Abstract
Sunflower stem pith-derived cellulose (SSPC) and nanocellulose (TOCN) were modified with polyethyleneimine (PEI) to enhance their adsorption of Cu2+ and Cr6+. PEI modification significantly enhanced the adsorption capacity for Cu2+, increasing it by 5.2 times compared to pure cellulose. Meanwhile, TOCN-PEI exhibited superior adsorption performance for Cr6+, attributed to its higher PEI graft density compared to SSPC. The adsorption kinetics were best described by the pseudo-second-order model, while the Langmuir isotherm model provided the best fit for equilibrium data, indicating monolayer adsorption. Thermodynamic analysis revealed that the adsorption process was exothermic (ΔH0 < 0) and less favorable at elevated temperatures. After five adsorption/desorption cycles, TOCN-PEI retained approximately 63.0 % of its initial adsorption efficiency, demonstrating reusability. Overall, TOCN-PEI is a promising adsorbent for Cu2+ and Cr6+ removal, offering exceptionally high Cu2+ adsorption capacity (217.3 mg/g), effective Cr6+ removal (196.7 mg/g), and good reusability.
Acknowledgments
This work was supported by the Natural Science Foundation of Jiangsu Province (Youth Program) (BK20210610), the Postgraduate Research & Practice Innovation Program of Jiangsu Province (SJCX23_0339), the Nanjing Forestry University student innovation training program project (202410298015Z), and Qing Lan Project of Jiangsu Province, PR China.
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: Zhiyun Sun: investigation, formal analysis, methodology, writing – review & editing. Tianqi Feng: methodology, investigation. Chen Yan: conceptualization, methodology, software. Shijing Sun: writing – review & editing. Guanyu Wu: validation, writing – review & editing. Xin Zhou: conceptualization, resources, supervision, writing – review & editing. Guanyu Wu: validation, writing – review & editing. All authors read and approved the final manuscript. All authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: All other authors state no conflict of interest.
-
Research funding: None declared.
-
Data availability: Not applicable.
References
1. Ng, C. L.; Chow, W. S.; Din, M.; Taufik, A.; Leh, C. P.; Siengchin, S. Crosslinked Polymer Nanocomposites for Wastewater Heavy Metal Adsorption: A Review. Express Polym. Lett. 2023, 17 (6), 580–595; https://doi.org/10.3144/expresspolymlett.2023.43.Search in Google Scholar
2. Yan, W.; Hou, C.; Bai, Y.; Qian, Z. Preparation of Nylon Based Magnetic Adsorption Materials and their Adsorption Properties for Heavy Metal Ions. Adsorption 2024, 30 (6), 867–875; https://doi.org/10.1007/s10450-024-00449-8.Search in Google Scholar
3. Sundararaman, S.; Chacko, J.; Prabu, D.; Karthikeyan, M.; Kumar, J. A.; Saravanan, A.; Thamarai, P.; Rajasimman, M.; Bokov, D. O. Noteworthy Synthesis Strategies and Applications of Metal-Organic Frameworks for the Removal of Emerging Water Pollutants from Aqueous Environment. Chemosphere 2024, 362, 142729; https://doi.org/10.1016/j.chemosphere.2024.142729.Search in Google Scholar PubMed
4. Yuan, F.; Yan, D.; Song, S.; Zhang, J.; Yang, Y.; Chen, Z.; Lu, J.; Wang, S.; Sun, Y. Removal of Heavy Metals from Water by Adsorption on Metal Organic Frameworks: Research Progress and Mechanistic Analysis in the Last Decade. Chem. Eng. J. 2025, 506, 160063; https://doi.org/10.1016/j.cej.2025.160063.Search in Google Scholar
5. Kapoor, R. T.; Mfarrej, M. F. B.; Alam, P.; Rinklebe, J.; Ahmad, P. Accumulation of Chromium in Plants and its Repercussion in Animals and Humans. Environ. Pollut. 2022, 301, 119044; https://doi.org/10.1016/j.envpol.2022.119044.Search in Google Scholar PubMed
