Home Laser transmission welding of ABS polymers: a systematic study of parameter-quality correlations and interfacial morphology
Article
Licensed
Unlicensed Requires Authentication

Laser transmission welding of ABS polymers: a systematic study of parameter-quality correlations and interfacial morphology

  • Ghulam Anwer ORCID logo and Bappa Acherjee ORCID logo EMAIL logo
Published/Copyright: July 25, 2025
Become an author with De Gruyter Brill

Abstract

A comprehensive analysis of laser transmission welding (LTW) of acrylonitrile butadiene styrene (ABS), a widely used engineering plastic for structural applications, is presented in this research paper. The efficiency and reliability of LTW for ABS are examined by analyzing the complex interactions between process parameters and weld characteristics, as well as through the study of fracture surface characteristics and weld morphology. Systematic experimentation combined with response surface methodology is employed to develop precise mathematical models correlating process parameters with weld quality. Optimization strategies are explored to identify parameter configurations yielding desired weld quality. It is observed that higher laser power enhances weld strength by improving energy transfer, while careful balancing of scanning speeds prevents overheating, and increased stand-off distances improve both weld strength and width. Fracture surface analysis reveals significant fibril elongation and interlayer deformation, demonstrating the effectiveness of LTW in enhancing weld quality through improved interfacial bonding and material integration. The research provides key insights into LTW for ABS, emphasizing parameter interactions, weld quality, fracture characteristics, morphology, and optimal processing conditions for advanced engineering applications.


Corresponding author: Bappa Acherjee, Department of Production & Industrial Engineering, Birla Institute of Technology, Mesra, Ranchi, 835215, India, E-mail:

Acknowledgments

The authors gratefully acknowledge the Central Instrumentation Facility (CIF) of BIT Mesra, Ranchi, India, for the testing carried out in this work.

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission. G.A: investigation, methodology, formal analysis, writing – original draft. B.A.: conceptualization, visualization, supervision, writing – review & editing.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors state no conflict of interest.

  6. Research funding: B.A. would like to acknowledge partial financial support from ANRF/SERB, DST (India) sponsored projects (CRG/2021/001066, Dt. 03-03-2022), (CRG/2022/004102, Dt. 14-02-2023) and (CRG/2023/0003537, Dt. 23-02-2024).

  7. Data availability: The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

1. Kagan, V. A. Innovations in Laser Welding of Thermoplastics: This Advanced Technology is Ready to be Commercialized. SAE Trans. 2002, 845–864. https://doi.org/10.4271/2002-01-2011.Search in Google Scholar

2. Anscombe, N. Laser Welding Penetrates the Plastics Market. Photonics Spectra 2004, 38 (9), 60–66. https://www.photonics.com/Articles/Laser_Welding_Penetrates_the_Plastics_Market/a19909 (accessed 07 10, 2024).Search in Google Scholar

3. Nakamata, H. Process for Joining Different Kinds of Synthetic Resins; US Patent, 1987, p. 4636609.Search in Google Scholar

4. Acherjee, B. Laser Transmission Welding of Polymers–a Review on Process Fundamentals, Material Attributes, Weldability, and Welding Techniques. J. Manuf. Processes 2020, 60, 227–246. https://doi.org/10.1016/j.jmapro.2020.10.017.Search in Google Scholar

5. Russek, U. A. Laser Beam Welding of Polymers with High Power Diode Lasers Joining Innovation for Micro and Macro Technologies. ICALEO 2001, 483–491. https://doi.org/10.2351/1.5059900.Search in Google Scholar

6. Kagan, V.; Bray, R.; Chambers, A. L. Forward to Better Understanding of Optical Characterization and Development of Colored Polyamides for the Infra-Red/Laser Welding: Part I-efficiency of Polyamides for Infra-Red Welding. J. Reinf. Plast. Compos. 2003, 22 (6), 533–547. https://doi.org/10.1106/073168403023283.Search in Google Scholar

7. Kagan, V. A.; Kocheny, S. A.; Macur, J. E. Moisture Effects on Mechanical Performance of Laser-Welded Polyamide. J. Reinf. Plast. Compos. 2005, 24 (11), 1213–1224. https://doi.org/10.1177/0731684405048845.Search in Google Scholar

8. Acherjee, B. State-of-Art Review of Laser Irradiation Strategies Applied to Laser Transmission Welding of Polymers. Opt. Laser Technol. 2021, 137, 106737. https://doi.org/10.1016/j.optlastec.2020.106737.Search in Google Scholar

9. Acherjee, B. Laser Transmission Welding of Polymers – A Review on Welding Parameters, Quality Attributes, Process Monitoring, and Applications. J. Manuf. Processes 2021, 64, 421–443. https://doi.org/10.1016/j.optlastec.2015.06.026.Search in Google Scholar

