Home Utilization of agro-waste-derived cellulose for eco-friendly hydrogel production in irrigation management
Article
Licensed
Unlicensed Requires Authentication

Utilization of agro-waste-derived cellulose for eco-friendly hydrogel production in irrigation management

  • Swetha Satheesh EMAIL logo and Thenesh Kumar Saghadevan
Published/Copyright: August 12, 2025
Become an author with De Gruyter Brill

Abstract

Water scarcity and irregular rainfall pose significant challenges to irrigation, especially for small-scale farmers. This study presents the development of an eco-friendly, cellulose-based hydrogel using agricultural waste such as sugarcane bagasse and pea peels aimed at improving soil moisture retention. Cellulose was extracted via alkali treatment, aligning with principles of waste valorization and the circular economy. The hydrogel was synthesized using carboxymethyl cellulose sodium (CMCNa) and xanthan gum with citric acid as a biodegradable crosslinker. Cellulose nanocrystals (CNC’s), obtained through acid hydrolysis, were incorporated to enhance structural integrity. The hydrogel was characterized through Fourier-transform infrared spectroscopy (FTIR), field-emission scanning electron microscopy (FESEM), thermogravimetric analysis (TGA), and energy-dispersive spectroscopy (EDS). It demonstrated excellent swelling capacity, sustained moisture retention, and biodegradability. Soil amended with the hydrogel retained 67 % of moisture after 15 days compared to 50 % in control soil and supported enhanced plant growth (26.9 cm of height vs. 20.7 cm in control). Biodegradability tests indicated 20 % degradation within 2 weeks. These results show that the hydrogel offers a cost-effective and sustainable approach to irrigation management, with strong potential for application in drought-prone agricultural areas.


Corresponding author: Swetha Satheesh, Department of Chemical Engineering, St. Peter’s College of Engineering and Technology, Avadi, Tamil Nadu, 600054, India, E-mail:

Acknowledgments

The authors would like to thank the Department of Chemical Engineering, St. Peter’s College of Engineering and Technology, Avadi, for providing the necessary support and facilities for this project.

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: SS: conceptualization, experimentation, data analysis, and manuscript drafting. TK: supervision, project guidance and manuscript review. All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: The authors used Grammarly and ChatGPT to improve the language and flow of the manuscript. These tools were not used to generate content or conduct analysis.

  5. Conflict of interest: The authors state no conflict of interest.

  6. Research funding: None declared.

  7. Data availability: Not applicable.

References

1. Fao, I. F. A. D.; Unicef, W. F. P.; WHO The State of Food Security and Nutrition in the World 2018. In Building Climate Resilience for Food Security and Nutrition; FAO: Rome, 2018.Search in Google Scholar

2. Rapsomanikis, G. The Economic Lives of Smallholder Farmers; Food and Agriculture Organization of the UN: Rome, 2015.Search in Google Scholar

3. Verchot, L. V.; Van Noordwijk, M.; Kandji, S.; Tomich, T.; Ong, C.; Albrecht, A.; Palm, C.; Bantilan, C.; Anupama, K. V. Climate Change: Linking Adaptation and Mitigation through Agroforestry. Mitig. Adapt. Strateg. Glob. Change 2007, 12, 901–918; https://doi.org/10.1007/s11027-007-9105-6.Search in Google Scholar

4. Alam, K. Farmers’ Adaptation to Water Scarcity in drought-prone Environments: A Case Study of Rajshahi District, Bangladesh. Agric. Water Manag. 2015, 148, 196–206. https://doi.org/10.1016/j.agwat.2014.10.011.Search in Google Scholar

5. Wudil, A. H.; Ali, A.; Usman, M.; Radulescu, M.; Sass, R.; Prus, P.; Musa, S. Effects of Inequality of Access to Irrigation and Water Productivity on Paddy Yield in Nigeria. Agronomy 2023, 13 (9), 2195. https://doi.org/10.3390/agronomy13092195.Search in Google Scholar

6. Leroy, D. Farmers’ Perceptions of and Adaptations to Water Scarcity in Colombian and Venezuelan Páramos in the Context of Climate Change. Mt. Res. Dev. 2019, 39 (2), R21–R34. https://doi.org/10.1659/MRD-JOURNAL-D-18-00062.1.Search in Google Scholar

