Integrating low dielectric constant and high thermal conductivity into composite films for 5G circuit package substrate
Abstract
The high-frequency, integrated, and miniaturized circuits increase the risks of electromagnetic interference and heat accumulation. However, it is difficult for the traditional circuit package substrate to realize both low dielectric and high thermal conductivity, resulting in high-quality signal transmission and fast heat dissipation cannot be achieved simultaneously. Here, for the first time, composite films (hBN/LCPs) with low dielectric constant in high-frequency and high thermal conductivity are prepared based on liquid crystal aromatic polyesters (LCPs) and hexagonal boron nitride (hBN). The highest thermal conductivity of hBN/LCPs film reaches 0.696 W m−1 K−1, which is 3.3 times higher than that of the pristine LCPs. In the simulation of wafer heat dissipation, hBN/LCPs film shows a maximum surface temperature decrease of over 20 °C compared to the pristine LCPs, showing the fast heat transfer ability. The dielectric constants and dielectric losses of hBN/LCPs films keep the low values in the range of 0.4–1 GHz, being less than 3.4 and 0.007, respectively, meeting the requirements of 5G communication devices. Meanwhile, the hBN/LCPs films show good mechanical strength and heat resistance. Therefore, a low-cost and facile method is developed to prepare composite films with low dielectric and high thermal conductivity for 5G circuit package substrates.
Funding source: Hubei Provincial Natural Science Foundation of China
Award Identifier / Grant number: 2023AFB808
Funding source: National Key R&D Program of China
Award Identifier / Grant number: 2021YFB3700101
Funding source: China National Textile and Apparel Council
Award Identifier / Grant number: J202101
Acknowledgments
The authors would like to thank shiyanjia lab (www.shiyanjia.com) for the support of dielectric test. We also appreciate the Analytical and Testing Center of Wuhan Textile University for the XRD tests.
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: Caijie Shi: methodology, investigation, formal analysis, validation, data curation, writing – original draft. Xuyi Wang: conceptualization, resources, visualization. Qiannan Cheng: methodology, investigation, formal analysis. Qingquan Tang: conceptualization, supervision, project administration, writing – original draft, writing – review & editing. Luoxin, Wang: project administration, funding acquisition. Hua Wang: project administration, funding acquisition, writing – review & editing. Siwei Xiong: conceptualization, methodology, visualization. All authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: The authors state no conflict of interest.
-
Research funding: The authors gratefully acknowledge financial support from the National Key R&D Program of China (2021YFB3700101) and the China National Textile and Apparel Council (J202101); the Project Supported by the Open Fund of State Key Laboratory of Biobased Fiber Manufacturing Technology, the Hubei Provincial Natural Science Foundation of China (2023AFB808), the Open Project Program of High-Tech Organic Fibers Key Laboratory of Sichuan Province.
-
Data availability: The datasets generated and/or analyzed during the current study are available from the corresponding authors on reasonable request.
References
1. Andrews, J. G.; Buzzi, S.; Choi, W.; Hanly, S. V.; Lozano, A.; Soong, A. C. K.; Zhang, J. C. What will 5G be? IEEE J. Sel. Areas Commun. 2014, 32 (6), 1065–1082; https://doi.org/10.1109/jsac.2014.2328098.Search in Google Scholar