6. Yang, C.-M.; Chien, M.-Y.; Chao, P.-C.; Huang, C.-M.; Chen, C.-H. Investigation of Toxic Heavy Metals Content and Estimation of Potential Health Risks in Chinese Herbal Medicine. J. Hazard. Mater. 2021, 412, 125142; https://doi.org/10.1016/j.jhazmat.2021.125142.Search in Google Scholar PubMed
7. Deivayanai, V.; Yaashikaa, P.; Saravanan, A.; Vickram, A. Enhanced Elimination of Chromium (VI) Ions from Wastewater with Silica-Mixed Magnetic Nanomaterial: Isotherm and Kinetic Studies. Environ. Dev. Sustainability 2024, 1–25; https://doi.org/10.1007/s10668-024-05688-x.Search in Google Scholar
8. Das, N. Recovery of Precious Metals through Biosorption—A Review. Hydrometallurgy 2010, 103 (1–4), 180–189; https://doi.org/10.1016/j.hydromet.2010.03.016.Search in Google Scholar
9. Al-Asad, H. A.; Parniske, J.; Qian, J.; Alex, J.; Ramaswami, S.; Kaetzl, K.; Morck, T. Development and Application of a Predictive Model for Advanced Wastewater Treatment by Adsorption onto Powdered Activated Carbon. Water Res. 2022, 217, 118427; https://doi.org/10.1016/j.watres.2022.118427.Search in Google Scholar PubMed
10. Kuldeyev, E.; Seitzhanova, M.; Tanirbergenova, S.; Tazhu, K.; Doszhanov, E.; Mansurov, Z.; Azat, S.; Nurlybaev, R.; Berndtsson, R. Modifying Natural Zeolites to Improve Heavy Metal Adsorption. Water 2023, 15 (12), 2215; https://doi.org/10.3390/w15122215.Search in Google Scholar
11. Thamarai, P.; Deivayanai, V.; Karishma, S.; Saravanan, A.; Yaashikaa, P.; Vickram, A. Adsorption Strategies in Surface Modification Techniques for Seaweeds in Wastewater Treatment: Exploring Environmental Applications. Rev. Environ. Contam. Toxicol. 2024, 262 (1), 18; https://doi.org/10.1007/s44169-024-00071-3.Search in Google Scholar
12. Sun, P.; Wang, M.; Wu, T.; Guo, L.; Han, W. Covalent Crosslinking Cellulose/Graphene Aerogels with High Elasticity and Adsorbability for Heavy Metal Ions Adsorption. Polymers 2023, 15 (11), 2434; https://doi.org/10.3390/polym15112434.Search in Google Scholar PubMed PubMed Central
13. Kaur, R.; Sandhu, S.; Pujari, A. K.; Paul, S.; Bhaumik, J. Lignin‐Derived Metal Oxide Nanoadsorbents for Wastewater Remediation. ChemistrySelect 2024, 9 (37), e202402934; https://doi.org/10.1002/slct.202402934.Search in Google Scholar
14. Kushwaha, J.; Singh, R. Cellulose Hydrogel and its Derivatives: A Review of Application in Heavy Metal Adsorption. Inorg. Chem. Commun. 2023, 152, 110721; https://doi.org/10.1016/j.inoche.2023.110721.Search in Google Scholar
15. Nikiforova, T.; Kozlov, V.; Razgovorov, P.; Politaeva, N.; Velmozhina, K.; Shinkevich, P.; Chelysheva, V. Heavy Metal Ions (II) Sorption by a Cellulose-Based Sorbent Containing Sulfogroups. Polymers 2023, 15 (21), 4212; https://doi.org/10.3390/polym15214212.Search in Google Scholar PubMed PubMed Central
16. Aslam, A. A.; Hassan, S. U.; Saeed, M. H.; Kokab, O.; Ali, Z.; Nazir, M. S.; Siddiqi, W.; Aslam, A. A. Cellulose-Based Adsorbent Materials for Water Remediation: Harnessing their Potential in Heavy Metals and Dyes Removal. J. Cleaner Prod. 2023, 421, 138555; https://doi.org/10.1016/j.jclepro.2023.138555.Search in Google Scholar
17. Hong, H.-J.; Yu, H.; Park, M.; Jeong, H. S. Recovery of Platinum from Waste Effluent Using Polyethyleneimine-Modified Nanocelluloses: Effects of the Cellulose Source and Type. Carbohydr. Polym. 2019, 210, 167–174; https://doi.org/10.1016/j.carbpol.2019.01.079.Search in Google Scholar PubMed
18. Yan, C.; Wu, F.; Zhou, X.; Luo, J.; Jiang, K. Superadsorbent Aerogel Based on Sunflower Stem Pith Cellulose and Layered Double Hydroxides Modified Montmorillonite for Methylene Blue Removal from Water Solution. Int. J. Biol. Macromol. 2024, 257, 128749; https://doi.org/10.1016/j.ijbiomac.2023.128749.Search in Google Scholar PubMed
19. Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D.; Crocker, D. Determination of Structural Carbohydrates and Lignin in Biomass. Lab. Anal. Proced. 2008, 1617 (1), 1–16.Search in Google Scholar