7. Kang, Y.; Khan, S.; Ma, X. Climate Change Impacts on Crop Yield, Crop Water Productivity and Food Security – A Review. Prog. Nat. Sci. 2009, 19 (12), 1665–1674; https://doi.org/10.1016/j.pnsc.2009.08.001.Search in Google Scholar

8. Aguilar, F. X.; Hendrawan, D.; Cai, Z.; Roshetko, J. M.; Stallmann, J. Smallholder Farmer Resilience to Water Scarcity. Environ. Dev. Sustain. 2022, 24, 2543–2576. https://doi.org/10.1007/s10668-021-01545-3.Search in Google Scholar

9. Levidow, L.; Zaccaria, D.; Maia, R.; Vivas, E.; Todorovic, M.; Scardigno, A. Improving water-efficient Irrigation: Prospects and Difficulties of Innovative Practices. Agric. Water Manag. 2014, 146, 84–94. https://doi.org/10.1016/j.agwat.2014.07.012.Search in Google Scholar

10. Ncube, M.; Moyo, F.; Mamhute, S. Unpacking Negative Externalities of Social Capital in the Sustainability of Smallholder Rural Irrigation Farming: the Case of Rozva Irrigation Scheme in Bikita District, Zimbabwe. Int. J. Soc. Sci. Humanit. Res. 2022, 4 (12). https://doi.org/10.47191/ijsshr/v4-i12-64.Search in Google Scholar

11. Varaprasad, K.; Raghavendra, G. M.; Jayaramudu, T.; Yallapu, M. M.; Sadiku, R. A Mini Review on Hydrogels Classification and Recent Developments in Miscellaneous Applications. Mater. Sci. Eng. C 2017, 79, 958–971. https://doi.org/10.1016/j.msec.2017.05.096.Search in Google Scholar PubMed

12. Madduma-Bandarage, U. S. K.; Madihally, S. V. Synthetic Hydrogels: Synthesis, Novel Trends, and Applications. J. Appl. Polym. Sci. 2021, 138, e50376. https://doi.org/10.1002/app.50376.Search in Google Scholar

13. Rowley, J. A.; Madlambayan, G.; Mooney, D. J. Alginate Hydrogels as Synthetic Extracellular Matrix Materials. Biomaterials 1999, 20, 45–53. https://doi.org/10.1016/S0142-9612(98)00107-0.Search in Google Scholar

14. Said, H. M.; Abd Alla, S. G.; El-Naggar, A. W. M. Synthesis and Characterization of Novel Gels Based on Carboxymethyl cellulose/acrylic Acid Prepared by Electron Beam Irradiation. React. Funct. Polym. 2004, 61 (4), 397–404. https://doi.org/10.1016/j.reactfunctpolym.2004.07.002.Search in Google Scholar

15. Zhai, Y.; Zhu, W.; Yu, M.; Zhu, Y. Preparation and Characterization of Poly(Vinyl alcohol)/starch Blend Hydrogels. Carbohydr. Polym. 2002, 50 (1), 35–41. https://doi.org/10.1016/S0144-8617(02)00031-0.Search in Google Scholar

16. Raju, M. P.; Raju, K. M. Design and Synthesis of Superabsorbent Polymers. J. Appl. Polym. Sci. 2001, 80 (13), 2635–2639. https://doi.org/10.1002/app.1357.Search in Google Scholar

17. Peppas, N. A.; Khare, A. R. Preparation, Structure and Diffusional Behavior of Hydrogels in Controlled Release. Adv. Drug Deliv. Rev. 1993, 11 (1–2), 1–35; https://doi.org/10.1016/0169-409x-93-90025-y.Search in Google Scholar

18. Qiu, Y.; Park, K. Environment-Sensitive Hydrogels for Drug Delivery. Adv. Drug Deliv. Rev. 2001, 53 (3), 321–339. https://doi.org/10.1016/S0169-409X(01)00203-4.Search in Google Scholar PubMed