2. Kousaridas, A.; Manjunath, R. P.; Perdomo, J.; Zhou, C.; Zielinski, E.; Schmitz, S.; Pfadler, A. Qos Prediction for 5G Connected and Automated Driving. IEEE Commun. Mag. 2021, 59 (9), 58–64; https://doi.org/10.1109/mcom.110.2100042.Search in Google Scholar
3. Yang, X.; Guo, J.; Guo, J. Multiple-Dimension Biohealth Data Acquisition System for 5G Telehealthcare Application. IEEE T Ind Inform 2023, 19 (6), 7700–7708; https://doi.org/10.1109/tii.2022.3213325.Search in Google Scholar
4. Rodriguez, I.; Mogensen, R. S.; Schjørring, A.; Razzaghpour, M.; Maldonado, R.; Berardinelli, G.; Adeogun, R.; Christensen, P. H.; Mogensen, P.; Madsen, O.; Moller, C.; Pocovi, G.; Kolding, T.; Rosa, C.; Jorgensen, B.; Barbera, S. 5G Swarm Production: Advanced Industrial Manufacturing Concepts Enabled by Wireless Automation. IEEE Commun. Mag. 2021, 59 (1), 48–54; https://doi.org/10.1109/mcom.001.2000560.Search in Google Scholar
5. Morín, D. G.; Pérez, P.; Armada, A. G. Toward the Distributed Implementation of Immersive Augmented Reality Architectures on 5G Networks. IEEE Commun. Mag. 2022, 60 (2), 46–52; https://doi.org/10.1109/mcom.001.2100225.Search in Google Scholar
6. Wang, Y. J.; Li, G.; Yao, Y. M.; Zeng, X. L.; Zhu, P. L.; Sun, R. Recent Advances in Polymer-based Electronic Packaging Materials. Compos. Commun. 2020, 19, 154–167; https://doi.org/10.1016/j.coco.2020.03.011.Search in Google Scholar
7. Wang, L.; Yang, J.; Cheng, W.; Zou, J.; Zhao, D. Progress on Polymer Composites with Low Dielectric Constant and Low Dielectric Loss for High-Frequency Signal Transmission. Front. Mater. 2021, 8, 774843; https://doi.org/10.3389/fmats.2021.774843.Search in Google Scholar
8. Wang, J. C.; Shen, Z. H.; Jiang, J. Y.; Wang, J.; Zhang, X.; Shen, J.; Shen, Y.; Chen, W.; Chen, L. Q.; Nan, C. W. High-Throughput finite-element Design of Dielectric Composites for high-frequency Copper Clad Laminates. Compos. Sci. Technol. 2022, 225, 109517; https://doi.org/10.1016/j.compscitech.2022.109517.Search in Google Scholar
9. Yu, B.; Luo, Z.; Zhou, Y.; Zhang, Q.; He, J.; Fan, J. Highly Thermally Conductive Flexible Biomimetic APTES-BNNS/BC Nanocomposite Paper by Sol–gel-film Technology. ACS Appl. Mater. Interfaces 2024, 16 (16), 21050–21060; https://doi.org/10.1021/acsami.4c00593.Search in Google Scholar PubMed
10. Cheng, S.; Guo, X.; Cai, W.; Zhang, Y.; Zhang, X.-a. Enhanced Thermal Management in Electronic Devices Through control-oriented Structures. J. Mater. Chem. A 2024, 12 (15), 8640–8662; https://doi.org/10.1039/d4ta00520a.Search in Google Scholar
11. Wang, W.; Shehbaz, M.; Wang, X.; Du, C.; Xu, D.; Shi, Z. Q.; Darwish, M. A.; Qiu, H. S.; Jin, B. B.; Zhou, T.; Chen, Y. W.; Liang, Q. X.; Zhang, M. R.; Zhou, D. Low-Permittivity and Low-Temperature Cofired BaSO4–BaF2 Microwave Dielectric Ceramics for High-Reliability Packaged Electronics. ACS Appl. Mater. Interfaces 2023, 15 (44), 51453–51461; https://doi.org/10.1021/acsami.3c13668.Search in Google Scholar PubMed
12. Lee, H. S.; Jeon, K. Y.; Kim, H. Y.; Hong, S. H. Fabrication Process and Thermal Properties of SiCp/Al Metal Matrix Composites for Electronic Packaging Applications. J. Mater. Sci. 2000, 35 (24), 6231–6236; https://doi.org/10.1023/a:1026749831726.10.1023/A:1026749831726Search in Google Scholar
13. Li, Y.; Sun, G.; Zhou, Y.; Liu, G.; Wang, J.; Han, S. Progress in Low Dielectric Polyimide Film – a Review. Prog. Org. Coat. 2022, 172, 107103; https://doi.org/10.1016/j.porgcoat.2022.107103.Search in Google Scholar
