Startseite High performance poly ceramic hybrid composite featured with carbon fiber
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

High performance poly ceramic hybrid composite featured with carbon fiber

  • Vagheesan Senthilkumar , Kasilingam Balasubramanian , Subramaniam Prabagaran , Tharmaraj Premkumar , Pichandi Chandrasekar , Venkatesh Rathinavelu ORCID logo EMAIL logo , Mohanavel Vinayagam , Sami Al Obaid und Saleh Hussein Salmen
Veröffentlicht/Copyright: 31. Juli 2025
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Polyether ether ketone (PEEK) is a high-performance thermoplastic recognized for its outstanding mechanical characteristics, thermal stability, and chemical resistance. Besides, working with pure PEEK requires a lot of energy and can result in issues like thermal degradation if not handled carefully, which limits mechanical performance. The research intends to synthesize a high-performance PEEK hybrid nanocomposite layer series by PEEK/zirconia (ZrO2)/carbon fiber (CF)/PEEK with varied percentages of weight for ZrO2 as 0–5 wt% adhered with the epoxy medium through hand layup associated with advanced hot compression mould technique. The response of nano ZrO2 particles on microstructural and mechanical characteristics of PEEK/carbon fiber (CF)/PEEK hybrid composites is investigated. The PEEK/5 wt% ZrO2/CF-PEEK hybrid nanocomposite exploited superior mechanical performance rather than others, and microstructural transmission electron microscopy (TEM) analysis provides the clear fiber-filler matrix bonding, which favours better mechanical behaviour of the composite. Besides, the composite series of PEEK/5 wt% ZrO2/CF/PEEK is found to have optimum yield, tensile and flexural stress, and fracture toughness, with values 132.8 MPa, 182.5 MPa and 192.2 MPa, and 7.9 MPa0.5 and proposed to automotive parts applications.


Corresponding author: Venkatesh Rathinavelu, Department of Mechanical Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, SIMATS, Chennai, 602105, Tamil Nadu, India, E-mail:

Acknowledgements

This project was supported by Researchers Supporting Project number (RSP2025R315), King Saud University, Riyadh, Saudi Arabia.

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors state no conflict of interest.

  6. Research funding: None declared.

  7. Data availability: Not applicable.

References

1. Mayandi, K.; Rajini, N.; Ayrilmis, N.; Indira Devi, M. P.; Siengchin, S.; Mohammad, F.; Al-Lohedan, H. A. An Overview of Endurance and Ageing Performance Under Various Environmental Conditions of Hybrid Polymer Composites. J. Mater. Res. Technol. 2020, 9 (6), 15962–15988. https://doi.org/10.1016/j.jmrt.2020.11.031.Suche in Google Scholar

2. Venkatesh, R.; Raghuvaran, S.; Vivekanandan, M.; Kannan, C. R.; Thirugnanasambandham, T.; Murugan, A. Evaluation of Thermal Adsorption and Mechanical Behaviour of Intralaminar Jute/Sisal/E-Glass Fibre-Bonded Epoxy Hybrid Composite as an Insulator. Adsorp Sci Technol. 2023, 1, 1–10; https://doi.org/10.1155/2023/9222562.Suche in Google Scholar

3. Das, A. D.; Kamatchi, R. M.; Kaliyaperumal, G.; Ajin, M.; Shanmugam, R. Synthesis and Functional Behavior of Sisal Fiber-Incorporated Epoxy Hybrid Nanocomposite Enriched by Nano-SiC. J. Inst. Eng. (India): D. 2024, 2, 1–10. https://doi.org/10.1007/s40033-024-00683-y.Suche in Google Scholar

4. Siraj, N.; Hashmi, S. A. R.; Verma, S. State-Of-The-Art Review on the High-Performance Poly (Ether Ether Ketone) Composites for Mechanical, Tribological and Bioactive Characteristics. Polym. Adv. Technol. 2022, 33 (10), 3049–3077. https://doi.org/10.1002/pat.5795.Suche in Google Scholar

5. Gopalan, J.; Buthiyappan, A.; Abdul Raman, A. A. Insight into Metal-Impregnated Biomass-based Activated Carbon for Enhanced Carbon Dioxide Adsorption: a Review. J. Ind. Eng. Chem. 2022, 113, 72–95. https://doi.org/10.1016/j.jiec.2022.06.026.Suche in Google Scholar

6. Suriani, M. J.; Ilyas, R. A.; Zuhri, M. Y. M.; Khalina, A.; Sultan, M. T. H.; Sapuan, S. M.; Sharma, S.; Wan, F. N.; Zulkifli, F.; Harussani, M. M.; Azman, M. A.; Radzi, F. S. M. Critical Review of Natural Fiber Reinforced Hybrid Composites: Processing, Properties, Applications and Cost. Polymers 2021, 13 (20), 3514. https://doi.org/10.3390/polym13203514.Suche in Google Scholar PubMed PubMed Central