19. Hoffman, A. S. Hydrogels for Biomedical Applications. Adv. Drug Deliv. Rev. 2002, 54 (1), 3–12. https://doi.org/10.1016/S0169-409X(01)00239-3.Search in Google Scholar

20. Slaughter, B. V.; Khurshid, S. S.; Fisher, O. Z.; Khademhosseini, A.; Peppas, N. A. Hydrogels in Regenerative Medicine. Adv. Mater. 2009, 21 (32–33), 3307–3329. https://doi.org/10.1002/adma.200802106.Search in Google Scholar PubMed PubMed Central

21. Zhao, X.; Huebsch, L.; Mooney, D. J.; Suo, Z. Stress-Relaxation Behavior in Gels with Ionic and Covalent Crosslinks. J. Appl. Phys. 2010, 107 (6), 063509. https://doi.org/10.1063/1.3343265.Search in Google Scholar PubMed PubMed Central

22. Liu, M.; Zeng, M.; Ha, Y.; Wang, X. Smart Hydrogels for stimuli-responsive Drug Delivery Systems. Macromol. Rapid Commun. 2014, 35 (18), 1578–1590.Search in Google Scholar

23. Zhao, X.; Zhang, S.; Liu, Y.; Zhang, X.; Zhou, M.; Xu, X.; Zhang, Y.; Xie, W.; Zhang, Y. Injectable Hydrogels for Drug Delivery and Tissue Engineering. Macromol. Biosci. 2016, 16 (8), 1114–1127. https://doi.org/10.1155/2016/9816461.Search in Google Scholar

24. Gaharwar, T. R.; Peppas, N. A.; Khademhosseini, A. Nanocomposite Hydrogels for Biomedical Applications. Biotechnol. Bioeng. 2014, 111 (3), 441–453. https://doi.org/10.1002/bit.25160.Search in Google Scholar PubMed PubMed Central

25. Zhang, Y.; Liu, W.; Li, L.; Wang, L.; Wang, J.; Sun, H. Conductive Hydrogels: Mechanisms, Design, and Applications. Chem. Rev. 2016, 116 (13), 7243–7290.Search in Google Scholar

26. Liu, Y.; Wang, Y.; Fu, Y.; Wang, N.; Liu, Q.; Zhao, S.; Yu, Y.; Liu, C. Fabrication of Temperature and pH dual-sensitive Semi-interpenetrating Network Hydrogel with Enhanced Adhesion and Antibacterial Properties. Polymer 2025, 326, 128343. https://doi.org/10.1016/j.polymer.2025.128343.Search in Google Scholar

27. Sannino, A.; Demitri, C.; Madaghiele, M. Biodegradable Cellulose-based Hydrogels: Design and Applications. Materials 2009, 2 (2), 353–373; https://doi.org/10.3390/ma2020353.Search in Google Scholar

28. Bhattarai, N.; Gunn, J.; Zhang, M. Chitosan-Based Hydrogels for Controlled, Localized Drug Delivery. Adv. Drug Deliv. Rev. 2010, 62 (1), 83–99; https://doi.org/10.1016/j.addr.2009.07.019.Search in Google Scholar PubMed

29. Annabi, N.; Tamayol, A.; Uquillas, J. A.; Akbari, M.; Bertassoni, L. E.; Cha, C.; Camci-Unal, G.; Dokmeci, M. R.; Peppas, N. A.; Khademhosseini, A. Controlling the Porosity and Microarchitecture of Hydrogels for Tissue Engineering. Tissue Eng. Part B Rev. 2014, 20 (6), 493–504. https://doi.org/10.1089/ten.TEB.2009.0639.Search in Google Scholar PubMed PubMed Central

30. Ahmed, E. M. Hydrogel: Preparation, Characterization, and Applications. J. Adv. Res. 2015, 6 (2), 105–121; https://doi.org/10.1016/j.jare.2013.07.006.Search in Google Scholar PubMed PubMed Central

31. Park, S.; Chang, H. Microbial Biosensors: Current and Future Applications. Trends Biotechnol. 2000, 18 (4), 217–222.Search in Google Scholar

32. Nguyen, A. H.; Narayanan, T. 3D Bioprinting with Alginate Hydrogels. Int. J. Bioprinting 2017, 3 (1), 53–66.Search in Google Scholar