10. Xu, X. F.; Parkinson, A.; Bates, P. J.; Zak, G. Laser Transmission Welding of Polymers – A Review on Welding Parameters, Quality Attributes, Process Monitoring, and Applications. Opt. Laser Technol. 2015, 75, 123–131. https://doi.org/10.1016/j.optlastec.2015.06.026.Search in Google Scholar

11. Ilie, M.; Cicala, E.; Grevey, D.; Mattei, S.; Stoica, V. Diode Laser Welding of ABS: Experiments and Process Modelling. Opt. Laser Technol. 2009, 41 (5), 608–614. https://doi.org/10.1016/j.optlastec.2008.10.005.Search in Google Scholar

12. Vidal, E. R.; Quintana, I.; Gadea, C. Laser Transmission Welding of ABS: Effect of CNTs Concentration and Process Parameters on Material Integrity and Weld Formation. Opt. Laser Technol. 2014, 57, 194–201. https://doi.org/10.1016/j.optlastec.2013.10.020.Search in Google Scholar

13. Acherjee, B.; Kuar, A. S.; Mitra, S.; Misra, D.; Acharyya, S. Experimental Investigation on Laser Transmission Welding of PMMA to ABS via Response Surface Modeling. Opt. Laser Technol. 2012, 44 (5), 1372–1383. https://doi.org/10.1016/j.optlastec.2011.12.029.Search in Google Scholar

14. Visco, A. M.; Torrisi, L.; Galtieri, G.; Scolaro, C. Effect of the Filler Amount on the Optical Absorption Properties and the Surface Features of Polymeric Joints Based on Biomedical UHMWPE Welded by a Nd: YAG Laser. J. Thermoplast. Compos. Mater. 2017, 30 (12), 1675–1692. https://doi.org/10.1177/0892705716662.Search in Google Scholar

15. Wang, Y. Y.; Wang, A. H.; Weng, Z. K.; Xia, H. B. Laser Transmission Welding of Clearweld-Coated Polyethylene Glycol Terephthalate by Incremental Scanning Technique. Opt. Laser Technol. 2016, 80, 153–161. https://doi.org/10.1016/j.optlastec.2016.01.008.Search in Google Scholar

16. Lakemeyer, P.; Schöppner, V. Laser Transmission Welding of Automotive Headlamps Without a Clamping Tool. Weld. World 2017, 61 (3), 589–602. https://doi.org/10.1007/s40194-017-0440-2.Search in Google Scholar

17. Gisario, A.; Veniali, F.; Barletta, M.; Tagliaferri, V.; Vesco, S. Laser Transmission Welding of Poly (Ethylene Terephthalate) and Biodegradable Poly (Ethylene Terephthalate)–based Blends. Opt. Laser Eng. 2017, 90, 110–118. https://doi.org/10.1016/j.optlaseng.2016.10.010.Search in Google Scholar

18. Liu, M.; Ouyang, D.; Zhao, J.; Li, C.; Sun, H.; Ruan, S. Clear Plastic Transmission Laser Welding Using a Metal Absorber. Opt. Laser Technol. 2018, 105, 242–248. https://doi.org/10.1016/j.optlastec.2018.02.047.Search in Google Scholar

19. Wang, C.; Yu, X.; Wang, C.; Liu, Y.; Xia, Z. Laser Transmission Welding of Polyarylsulfone Using Zinc Particles Absorber. Infrared Phys. Technol. 2021, 118, 103892. https://doi.org/10.1016/j.infrared.2021.103892.Search in Google Scholar

20. Röhricht, M. L.; Stichel, T.; Roth, S.; Bräuer, P. A. B.; Schmidt, M.; Will, S. Correlation Between Weld Seam Morphology and Mechanical Properties in Laser Transmission Welding of Polypropylene. Proc. CIRP 2020, 94, 691–696. https://doi.org/10.1016/j.procir.2020.09.119.Search in Google Scholar

21. Acherjee, B. Laser Transmission Welding of Dissimilar Plastics: 3-D FE Modeling and Experimental Validation. Weld. World 2021, 65, 1429–1440. https://doi.org/10.1007/s40194-021-01079-2.Search in Google Scholar

22. Kumar, D.; Sarkar, N. S.; Acherjee, B.; Kuar, A. S. Beam Wobbling Effects on Laser Transmission Welding of Dissimilar Polymers: Experiments, Modeling, and Process Optimization. Opt. Laser Technol. 2022, 146, 107603. https://doi.org/10.1016/j.optlastec.2021.107603.Search in Google Scholar