20. Yan, C.; Luo, J.; Huang, C.; Liu, L.; Sun, S.; Zhou, X. Fabrication of Nanocellulose-Based High-Mechanical and Super-hydrophobic Xerogels for Speedy Oil Absorbents. Carbohydr. Polym. 2025, 351, 123097; https://doi.org/10.1016/j.carbpol.2024.123097.Search in Google Scholar PubMed
21. Poletto, M.; Zattera, A. J.; Forte, M. M.; Santana, R. M. Thermal Decomposition of Wood: Influence of Wood Components and Cellulose Crystallite Size. Bioresour. Technol. 2012, 109, 148–153; https://doi.org/10.1016/j.biortech.2011.11.122.Search in Google Scholar PubMed
22. Najahi, A.; Tarrés, Q.; Mutjé, P.; Delgado-Aguilar, M.; Putaux, J.-L.; Boufi, S. Lignin-Containing Cellulose Nanofibrils from TEMPO-Mediated Oxidation of Date Palm Waste: Preparation, Characterization, and Reinforcing Potential. Nanomaterials 2022, 13 (1), 126; https://doi.org/10.3390/nano13010126.Search in Google Scholar PubMed PubMed Central
23. Jiang, Y.; Lu, Y.; Liu, J.; Zhao, Y.; Fan, F. Characterization of Bamboo Shoot Cellulose Nanofibers Modified by TEMPO Oxidation and Ball Milling Method and its Application in W/O Emulsion. Lwt 2024, 205, 116563; https://doi.org/10.1016/j.lwt.2024.116563.Search in Google Scholar
24. Zhang, Q.; Cheng, L.; Ma, X.; Zhou, X.; Xu, Y. Revalorization of Sunflower Stalk Pith as Feedstock for the Coproduction of Pectin and Glucose Using a Two-Step Dilute Acid Pretreatment Process. Biotechnol. Biofuels 2021, 14, 1–9; https://doi.org/10.1186/s13068-021-02045-2.Search in Google Scholar PubMed PubMed Central
25. Zhang, N.; Zang, G.-L.; Shi, C.; Yu, H.-Q.; Sheng, G.-P. A Novel Adsorbent TEMPO-Mediated Oxidized Cellulose Nanofibrils Modified with PEI: Preparation, Characterization, and Application for Cu (II) Removal. J. Hazard. Mater. 2016, 316, 11–18; https://doi.org/10.1016/j.jhazmat.2016.05.018.Search in Google Scholar PubMed
26. Wang, Z.; Wang, Y.; Yao, C. Highly Efficient Removal of Uranium (VI) from Aqueous Solution Using the Polyethyleneimine Modified Magnetic Chitosan. J. Polym. Environ. 2022, 30, 855–866; https://doi.org/10.1007/s10924-021-02242-y.Search in Google Scholar
27. Almutairi, F. M.; Williams, P. M.; Lovitt, R. W. Polymer Enhanced Membrane Filtration of Metals: Retention of Single and Mixed Species of Metal Ions Based on Adsorption Isotherms. Desalin. Water Treat. 2011, 28 (1-3), 130–136; https://doi.org/10.5004/dwt.2011.1628.Search in Google Scholar
28. Wang, X.; Luo, S.; Luo, J.; Liu, L.; Hu, Y.; Li, Z.; Jiang, L.; Qin, H. Fluorescent Cellulose Nanofibrils Hydrogels for Sensitive Detection and Efficient Adsorption of Cu2+ and Cr6+. Carbohydr. Polym. 2025, 347, 122748; https://doi.org/10.1016/j.carbpol.2024.122748.Search in Google Scholar PubMed
29. Chen, X.; Song, Z.; Yuan, B.; Li, X.; Li, S.; Nguyen, T. T.; Guo, M.; Guo, Z. Fluorescent Carbon Dots Crosslinked Cellulose Nanofibril/Chitosan Interpenetrating Hydrogel System for Sensitive Detection and Efficient Adsorption of Cu (II) and Cr (VI). Chem. Eng. J. 2022, 430, 133154; https://doi.org/10.1016/j.cej.2021.133154.Search in Google Scholar
30. Zhong, Q.-Q.; Yue, Q.-Y.; Li, Q.; Gao, B.-Y.; Xu, X. Removal of Cu (II) and Cr (VI) from Wastewater by an Amphoteric Sorbent Based on Cellulose-Rich Biomass. Carbohydr. Polym. 2014, 111, 788–796; https://doi.org/10.1016/j.carbpol.2014.05.043.Search in Google Scholar PubMed
31. Xu, Q.; Huang, X.; Guo, L.; Wang, Y.; Jin, L. Enhancing Removal of Cr (VI), Pb2+, and Cu2+ from Aqueous Solutions Using Amino-Functionalized Cellulose Nanocrystal. Molecules 2021, 26 (23), 7315; https://doi.org/10.3390/molecules26237315.Search in Google Scholar PubMed PubMed Central
