functional groups; and

– maintainence of quality-related parameters on a desired level (e.g. molecular weight, degree of polymeriza-
tion).

Some MOO problems include a design stage and significant improvement in the reactor’s performance is re-
ported. For example, in the work by Agrawal et al. [53] the operation of another type of polyethylene reactor,
tubular, was optimized. Two objectives were to maximize monomer conversion and minimize the concentra-
tion of side products. The reactor and jacket diameter, and length of reactor zones were included as decision
variables. So they carried out optimization of both design-stage and operation-stage optimization. They re-
ported improved results in objectives when compared to the case when design variables are not included into
the MOO problem [54].

For MOO problems in polymerization reactors and processes, researchers mentioned significant computa-
tional issues such as: to obtain global optimal solutions, large computation time is required. The mathematical
models are relatively complex for such processes, because they include mass, heat and momentum balance
equations that could include comprehensive equations involving partial derivatives or other intensive mathe-
matical variables involving highly non-linear equations. To carry out MOO using GAs, it is required to perform
a number of simulation runs to evaluate objectives for one population, while a MOO search requires a number
of generations to obtain convergence to a global optimal Pareto front. All together, it increases computational
time up to some hours or even days and hence necessitates the use of supercomputers.

Besides the polymerization processes, there are works made in monomer production. Most commonly used
objectives used in these MOO problems are monomer’s yield and selectivity. Among the works, there is a group
of researchers who optimized styrene production. They carried out various MOOs for different reactor types
using different algorithms. Firstly, Yee et al. [55] performed two-objective optimization for the operation of
adiabatic and steam-injected reactors. The same work was done by Li et al. [56], but including reactor design
parameters into decision variables. Both used NSGAs with a penalty function approach and obtained smooth
Pareto fronts. Babu et al. [57] performed a MOO for an adiabatic styrene reactor with the same problem formu-
lation but used a multi-objective differential evolution. They reported a better Pareto front. However, it can be
noted that MODE hadn’t affected the Pareto front significantly, but there are still improvements in objective
values for some MOO cases. Tarafder et al. [58] compared performance of three types, single-, double-bed and
steam-injected reactors, with NSGA-II in a three-objective problem formulation (maximization of yield and
selectivity of styrene plus minimization of heat-exchanger duty). They showed better objective values for the
double-bed reactor. It can provide better productivity for styrene with a higher selectivity at the same time.

Table 1: Application of GAs in chemical reactors and processes engineering.

Process/unit Objectives/constraints Optimization
method

Remarks and
comments

Reference

Petroleum processing
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FCC reactor-
regenerator – maximize gasoline

yield
– minimize CO % in

flue gas
constrained by coke
content on catalyst
– maximize gasoline

yield
– minimize air feed

rate to
regenerator

constrained by CO %
in flue gas
The same two
objectives plus
– minimize air feed

rate to
regenerator

NSGA-II The satisfying
optimal solution can
be chosen from the
obtained Pater set by
DM.

[41]

– maximize yield of
gasoline

– minimize coke
percentage on
catalyst

NSGA-II-JG Obtained Pareto set
with better
distribution and
faster convergence
than at Kasat et al.
[41].

[35]

– maximize gasoline
yield

– minimize % CO in
flue gas

constrained by coke
content on catalyst
The same two
objectives plus
– minimize air feed

rate to
regenerator

MOSA Pareto set is
comparable with
ones obtained with
NSGA-II.

[59]

Naphtha Catalytic
Reforming Reactor – maximize light

aromatics yield
– Minimize heavy

aromatics yield

NAGA Pareto set obtained
which is superior to
current unit
operation
performance.

[42]

Naphtha Catalytic
Reformer with Ther-
mally Coupled Flu-
idized Bed Heat Ex-
changer

Maximize:
– hydrogen

production
– aromatics

production and
selectivity

– aniline flow rate

Objective sum
method, solved by
differential evolution

Reactor performance
compared to
conventional
naphtha reformer.

[43]
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Maximize:
– hydrogen

production
– aromatics

production
– nitrobenzene

conversion
– aniline flow rate

Single optimal
solution obtained
which allowed
improving reactors
performance.

[44]

Spherical (S) and
Tubular Membrane
Naphtha (M)
Reforming Reactor

Maximize:
– hydrogen flow rate
– aromatics flow

rate
Two reactor
arrangements in
series – SMS and
SMM – are
investigated.