7. Guo, G.; Kethineni, C. Direct Injection Moulding of Hybrid Polypropylene/wood-fiber Composites Reinforced with Glass Fiber and Carbon Fiber. Int. J. Adv. Manuf. Technol. 2020, 106, 201–209. https://doi.org/10.1007/s00170-019-04572-7.Suche in Google Scholar

8. Heitkamp, T.; Girnth, S.; Kuschmitz, S.; Klawitter, G.; Waldt, N.; Vietor, T. Continuous Fiber-Reinforced Material Extrusion with Hybrid Composites of Carbon and Aramid Fibers. Appl. Sci. 2022, 12 (17), 8830. https://doi.org/10.3390/app12178830.Suche in Google Scholar

9. Ohayon-Lavi, A.; Buzaglo, M.; Ligati, S.; Peretz-Damari, S.; Shachar, G.; Pinsk, N.; Regev, O.; Schatzberg, Y.; Genish, I. Compression-Enhanced Thermal Conductivity of Carbon-Loaded Polymer Composites. Carbon 2020, 163, 333–340. https://doi.org/10.1016/j.carbon.2020.03.026.Suche in Google Scholar

10. Ahmad, I.; Islam, M.; Al Habis, N.; Parvez, S. Hot-Pressed Graphene Nanoplatelets or/and Zirconia-Reinforced Hybrid Alumina Nanocomposites with Improved Toughness and Mechanical Characteristics. J Mater Sci Technol 2020, 40, 135–145. https://doi.org/10.1016/j.jmst.2019.08.048.Suche in Google Scholar

11. Shahabaz, S. M.; Shetty, P. K.; Shetty, N.; Sharma, S.; Divakara Shetty, S.; Naik, N. Effect of Alumina and Silicon Carbide Nanoparticle-Infused Polymer Matrix on Mechanical Properties of Unidirectional Carbon Fiber-Reinforced Polymer. J. Compos. Sci. 2022, 6 (12), 381. https://doi.org/10.3390/jcs6120381.Suche in Google Scholar

12. Toorchi, D.; Khosravi, H.; Tohidlou, E. Synergistic Effect 0f Nano-ZrO2/Graphene Oxide Hybrid System on the High-Velocity Impact Behaviour and Interlaminar Shear Strength of Basalt Fiber/Epoxy Composite. J. Ind. Text. 2020, 51 (2), 277–296. https://doi.org/10.1177/1528083719879922.Suche in Google Scholar

13. Pheysey, J.; De Cola, F.; Pellegrino, A.; Martinez-Hergueta, F. Strain Rate and Temperature Dependence of Short/Unidirectional Carbon Fibre PEEK Hybrid Composites. Compos. B. Eng. 2024, 268, 111080. https://doi.org/10.1016/j.compositesb.2023.111080.Suche in Google Scholar

14. Moos, M.; Möhl, C.; Reichert, O.; Ohnemüller, G.; Langhof, N.; Baz, S.; Schafföner, S. Novel Approach for Ceramic Matrix Composites – Cf/PEEK Hybrid Yarn-based C/C-SiC. J. Eur. Ceram. Soc. 2023, 44 (1), 130–141. https://doi.org/10.1016/j.jeurceramsoc.2023.09.005.Suche in Google Scholar

15. Gul, S.; Arican, S.; Cansever, M.; Okan, B. S.; Saner Okan, B. Dimension Effect on Thermal Conductivity of Hexagonal Boron Nitride/Titanium Dioxide Reinforced Hybrid PEEK Composites Developed with A Scalable Compounding Approach. Polym. Compos. 2023, 44 (12), 8669–8682. https://doi.org/10.1002/pc.27728.Suche in Google Scholar

16. Kumar Singh, S.; Gunwant, D.; Vedrtnam, A.; Kumar, A.; Jain, A. Synthesis, Characterization, and Modelling the Behavior of In-Situ ZrO2 Nanoparticles Dispersed Epoxy Nanocomposite. Eng Fract Mech 2022, 263, 108300. https://doi.org/10.1016/j.engfracmech.2022.108300.Suche in Google Scholar

17. Vieille, B.; Pujols-Gonzalez, J. D.; Bouvet, C.; Breteau, T.; Gautrelet, C. Influence of Impact Velocity on Impact Behaviour of Hybrid Woven-Fibers Reinforced PEEK Thermoplastic Laminates. Compos. C: Open Access. 2020, 2, 100029. https://doi.org/10.1016/j.jcomc.2020.100029.Suche in Google Scholar