32. Garg, U.; Kaur, M.; Jawa, G.; Sud, D.; Garg, V. Removal of Cadmium (II) from Aqueous Solutions by Adsorption on Agricultural Waste Biomass. J. Hazard. Mater. 2008, 154 (1-3), 1149–1157; https://doi.org/10.1016/j.jhazmat.2007.11.040.Search in Google Scholar PubMed
33. Wu, Y.-G.; Cao, Q.; Dai, S.; Zhao, J.; Cai, Y.-J.; Zhao, C.-Z.; Yang, Z.-H.; Sun, Y.-X.; Yue, T.; Sang, K.-X.; Gai, J. G.; Tao, M. J. Bio-Based Aerogel Beads with Multistage Pore Network Structure for Cr (VI) Removal Using Ice Template Method. Chem. Eng. J. 2025, 159983; https://doi.org/10.1016/j.cej.2025.159983.Search in Google Scholar
34. Zhang, Y.; Lin, S.; Qiao, J.; Kołodyńska, D.; Ju, Y.; Zhang, M.; Cai, M.; Deng, D.; Dionysiou, D. D. Malic Acid-Enhanced Chitosan Hydrogel Beads (mCHBs) for the Removal of Cr (VI) and Cu (II) from Aqueous Solution. Chem. Eng. J. 2018, 353, 225–236; https://doi.org/10.1016/j.cej.2018.06.143.Search in Google Scholar
35. Tang, S.; Yang, J.; Lin, L.; Peng, K.; Chen, Y.; Jin, S.; Yao, W. Construction of Physically Crosslinked Chitosan/Sodium Alginate/Calcium Ion Double-Network Hydrogel and its Application to Heavy Metal Ions Removal. Chem. Eng. J. 2020, 393, 124728; https://doi.org/10.1016/j.cej.2020.124728.Search in Google Scholar
36. Li, M.; Messele, S. A.; Boluk, Y.; El-Din, M. G. Isolated Cellulose Nanofibers for Cu (II) and Zn (II) Removal: Performance and Mechanisms. Carbohydr. Polym. 2019, 221, 231–241; https://doi.org/10.1016/j.carbpol.2019.05.078.Search in Google Scholar PubMed
37. Wang, X.; Wang, C. Chitosan-Poly (Vinyl Alcohol)/Attapulgite Nanocomposites for Copper (II) Ions Removal: pH Dependence and Adsorption Mechanisms. Colloids Surf., A 2016, 500, 186–194; https://doi.org/10.1016/j.colsurfa.2016.04.034.Search in Google Scholar
38. Ren, L.; Xu, J.; Zhang, Y.; Zhou, J.; Chen, D.; Chang, Z. Preparation and Characterization of Porous Chitosan Microspheres and Adsorption Performance for Hexavalent Chromium. Int. J. Biol. Macromol. 2019, 135, 898–906; https://doi.org/10.1016/j.ijbiomac.2019.06.007.Search in Google Scholar PubMed
Supplementary Material
This article contains supplementary material (https://doi.org/10.1515/polyeng-2025-0089).
© 2025 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Material Properties
- Recent advances in magnetorheological materials and applications in robots and medical devices
- High performance poly ceramic hybrid composite featured with carbon fiber
- Laser transmission welding of ABS polymers: a systematic study of parameter-quality correlations and interfacial morphology
- Preparation and Assembly
- Highly efficient adsorption of Cu2+ and Cr6+ by polyethyleneimine-modified nanocellulose from sunflower stem pith
- Integrating low dielectric constant and high thermal conductivity into composite films for 5G circuit package substrate
- Engineering and Processing
- Injection molding of complex hollow products using an eco-friendly salt core technique
- Utilization of agro-waste-derived cellulose for eco-friendly hydrogel production in irrigation management
Articles in the same Issue
- Frontmatter
- Material Properties
- Recent advances in magnetorheological materials and applications in robots and medical devices
- High performance poly ceramic hybrid composite featured with carbon fiber
- Laser transmission welding of ABS polymers: a systematic study of parameter-quality correlations and interfacial morphology
- Preparation and Assembly
- Highly efficient adsorption of Cu2+ and Cr6+ by polyethyleneimine-modified nanocellulose from sunflower stem pith
- Integrating low dielectric constant and high thermal conductivity into composite films for 5G circuit package substrate
- Engineering and Processing
- Injection molding of complex hollow products using an eco-friendly salt core technique
- Utilization of agro-waste-derived cellulose for eco-friendly hydrogel production in irrigation management