Both arrangements
perform similarly
but SMS has some
design advantages
and proposed as
better one.

[45]

Naphtha Pyrolysis Maximize yield of:
– ethylene
– propylene

MOPDE-CES,
NSGA-II

Optimal solutions
obtained.
MOPDE-CES
performs slightly
better.

[60]

HVGO Hydrocracker 3 MOO cases:
– maximize

kerosene flow
rate

– minimize
hydrogen flow
rate

– maximize diesel
flow rate

– minimize
hydrogen flow
rate

– minimize light
products flow
rate

– maximize heavy
products flow
rate

constrained by inlet
temperature at
hydrocracker and
outlet temperature at
beds, liquid velocity
rate, feed conversion

Real-coded NSGA-II
with simulated
binary crossover

Pareto set obtained
for all cases. Wide
range of equally
optimal solution are
presented for DM.

[61]
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2 MOO cases:
– maximize the sum

of all desired
products

– maximize the sum
of heavy desired
products

constrained by inlet
temperature at
hydrocracker and
outlet temperature at
beds, feed
conversion

GA with artificial
neural network
model

Shown possibility to
improve reactors
performance up to 16
%.

[62]

Paraffin
dehydrogenation
reactor of LAB plant

For process product
(olefins) maximize:
– production rate
– selectivity

NSGA-II with
crowding
tournament selection
operator

Dynamic
optimization was
carried out. Shift of
Pareto from is shown
due to catalyst
deactivation.

[63]

Industrial Steam
Reformer

For a required
hydrogen rate
production
– minimize methane

feed
– maximize CO at

reactor’s outflow
constrained by
maximum tube wall
temperature

NSGA with penalty
function approach

The satisfying
optimal solution can
be chosen from
obtained Pater set by
DM.

[46]

For a step
disturbances of
(a) methane feed
(b) temperature
minimize deviation
from steady-state
values for
– hydrogen

production
– steam production

NSGA-II The satisfying
optimal solution can
be chosen from
obtained Pater set by
DM.

[47]

Same as Nandasana
et al. [47] but only for
case (a) step decrease
in feed

MOSA-JG,
MOSA-aJD

Comparable Pereto
set to the one
obtained using
NSGA-II.

[64]

– maximize
methane
conversion

– Maintain desired
ratios for
H2/CO2 and
H2/CO

MOO problem
solved for dynamic
model.

GA Authors used
different operating
conditions and
transition between
them. Final problem
is formulated in form
of singleobjective
function.

[65]
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Autothermal
reformer – maximize

methane
conversion

– maximize CO
selectivity

– minimize CO2
feed rate

NSGA-II Pareto set is
obtained. Among it,
authors chose one
point with H2/CO
ratio = 1 as an
optimal operating
point.

[66]

Methane and
autothermal steam
reformers

For two
arrangements of
reactors – in parallel
and in series:
– maximize

production of
syngas

– minimize furnace
fuel consumption

NSGA-II Parallel
configuration is
better for syngas.
Arrangement in
series is superior for
lower fuel
consumptions and
CO2 release.

[48]

Polymers synthesis
Nylon 6 semibatch
reactor

For a required
monomer conversion
minimize:
– dimensionless

reaction time
– dimensionless side

product
concentration

constrained by
required values for
average polymer
length

NSGA with penalty
function approach

Superior approach
comparing to
previous attempt to
carry out MOO.

[49]

Cases 1 and 2: same
as Mitra et al. [49] but
different decision
variables
Case 2:

– Same as case 2
– maximize

monomer
conversion

NSGA-II-aJG,
MOSA-aJG

NSGA-II-aJG has a
better distribution of
individuals in Pareto
front.

[67]

Sheet-molding for
poly(methyl
methacrylate)

– maximize
monomer
conversion

– minimize length
of film reactor

constrained by the
end value of polymer
molecular weight

NSGA with penalty
function approach

The satisfying
optimal solution can
be chosen from
obtained Pater set by
DM.

[68]

Poly-ethylene wiped-
Film reactor

Minimize:
– acid
– vinyl
groups in the
product constrained
by desired degree of
polymerization

NSGA with penalty
function approach

Single optimal
solution.

[50]
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Same as Bhaskar et
al. [50] plus
additional constraint
for di-ethylene glycol
group concentration

NSGA with penalty
function approach

Fails to converge the
optimum solution
for multiple decision
variables.