33. Yuk, H.; Lu, B.; Zhao, X. Hydrogel Bioelectronics. Chem. Soc. Rev. 2019, 48 (6), 1642–1667; https://doi.org/10.1039/c8cs00595h.Search in Google Scholar PubMed

34. Al-Jabari, M.; Ghyadah, R.; Alokely, R. Recovery of Hydrogel from Baby Diaper Wastes and its Application for Enhancing Soil Irrigation Management. J. Environ. Manag. 2019, 239, 158–165. https://doi.org/10.1016/j.jenvman.2019.03.087.Search in Google Scholar PubMed

35. N, K.; Khanna, M.; Rajanna, G.; Singh, M.; Singh, A.; Singh, S.; Banerjee, T.; Patanjali, N.; Rajput, J.; Kiruthiga, B. Soil Water Distribution and Water Productivity in Red Cabbage Crop Using Superabsorbent Polymeric Hydrogels Under Different Drip Irrigation Regimes. Agric. Water Manag. 2024, 108759. https://doi.org/10.1016/j.agwat.2024.108759.Search in Google Scholar

36. Patra, S.; Poddar, R.; Brestič, M.; Acharjee, P.; Bhattacharya, P.; Sengupta, S.; Pal, P.; Bam, N.; Biswas, B.; Bárek, V.; Ondrisik, P.; Skalický, M.; Hossain, A. Prospects of Hydrogels in Agriculture for Enhancing Crop and Water Productivity Under Water Deficit Condition. Int. J. Polym. Sci. 2022, 2022, 4914836. https://doi.org/10.1155/2022/4914836.Search in Google Scholar

37. Koupai, J.; Eslamian, S.; Kazemi, J. Enhancing the Available Water Content in Unsaturated Soil Zone Using Hydrogel, to Improve Plant Growth Indices. Ecohydrol. Hydrobiol. 2008, 8, 67–75. https://doi.org/10.2478/V10104-009-0005-0.Search in Google Scholar

38. Xie, Y.; Zhong, Y.; Wu, J.; Fang, S.; Cai, L.; Li, M.; Cao, J.; Zhao, H.; Dong, B. From Waste to Wonder: Comparative Evaluation of Chinese Cabbage Waste and Banana Peel Derived Hydrogels on Soil Water Retention Performance. Gels 2024, 10 (12), 833. https://doi.org/10.3390/gels10120833.Search in Google Scholar PubMed PubMed Central

39. Fernández, R.; Jarama, F.; Gallo, F.; Intriago, D. Hydrogel for Improving Water Use Efficiency of Capsicum annuum Crops in Fluvisol Soil. Rev. Fac. Cienc. Agrar. 2018, 50 (1), 157–170.Search in Google Scholar

40. Diógenes, M.; Mendonça, V.; Mendonça, L.; Moura, E.; Da Silva Lima Rege, K.; Oliveira, L.; Oliveira, A. Use of Hydrogel in the Irrigation Management of White Pitaya (Hylocereus undatus) Seedlings: Biometrics and Accumulation of Organic and Inorganic Solutes. Semina: Cienc. Agrar. 2022, 43 (2), 491–506.10.5433/1679-0359.2022v43n2p491Search in Google Scholar

41. K, T.; Paul, A.; Kakoti, M.; Shridhar, A.; Shobnur, S.; Robertson, A.; Alam, S. Hydrogel in Drylands: a Review. Int. J. Environ. Climate Change 2024, 14, 8362. https://doi.org/10.9734/ijecc/2024/v14i84362.Search in Google Scholar

42. Barros, D.; Edvan, R.; Pessoa, J.; Nascimento, R.; Camboim, L. F.; Silva, S.; Pereira Filho, J. M.; Sousa, H.; Silva-Filho, E. C.; Fonseca, M.; Bezerra, L. Cashew Gum (Anacardium occidentale) Hydrogel for Sustainable Irrigation of Cactus Pear: Effects on Growth, Chemical Composition, and Mineral Content. Sustainability 2025, 17 (2), 501. https://doi.org/10.3390/su17020501.Search in Google Scholar