23. Liu, Y.; Zhang, W.; Liu, J.; Guan, Y.; Ding, X. Study on Microstructures and Mechanical Performance of Laser Transmission Welding of Poly-Ether-Ether-Ketone (PEEK) and Carbon Fiber Reinforced PEEK (CFR-PEEK). J. Laser Appl. 2022, 34 (4), 042037. https://doi.org/10.2351/7.0000823.Search in Google Scholar

24. Kumar, R. G.; Anand, B.; Jabiulla, S.; Murthy, H. N. Laser Transmission Welding (LTW) of Three-Dimensional (3-D) Printed Polylactic Acid (PLA) Sheets. Lasers Eng. 2023, 54 (4–6), 295–311.Search in Google Scholar

25. Acherjee, B.; Misra, D.; Bose, D.; Acharyya, S. Optimal Process Design for Laser Transmission Welding of Acrylics Using Desirability Function Analysis and Overlay Contour Plots. Int. J. Manuf. Res. 2011, 6 (1), 49–61. https://doi.org/10.1504/IJMR.2011.037913.Search in Google Scholar

26. Wang, X.; Guo, D.; Chen, G.; Jiang, H.; Meng, D.; Yan, Z.; Liu, H. Thermal Degradation of PA66 During Laser Transmission Welding. Opt. Laser Technol. 2016, 83, 35–42. https://doi.org/10.1016/j.optlastec.2016.02.022.Search in Google Scholar

27. Seidl, M.; Safka, J.; Behalek, L.; Novakova, I. Through Transmission Laser Welding Process Optimization for Semicrystalline and Amorphous Plastics. MM Sci. J. 2020, 4119–4123. https://doi.org/10.17973/MMSJ.2020_11_2020042.Search in Google Scholar

28. Dave, F.; Ali, M. M.; Sherlock, R.; Kandasami, A.; Tormey, D. Laser Transmission Welding of Semi-Crystalline Polymers and Their Composites: A Critical Review. Polym. 2021, 13 (5), 675. https://doi.org/10.3390/polym13050675.Search in Google Scholar PubMed PubMed Central

29. Goyal, D. K.; Kant, R. Mechanical and Morphological Analysis of Laser Transmission Welded Dissimilar Plastics Using Metal Absorber. Opt. Laser Technol. 2024, 170, 110238. https://doi.org/10.1016/j.optlastec.2023.110238.Search in Google Scholar

30. Wang, X.; Chen, H.; Liu, H. Investigation of the Relationships of Process Parameters, Molten Pool Geometry and Shear Strength in Laser Transmission Welding of Polyethylene Terephthalate and Polypropylene. Mater. Des. 2024, 55, 343–352. https://doi.org/10.1016/j.matdes.2013.09.052.Search in Google Scholar

31. Williams, J. G. Fracture Mechanics of Polymers; Halsted Press: New York, 1984.Search in Google Scholar

32. Stan, F.; Fetecau, C. Experimental Investigation of the Adhesion Between Thermoplastic Polyurethane and Acrylonitrile-Butadiene-Styrene Substrate. In Proc. ASME 2014 Int. Manuf. Sci. Eng. Conf.; Processing: Detroit, MI, USA, Vol. 2, 2014; pp. 9–13. https://doi.org/10.1115/MSEC2014-3927.Search in Google Scholar

33. Li, L.; Masuda, T.; Takahashi, M. Elongational Flow Behavior of ABS Polymer Melts. J. Rheol. 1990, 34 (1), 103–116. https://doi.org/10.1122/1.550112.Search in Google Scholar

34. Acherjee, B.; Kuar, A. S.; Mitra, S.; Misra, D. A Sequentially Integrated Multi-Criteria Optimization Approach Applied to Laser Transmission Weld Quality Enhancement – A Case Study. Int. J. Adv. Manuf. Technol. 2013, 65, 641–650. https://doi.org/10.1007/s00170-012-4203-3.Search in Google Scholar

35. Osyczka, A.; Kundu, S. A New Method to Solve Generalized Multicriteria Optimization Problems Using the Simple Genetic Algorithm. Struct. Optim. 1995, 10, 94–99. https://doi.org/10.1007/BF01743536.Search in Google Scholar

36. Zolpakar, N. A.; Lodhi, S. S.; Pathak, S.; Sharma, M. A. Application of Multi-Objective Genetic Algorithm (MOGA) Optimization in Machining Processes. In Optimization of Manufacturing Processes. Gupta, K.; Gupta, M., Eds.; Springer Series in Advanced Manufacturing; Springer: Cham, 2020; pp. 185–199.10.1007/978-3-030-19638-7_8Search in Google Scholar


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/polyeng-2025-0016).


Received: 2025-01-20
Accepted: 2025-07-08
Published Online: 2025-07-25

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 19.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2025-0016/html
Scroll to top button