[51]

Same as Bhaskar et
al. [50]

MODE with penalty
function approach

Pareto set obtained
in contrast to
Bhaskar et al. [50].

[52]

Isothermal
polystyrene reactor – maximize styrene

conversion
– minimize

remaining
initiator
concentration in
final product

Authors’ version of
MOGA (includes
real-coded variables,
elitism, niche count)
with fuzzy penalty
function approach

The satisfying
optimal solution can
be chosen from
obtained Pater set by
DM.

[69]

Styrene emulsion
homopolymerization – maximize styrene

conversion
minimize deviations
from desired values
for:
– Polymer average

molecular weight
– Number of

particles per liter

Diploid GA followed
by decision support
system

Decision support
system narrowed the
Pareto set.

[70, 71]

– minimize
operating cost of
reactor

– minimize integral
square difference
of average
molecular weight
from its desired
value

Mixed-integer
dynamic
optimization,
ɛ-constraint
approach

Optimization for
design and control is
carried out.

[72]

Epoxy polymeriza-
tion

For polymer product:
– maximize

molecular weight
– minimize reaction

time
Constrained by
minimum desired
molecular weight
and maximum
desired
polydispersity index

NSGA-II with
crowding
tournament selection
operator

Pareto set obtained
for each case and the
satisfying optimal
solution can be cho-
sen from obtained
Pater set by DM.
It is found that for
molecular weight vs.
polydispersity index,
set is non-convex. Bi-
nary and real coded
NSGA-II performs
similarly.

[73]
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Case 1:
– maximize polymer

molecular weight
– minimize polymer

polydispersity
index

Case 2:
– maximize

concentration of
species with
glycidyl ether
groups at both
ends

– minimize polymer
chain
propagation

Case 3:
– Same as case 2
– + minimize total

addition of
NaOH

NSGA-II with
crowding
tournament selection
operator

[74]

Case 1:
– maximize

concentration of
particular species

– minimize polymer
chain
propagation

– minimize reaction
time

Case 2:
– minimize total

addition of
NaOH

– + last 2 objectives
from case 1

Real-coded NSGA-II [75]

3 MOO problems for
following objectives:
– maximize

polymer’s
average
molecular weight

– minimize
polydispersity
index

– minimize reaction
time

NSGA-II, Real-coded
NSGA-II

[76]
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Styrene and acry-
lonitrile copolymer-
ization in semi-batch
reactor

Case 1:
– maximize

monomer
conversion

– minimize
polydispersity
index of final
product

Case 2:
– Same as case 1
– minimize presence

of unreacted
monomer at
reactor

NSGA-II with
crowding
tournament selection
operator

Pareto set obtained
in both cases.
Process control
policies are defined.

[77]

Minimize deviations
from desired:
– Copolymer

molecular weight
– Copolymer

composition

Differential
evolution

Dynamic
optimization is
carried out.

[78]

Poly-ethylene tubu-
lar reactor

For poly-ethylene:
– maximize

monomer
conversion

– minimize side
products

constrained by
desired range for
product molecular
weight and
maximum process
temperature

NSGA and JD
adaptations,
NSGA-II and JD
adaptations with
penalty function
approach

All algorithms
provide similar, but
NSGA-II converges
faster.

[54]

Two MOO problems:
Same as Agrawal et
al. [53, 54]
Same as Agrawal et
al. [54]
+1 objective to
minimize
compressor
operating cost
* Design parameters
as reactor length and
diameter were
included as decision
variables.

NSGA-II and JD
adaptations with:
– Penalty function

approach
– Constraint

dominance
approach

Improved reactor
performance
comparing to
operation MOO only.
Constraint-
dominance approach
is better than penalty
function.

[53]

Polysiloxane
synthesis – maximize

monomer
conversion

– minimize the
difference
between real and
desired
molecular weight
of polymer

NSGA-II combined
neural network

Improved
performance of
method comparing
to NSGA-II.

[79]
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Styrene and butyl
acrylate emulsion
copolymerization
reactor

– maximize
monomer
conversion

– deviation from
desired glass
temperature
profile

Evolutionary
algorithm followed
by multi-attributive
utility theory

A single solution
was chosen from
obtained Pareto set
with decision
support system.