43. Shaheb, M. R.; Venkatesh, R.; Shearer, S. A. A Review on the Effect of Soil Compaction and its Management for Sustainable Crop Production. J. Biosyst. Eng. 2021, 46, 417–439. https://doi.org/10.1007/s42853-021-00117-7.Search in Google Scholar

44. Sirousazar, M.; Ghanizadeh, E.; Rezazadeh, B.; Abbasi-Chianeh, V.; Kheiri, F. Polymeric Hydrogel Pipes for Irrigation Application. J. Polym. Environ. 2019, 27, 867–875. https://doi.org/10.1007/s10924-019-01567-z.Search in Google Scholar

45. Moon, R. J.; Martini, A.; Nairn, J.; Simonsen, J.; Youngblood, J. Cellulose Nanomaterials Review: Structure, Properties and Nanocomposites. Chem. Soc. Rev. 2011, 40 (7), 3941–3994. https://doi.org/10.1039/C0CS00108B.Search in Google Scholar

46. Habibi, Y.; Lucia, L. A.; Rojas, O. J. Cellulose Nanocrystals: Chemistry, self-assembly, and Applications. Chem. Rev. 2010, 110 (6), 3479–3500. https://doi.org/10.1021/cr900339w.Search in Google Scholar PubMed

47. Yang, J.; Han, C.-R.; Zhang, X.-M.; Xu, F.; Sun, R.-C. Cellulose Nanocrystals Mechanical Reinforcement in Composite Hydrogels with Multiple cross-links: Correlations Between Dissipation Properties and Deformation Mechanisms. Macromolecules 2014, 47 (12), 4077–4086. https://doi.org/10.1021/ma500729q.Search in Google Scholar

48. Gong, J. P.; Katsuyama, Y.; Kurokawa, T.; Osada, Y. Why are Double Network Hydrogels so Tough? Soft Matter 2010, 6 (12), 2583–2590. https://doi.org/10.1039/B924290B.Search in Google Scholar

49. Yang, J.; Xie, Y.; Liu, H.; Wang, D.; Zhang, X.; Wang, X. Revealing Strong Nanocomposite Hydrogels Reinforced by Cellulose Nanocrystals: Insight into Morphologies and Interactions. ACS Appl. Mater. Interfaces 2013, 5 (23), 12960–12967; https://doi.org/10.1021/am403669n.Search in Google Scholar PubMed

50. Chang, C.-P.; Wang, I.-C.; Hung, K.-J.; Perng, Y.-S. Preparation and Characterization of Nanocrystalline Cellulose by Acid Hydrolysis of Cotton Linter. Taiwan J. For. Sci. 2010, 25 (3), 231–244.Search in Google Scholar

51. Musa, A.; Ahmad, M. B.; Hussein, M. Z.; Izham, S. M. Acid hydrolysis-mediated Preparation of Nanocrystalline Cellulose from Rice Straw. Int. J. Nanomater. Nanotechnol. Nanomed. 2017, 3 (2), 51–56.Search in Google Scholar

52. Kargarzadeh, H.; Sheltami, R. M.; Ahmad, I.; Dufresne, A. Cellulose Nanocrystal: a Promising Toughening Agent for Unsaturated Polyester Nanocomposite. Polymer 2015, 56, 346–357; https://doi.org/10.1016/j.polymer.2014.11.054.Search in Google Scholar

53. Mariano, M.; El Kissi, N.; Dufresne, A. Cellulose Nanocrystals and Related Nanocomposites: Review of Some Properties and Challenges. J. Polym. Sci., Part B: Polym. Phys. 2014, 52 (10), 791–806; https://doi.org/10.1002/polb.23490.Search in Google Scholar

54. Li, J.; Sun, B.; Wu, Y. Characterization of Sugarcane Bagasse from Different Cultivars: Cellulose, Hemicellulose and Lignin Contents. Ind. Crops Prod. 2014, 57, 72–79. https://doi.org/10.1016/j.indcrop.2014.03.035.Search in Google Scholar

55. Tang, S.; Chen, Z.; Lai, X.; Wei, Q.; Chen, F.; Jiang, C. Extraction and Surface Functionalization of Cellulose Nanocrystals from Sugarcane Bagasse. Molecules 2023, 28 (14), 5444. https://doi.org/10.3390/molecules28145444.Search in Google Scholar PubMed PubMed Central