18. Niu, Y.; Zheng, S.; Song, P.; Zhang, X.; Wang, C. Mechanical and Thermal Properties of PEEK Composites by Incorporating Inorganic Particles Modified Phosphates. Compos. B. Eng. 2021, 212, 108715. https://doi.org/10.1016/j.compositesb.2021.108715.Suche in Google Scholar

19. Ramaswamy, K.; Modi, V.; Rao, P. S.; Martin, P. P.; McCarthy, C. T.; O’Higgins, R. M. An Investigation of the Influence of Matrix Properties and Fibre–Matrix Interface Behaviour on the Mechanical Performance of Carbon Fibre-Reinforced PEKK and PEEK Composites. Compos. Part A Appl. Sci. Manuf. 2023, 165, 107359. https://doi.org/10.1016/j.compositesa.2022.107359.Suche in Google Scholar

20. Pidhatika, B.; Widyaya, V. T.; Nalam, P. C.; Swasono, Y. A.; Ardhani, R. Surface Modifications of High-Performance Polymer Polyetheretherketone (PEEK) to Improve its Biological Performance in Dentistry. Polymers 2022, 14 (24), 5526. https://doi.org/10.3390/polym14245526.Suche in Google Scholar PubMed PubMed Central

21. Shrivastava, R.; Singh, K. K. Interlaminar Fracture Toughness Characterization of Laminated Composites: a Review. Polym Rev. 2020, 60 (3), 542–593. https://doi.org/10.1080/15583724.2019.1677708.Suche in Google Scholar

22. Liu, X.; Gao, Y.; Shang, Y.; Zhu, X.; Jiang, Z.; Zhou, C.; Zhang, H. Non-Covalent Modification of Boron Nitride Nanoparticle-Reinforced PEEK Composite: Thermally Conductive, Interfacial, and Mechanical Properties. Polymer 2020, 203, 122763. https://doi.org/10.1016/j.polymer.2020.122763.Suche in Google Scholar

23. Arunachalam, S. J.; Saravanan, S.; Sathish, T. Integration of Nanographene and Action of Fiber Sequences on Functional Behaviour of Composite Laminates. AIP Adv. 2025, 1–10. https://doi.org/10.1515/ipp-2024-0149.Suche in Google Scholar

24. Jin, Z.; Yao, Z.; Sun, Y.; Shen, H. Loading Capacity of PEEK Blends in Terms of Wear Rate and Temperature. Wear 2022, 496, 204306. https://doi.org/10.1016/j.wear.2022.204306.Suche in Google Scholar

25. Sathish, T.; Saravanan, R.; Arunachalam, S. J. Glass Fiber Influence on PP/Sisal/SiO2 Nanofillers/Glass Hybrid Nanocomposites/Plain Nanocomposite for Mechanical Property Improvement. Interactions 2025, 246, 25. https://doi.org/10.1007/s10751-025-02252-5.Suche in Google Scholar

26. Seenath, A. A.; Baig, M. M. A.; Katiyar, J. K.; Mohammed, A. S. A Comprehensive Review on the Tribological Evaluation of Polyether Ether Ketone Pristine and Composite Coatings. Polymer 2024, 16 (21), 2994. https://doi.org/10.3390/polym16212994.Suche in Google Scholar PubMed PubMed Central

27. Venkatesh, R. Hemp Fiber/Titanium Carbide Embedded High-Density Polyethylene Composite Prepared via Injection Mold. Characteristics Study. J. Inst. Eng. (India): D. 2024, 1–6 https://doi.org/10.1007/s40033-024-00784-8.Suche in Google Scholar

28. Sathishkumar, P.; Kumar, K. S. R.; Chebolu, R.; Giri; Sathish, T.; Fatehmulla, A. Impact of Different Parameters in Tribological Properties of Enset Ventricosum/Terminalia arjuna Fibers/SiO2 Filler Incorporation. J. Mater. Res. Technol. 2024, 3826–3836. https://doi.org/10.1016/j.jmrt.2024.09.250.Suche in Google Scholar

29. Krishnaraj, M.; Arun, T.; Vaitheeswaran, T. Fabrication and Wear Characteristics Basalt Fiber Reinforced Polypropylene Matrix Composites. SAE Tech Paper 2019, 28, 2570. https://doi.org/10.4271/2019-28-2570.Suche in Google Scholar

Received: 2024-12-31
Accepted: 2025-06-27
Published Online: 2025-07-31
Published in Print: 2025-10-27

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 14.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2024-0269/html?lang=de
Button zum nach oben scrollen