[80]

[81]
Adiabatic and
Steam-Injected
Styrene Reactors

4 MOO problems:
for styrene maximize
either two of three
objectives or all of
them:
– productivity
– selectivity
– yield
constrained by steam
feed rate and inlet
streams temperature

NSGA with penalty
function approach

The satisfying
optimal solution can
be chosen from
obtained Pater set by
DM.

[55]

For styrene
maximize:
– productivity
– selectivity
constrained by steam
feed rate and inlet
streams temperature
plus exit pressure for
steam-injected
reactor
* Design parameters
as reactor length and
diameter were
included as decision
variables.

NSGA with penalty
function approach

The satisfying
optimal solution can
be chosen from
obtained Pater set by
DM.

[56]

Adiabatic Styrene
Reactor

Same as Yee et al. [55] MODE with penalty
function approach

MODE provides
improved Pareto set
comparing to the one
from Yee et al. [55].

[57]

2 MOO problems:
– maximize styrene

production
– minimize

undesired
products for new
and deactivated
catalyst

Tabu Search, GA Better objective
values as well as less
computational time
for Tabu Search.

[82]

Same as Yee et al. [55] Author’s
Hybrid-MODE

Proposed algorithm
compared with other
well-known MOEA
and showed better
performance.

[83]
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Ethylene Reactor For ethylene
maximize:
– flow rate
– conversion
– selectivity
constrained by
reactor pressure and
temperature

NSGA-II with
crowding
tournament selection
operator

Feed temperature
and reactor length
are mostly affect
Pareto optimal
solutions.

[84]

Single-bed,
steam-injected and
double-bed styrene
reactors

For styrene:
– maximize

productivity
– maximize

selectivity
– heat duty of heat

exchanger
constrained by inlet
streams
temperatures,
reactor pressure
* Design parameters
such as reactor
length and diameter
were included as
decision variables.

NSGA-II with
crowding
tournament selection
operator

Double-bed reactor
has higher
productivity.

[58]

Adiabatic and
steam-injected
styrene reactor

Same as at Yee et al.
[55]

MODE with penalty
function approach

Obtained Pareto set
has better objective
values than the one
with NSGA.

[85]

Hydrogen production
Hydrogen plant (nat-
ural gas operating)

Maximize
production of:
– hydrogen
– steam
constrained by
maximum tube wall
temperature,
H2O/H2 ratio and
some other
limitations for
equipment operating
condition

NSGA with penalty
function approach

The satisfying
optimal solution can
be chosen from
obtained Pater set by
DM.

[86]

Same as at Rajesh et
al. [86] plus
minimize heat duty
of reformer tubes

NSGA with penalty
function approach

More practical
information about
Pareto front for
three-objective
optimization
problem.

[87]

Same as at Oh et al.
[87]

NSGA with penalty
function approach

Pareto set is affected
by origin of feed
(comparing to Oh et
al. [87]).

[88]

Hydrogen plant with
absorber and
methanator instead
of PSA unit

Same as at Rajesh et
al. [86]

NSGA with penalty
function approach

The satisfying
optimal solution can
be chosen from
obtained Pater set by
DM.

[89]

Other processes an reactors
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Purified terephtalic
acid oxidation

4 MOO cases:
– minimize

concentration of
intermediate
product in
outflow

– maximize feed
rate to reactor

with different
number of decision
variables

NAGA Pareto sets obtained
for each case. The
more decision
variables are taken
into account the
better objectives are
reached.

[90]

Syngas production
using CO2 reforming
and natural gas
(methane) partial
oxidation

– maximize
methane
conversion

– maximize total
selectivity for CO
production

– keep H2/CO
molar ratio
around required
value

constrained by
O2/CH4 molar ratio,
gas stream velocity

Real-coded NSGA Empirical process
model was utilized.
Better objective
values are reported
comparing with
previous SOO.

[91]

Phthalic anhydride
catalytic reactor

For 2 different
reactor
arrangements:
– maximize product

yield
– minimize catalyst

mass

NSGA-II-aJG,
Guided NSGA-II-aJG
with penalty
function approach

Guided NSGA-II
needs proper choice
of genetic
parameters but
provides faster
convergence to
Pareto.

[37]

Membrane methanol
synthesis reactor – maximize desired

product rate
– minimize feed rate
– minimize exergy

loss in reactor

NSGA-II Pareto set for hydro-
gen reactor is very
clear and readable
while the one for
methanol has scatter
data.