56. Matveeva, V. G.; Bronstein, L. M. From Renewable Biomass to Nanomaterials: Does Biomass Origin Matter? Prog. Mater. Sci. 2022, 130, 100999. https://doi.org/10.1016/j.pmatsci.2022.100999.Search in Google Scholar

57. Raucci, M. G.; Alvarez-Perez, M. A.; Demitri, C.; Giugliano, D.; De Benedictis, V.; Sannino, A.; Ambrosio, L. Effect of Citric Acid Crosslinking Cellulose-based Hydrogels on Osteogenic Differentiation. J. Biomed. Mater. Res. Part A 2015, 103A, 2045–2056; https://doi.org/10.1002/jbm.a.35343.Search in Google Scholar PubMed

58. Liu, Y.; Vrana, N. E.; Cahill, P. A.; McGuinness, G. B. Physically Crosslinked Composite Hydrogels of PVA with Natural Macromolecules: Structure, Mechanical Properties, and Endothelial Cell Compatibility. J. Biomed. Mater. Res. Part B: Appl. Biomater. 2009, 90B, 492–502; https://doi.org/10.1002/jbm.b.31310.Search in Google Scholar PubMed

59. Sperinde, J. J.; Griffith, L. G. Synthesis and Characterization of enzymatically-cross-linked Poly(Ethylene Glycol) Hydrogels. Macromolecules 1997, 30, 5255–5264; https://doi.org/10.1021/ma970345a.Search in Google Scholar

60. Demitri, C.; Del Sole, R.; Scalera, F.; Sannino, A.; Vasapollo, G.; Maffezzoli, A.; Ambrosio, L.; Nicolais, L. Novel Superabsorbent Cellulose-based Hydrogels Crosslinked with Citric Acid. J. Appl. Polym. Sci. 2008, 110, 2453–2460; https://doi.org/10.1002/app.28660.Search in Google Scholar

61. Mali, S.; Wahane, A.; Pagar, S.; Singh, S.; Chaudhari, P.; Mahajan, P.; Rathod, S.; Wagh, A. Preparation and Characterization of Superabsorbent Polymer Hydrogel from Cellulose of Sugarcane Bagasse for Agricultural Application. Int. J. ChemTech Res. 2018, 11 (5), 157–165.Search in Google Scholar

62. Rai, R.; Mukherjee, S.; Sharma, N.; Dey, A. Biodegradable Cellulose-based Hydrogels: Design, Synthesis and Applications. Cellulose Chem. Technol. 2021, 55 (5–6), 495–507.Search in Google Scholar

63. Zainal, S. H.; Ahmad, M. B.; Yusof, N. A.; Abdullah, I. Synthesis and Characterization of a pH-sensitive Hydrogel Based on Poly(Acrylic acid-co-acrylamide)/carboxymethyl Cellulose for Drug Delivery System. Int. J. Polym. Mater. Polym. Biomater. 2021, 70 (14), 1065–1075. https://doi.org/10.1080/00914037.2020.1744979.Search in Google Scholar

64. Merino, D.; Olayo, R.; Rojas-de Gante, C.; Romero, R. J.; Merino, E.; Angulo, M. Swelling and Drug Release Behavior of Polyacrylamide Hydrogels Synthesized by Gamma Radiation. Radiat. Phys. Chem. 2023, 209, 110033. https://doi.org/10.1016/j.radphyschem.2023.110033.Search in Google Scholar

65. Jayanthi, S.; Prabha, I.; Ramesh, B.; Karthikeyan, S.; Jayaseelan, C. Biopolymer Composite Hydrogel Using Carboxymethyl cellulose/xanthan Gum with Incorporated Zinc Oxide for eco-friendly Irrigation Management. J. Polym. Environ. 2024, 32 (1), 156–172. https://doi.org/10.1007/s10924-023-02949-1.Search in Google Scholar