[92]

Membrane hydrogen
synthesis reactor

Oxidative coupling
of methane in sim-
ulated moving bed
reactor

– maximize
methane
conversion

– maximize
selectivity for
ethane and
ethylene

operation and design
MOO are carried out.

NSGA-II-JG Pareto-optimal sets
are provided.

[93]

Same as at Kundu et
al. [93]

NSGA-II-JG MOO problem is
similar to [93], but
reactor configuration
is different.

[94]
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Porous ceramic
membrane reactor
for oxidative
coupling of methane

3 objectives are:
– maximize

methane
conversion

– maximize
selectivity for
ethane and
ethylene

– maximize yield for
ethane and
ethylene

and 2 MOO cases for
operation stage and 2
MOO cases for
design case are
solved for two out of
three objectives

NSGA-II-aJG Reactor length and
diameter were
included into MOO
on design stage.
MOO of design stage
showed significant
improvement in
objectives.

[95]

Thermal cracker for
LPG

Operation and
design MOO
problems using 2 or
3 objectives from list
are solved:
maximize:
– ethylene

production
– propylene

production
– ethylene

selectivity
– furnace run length
minimize:
– severity
– heat duty

NSGA-II-aJG Pareto set obtained
for each MOO case.
Three-objective
problems provide
better range of
solutions. Design
optimization
provides better
objective values.

[96, 97]

Autothermal
membrane reactor
for simultaneous
dehydrogenation of
ethylbenzene to
styrene with the
hydrogenation of
nitrobenzene to
aniline

– maximize styrene
yield

– maximize
nitrobenzene
conversion

Optimization
problem included
design variables

Normalized normal
constraint and
normal boundary
intersection methods

Both methods
provided the same
Pareto sets.

[98]

4.10 Conclusions

The multi-objective optimization approach is superior to classical single-objective optimizations. It can take into
account more than one objective; this is very important when objectives conflict with one another. Reactors and
processes systems in chemical engineering include many parameters (qualitative or quantitative parameters
that characterize the process performance), which cannot be improved without any detriment to others. So the
application of MOO can play a vital role in making process operation improvements. In summary, the general
ideas of MOO techniques as well as the advantages in applying the concept of MOO in the design and operation
of chemical reactors and processes engineering are reported.

– MOO is based on the concept of Pareto optimality. In contrast with SOO, no single optimal solution but a set
of optimal solution results are more meaningful. This set is called a Pareto set. None of the solutions in a
Pareto set is better than any others in the set.

24

http://rivervalleytechnologies.com/products/


Au
to

m
at

ica
lly

ge
ne

ra
te

d
ro

ug
h

PD
Fb

yP
ro

of
Ch

ec
kf

ro
m

Ri
ve

rV
al

le
yT

ec
hn

ol
og

ie
sL

td
DE GRUYTER Ivanov and Ray

– Various MOO methods are discussed that helps in search of solutions in the form of a Pareto set. There is a
variety of these methods available. Each has its own advantages and disadvantages. Researchers are free to
choose any of them depending on the particular problem he/she is trying to solve.

– In the field of chemical reactors and processes engineering, a group of stochastic optimization methods, called
genetic algorithms, showed robustness in finding Pareto-optimal solutions.

– Genetic algorithms are not based on a deterministic mechanism of search, and require no extra a priori knowl-
edge (like weighting information of preference order) about MOO of conflicting objectives. Also, GAs work
with a population of solutions simultaneously, not a single one; hence they search a global space for opti-
mum solutions.

– Many of the reported work carried out by researchers shows the significance of MOO in chemical engineering.
It can be done at the operation stage level, because many industrial reactors operate in non-optimal regimes
and there’s still room for improvements. It’s also useful for the design stage, which can significantly improve
a reactor/system performance when designing reactors.

– Among GAs, there are some more advanced algorithms that are able to converge to a Pareto front in less
computation time while providing better distribution of solutions. Researchers should take it into account
when applying them to MOO problem.

– A majority of Pareto fronts in chemical engineering are convex in nature; however, it’s not an absolute rule.

– Many problems considered only 2, or at most 3, objectives. Researchers are trying to pick out more important
ones based on their knowledge about particular systems. Also, it is more difficult to visualize and analyze
results if more than 3 objective functions are chosen.
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