66. Abolore, A. A.; Olalekan, A. P.; Oluwole, M. A.; Fatokun, K. F.; Agbede, O. O. Sustainable Conversion of Plantain Peels for Hydrogel-based Soil Conditioner for Irrigation and Climate Change Mitigation. Sci. Rep. 2024, 14, 3402. https://doi.org/10.1038/s41598-024-56579-x.Search in Google Scholar

67. Ding, Y.; Cheng, X.; Sun, H.; Zhao, W.; Song, L.; Cui, X.; Wei, C. Preparation and Properties of Sodium Carboxymethyl Cellulose/Polyacrylamide Composite Hydrogels for Controlled Fertilizer Release. Cellulose 2025, 32, 4011–4029. https://doi.org/10.1007/s10570-025-05421-1.Search in Google Scholar

68. Kim, S. J.; Lee, C. K.; Kim, S. I. Characterization of the Water State of Hyaluronic Acid and Poly(Vinyl Alcohol) Interpenetrating Polymer Networks. J. Appl. Polym. Sci. 2006, 102 (2), 1204–1210.Search in Google Scholar

69. Galbe, M.; Zacchi, G. Pretreatment of Lignocellulosic Materials for Efficient Bioethanol Production. In Biofuels; Springer: Berlin, 2007; pp. 41–65.10.1007/10_2007_070Search in Google Scholar PubMed

70. Modenbach, A. A.; Nokes, S. E. Enzymatic Hydrolysis of Biomass at high-solids Loadings – a Review. Biomass Bioenergy 2013, 56, 526–544. https://doi.org/10.1016/j.biombioe.2013.05.031.Search in Google Scholar

71. Soni, R.; Ghosh, P.; Vyas, S.; Soni, A.; Dhakar, R.; Suthar, P. Cellulose from Agricultural Waste and its Application in Wastewater Treatment: A Sustainable Approach. Resour. Environ. Sustain. 2022, 10, 100098. https://doi.org/10.1016/j.resenv.2022.100098.Search in Google Scholar

72. Bian, H.; Yang, H.; Lin, Z.; Zhao, Y.; Wu, Y.; Wu, M.; Ni, Y. Green Fabrication of Strong and Tough Carboxymethyl cellulose/xanthan Gum Hydrogel with Double Crosslinked Network for High Performance Water Retention. Int. J. Biol. Macromol. 2022, 208, 110–120. https://doi.org/10.1016/j.ijbiomac.2022.03.110.Search in Google Scholar PubMed

73. Saarai, A.; Kasparkova, V.; Sedlacek, T.; Saha, P. On the Development and Characterisation of Crosslinked Sodium Carboxymethyl cellulose/gelatin Hydrogels. J. Mech. Behav. Biomed. Mater. 2013, 18, 152–166; https://doi.org/10.1016/j.jmbbm.2012.11.010.Search in Google Scholar PubMed

74. Arockiasamy, S.; Marimuthu, N.; Ganesan, R.; Karthikeyan, S.; Veerappan, A. Preparation and Characterization of Xanthan Gum-based Hydrogels for Sustainable Agriculture Applications. Int. J. Polym. Mater. Polym. Biomater. 2020, 69 (9), 563–571. https://doi.org/10.1080/00914037.2019.1600770.Search in Google Scholar

75. Charoensopa, T.; Boonmee, P.; Rojanarata, T.; Ngawhirunpat, T.; Opanasopit, P.; Li, X.; Wu, X.; Fei, C.; Yao, S. Carboxymethyl cellulose/xanthan Gum-based Hydrogel Films with Bioadhesive and Swelling Properties for Topical Application. Gels 2024, 10 (2), 141. https://doi.org/10.3390/gels10020141.Search in Google Scholar PubMed PubMed Central

76. Shalviri, A.; Liu, Q.; Abdekhodaie, M. J.; Wu, X. Y. Novel Modified starch–xanthan Gum Hydrogels for Controlled Drug Delivery: Synthesis and Characterization. Carbohydr. Polym. 2010, 79 (4), 898–907; https://doi.org/10.1016/j.carbpol.2009.10.016.Search in Google Scholar

77. Das, N.; Subuddhi, U. Development and Characterization of Carboxymethyl cellulose/xanthan Gum-based Hydrogel for Controlled Delivery of Poorly water-soluble Drug. Int. J. Biol. Macromol. 2015, 81, 1020–1028.Search in Google Scholar

78. Vasquez, M. A. F.; Tumolva, T. P. Synthesis of Hydrogel from Carboxymethyl Cellulose of Water Hyacinth Using Electron Beam Irradiation. Asian J. Chem. 2015, 27 (11), 4147–4151.Search in Google Scholar

79. Uliniuc, A.; Peptu, C. A.; Popa, M.; Leca, M. Swelling Behavior and Structural Characteristics of Poly(Acrylamide) Hydrogels Obtained by Gamma Irradiation. Rev. Roum. Chim. n.d., 55 (6), 321–326.Search in Google Scholar

80. Peppas, N. A.; Hilt, J. Z.; Khademhosseini, A.; Langer, R. Hydrogels in Biology and Medicine: from Molecular Principles to Bionanotechnology. Adv. Mater. 2006, 18 (11), 1345–1360. https://doi.org/10.1002/adma.200501612.Search in Google Scholar

81. Ribeiro, C.; Estevinho, B. N.; Rocha, F. Microencapsulation of Curcumin Nanoparticles in chitosan-xanthan Gum Particles. Food Hydrocoll 2009, 23 (8), 2102–2110.Search in Google Scholar

82. Ribeiro, C.; Costa, C.; Teixeira, P.; Vicente, A. A. Development of Bio-based Edible Films from Polysaccharide Blends: Effect on Physicochemical and Antimicrobial Properties. Food Bioprocess Technol. 2013, 6, 2650–2660.Search in Google Scholar

83. Olorunsola, E. O.; Adedokun, M. O.; Olanrewaju, F. O. Hydrogel from Irvingia gabonensis Seed Mucilage: a Novel Pharmaceutical Excipient for Controlled Release Tablet Formulation. J. Adv. Pharm. Technol. Res. 2013, 4 (2), 101–107.Search in Google Scholar

84. Rani, M.; Appa, S. V.; Babu, M. K. Development of Carboxymethyl cellulose-xanthan Gum Based Polymeric Hydrogel Film for Wound Dressing Application. J. Appl. Polym. Sci. 2016, 133, 44179.Search in Google Scholar

85. de Souza Lima, M. M.; Pinzon-Garcia, A. D.; da Silva, A. P.; Pinho, S. C. Chitosan–Xanthan Gum Microparticles for Encapsulation of Bioactive Compounds: Morphology, Size Distribution and Release Profile. Int. J. Biol. Macromol. 2020, 151, 1394–1401.Search in Google Scholar

86. Rahman, M.; Islam, M. A.; Islam, M. R.; Islam, S.; Bhuiyan, M. A. R.; Asaduzzaman, M. Fabrication and Characterization of Carboxymethyl cellulose/xanthan Gum Based Hydrogel for Wound Dressing Application. Int. J. Biol. Macromol. 2018, 117, 1110–1119.Search in Google Scholar

87. Xu, L.; Feng, L.; Liu, T.; Wu, Y.; Wang, C.; Yu, H. Multi-Responsive Hydrogels Based on Carboxymethyl Cellulose for Controlled Drug Delivery. Carbohydr. Polym. 2024, 311, 120781. https://doi.org/10.1016/j.carbpol.2023.120781.Search in Google Scholar PubMed

88. Olad, A.; Nosrati, R.; Mahdavi, H. Preparation and Characterization of Carboxymethyl cellulose/polyacrylamide/clay Nanocomposite Hydrogel for Controlled Release of Urea Fertilizer. Chem. Eng. J. 2018, 334, 1–10. https://doi.org/10.1016/j.cej.2017.10.068.Search in Google Scholar

89. Su, W.; Zhang, Y.; Yu, L.; Dong, M.; Li, C. Biocompatible and Biodegradable Hydrogels Based on Carboxymethyl cellulose/xanthan Gum and their sustained-release Properties. Int. J. Biol. Macromol. 2024, 236, 124038.Search in Google Scholar

Received: 2025-04-22
Accepted: 2025-07-30
Published Online: 2025-08-12

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 20.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2025-0077/html
Scroll to top button