14. Nagella, S. R.; Ha, C.-S. Structural Designs of Transparent Polyimide Films with Low Dielectric Properties and Low Water Absorption: a Review. Nanomater. 2023, 13 (14), 2090; https://doi.org/10.3390/nano13142090.Search in Google Scholar PubMed PubMed Central
15. Zhang, S. Y.; Fu, T.; Gong, Y.; Guo, D. M.; Wang, X. L.; Wang, Y. Z. Design and Synthesis of Liquid Crystal Copolyesters with high-frequency Low Dielectric Loss and Inherent Flame Retardancy. Chinese Chem. Lett. 2023, 34 (5), 107615; https://doi.org/10.1016/j.cclet.2022.06.038.Search in Google Scholar
16. Hwang, G. T.; Im, D.; Lee, S. E.; Lee, J.; Koo, M.; Park, S. Y.; Kim, S.; Yang, K.; Kim, S. J.; Lee, K. In Vivo Silicon-based Flexible Radio Frequency Integrated Circuits Monolithically Encapsulated with Biocompatible Liquid Crystal Polymers. ACS Nano 2013, 7 (5), 4545–4553; https://doi.org/10.1021/nn401246y.Search in Google Scholar PubMed
17. Venkateswara Rao, M.; Madhav, B. T. P.; Anilkumar, T.; Prudhvinadh, B. Circularly Polarized Flexible Antenna on Liquid Crystal Polymer Substrate Material with Metamaterial Loading. Microw. Opt. Technol. Lett. 2020, 62 (2), 866–874; https://doi.org/10.1002/mop.32088.Search in Google Scholar
18. Leung, S. N.; Khan, O. M.; Shi, H.; Naguib, H. E.; Dawson, F.; Adinkrah, V. Study on Liquid Crystal Polymer-Hexagonal Boron Nitride Composites for Hybrid Heat Sinks. Ind. Eng. Chem. Res. 2013, 52 (24), 8332–8339; https://doi.org/10.1021/ie3012775.Search in Google Scholar
19. Howlader, M. M. R.; Suga, T.; Takahashi, A.; Saijo, K.; Ozawa, S.; Nanbu, K. Surface Activated Bonding of LCP/Cu for Electronic Packaging. J. Mater. Sci. 2005, 40 (12), 3177–3184; https://doi.org/10.1007/s10853-005-2681-5.Search in Google Scholar
20. Zhong, X.; Ruan, K. P.; Gu, J. W. Enhanced Thermal Conductivities of Liquid Crystal Polyesters from Controlled Structure of Molecular Chains by Introducing Different Dicarboxylic Acid Monomers. Research 2022, 2022, 9805686; https://doi.org/10.34133/2022/9805686.Search in Google Scholar PubMed PubMed Central
21. Yang, P. P.; Wu, Y. F.; Wang, K. X.; Lu, S.; Zhang, Y. M.; Wan, J. X.; Wu, K.; Shi, J. Enhanced Intrinsic Thermal Conductivity of Liquid Crystalline Polyester Through Monomer Structure Optimization in Main Chains. J. Mater. Chem. C 2025, 13, 9601–9610; https://doi.org/10.1039/d5tc00061k.Search in Google Scholar
22. Yoshihara, S.; Sakaguchi, M.; Matsumoto, K.; Tokita, M.; Watanabe, J. Influence of Molecular Orientation Direction on the In-plane Thermal Onductivity of Polymer/Hexagonal Boron Nitride Composites. J. Appl. Polym. Sci. 2014, 131 (3), 39768; https://doi.org/10.1002/app.39768.Search in Google Scholar
23. Wu, Y. F.; Wu, K.; Xiao, F.; Jiao, E. X.; Shi, J.; Lu, M. E. High Thermal Conductivity and Excellent Mechanical Properties of Liquid Crystal co-polyester Based on Hydron Bond. J. Appl. Polym. Sci. 2023, 140 (25), e53951; https://doi.org/10.1002/app.53951.Search in Google Scholar
24. Yang, P. P.; Wu, Y. F.; Wang, K. X.; Yang, H.; Wan, J. X.; Wu, K.; Hong, P. W.; Shi, J. Enhanced Intrinsic Thermal Conductivity of Liquid Crystalline Polyester Dispersed Films Through Hydrogen Bond Interaction. Polymer 2024, 309, 127423; https://doi.org/10.1016/j.polymer.2024.127423.Search in Google Scholar
25. Chen, Q.; Yang, K.; Feng, Y.; Liang, L.; Chi, M.; Zhang, Z.; Chen, X. Recent Advances in thermal-conductive Insulating Polymer Composites with Various Fillers. Compos. Part A: Appl. Sci. and Manuf. 2024, 178, 107998; https://doi.org/10.1016/j.compositesa.2023.107998.Search in Google Scholar
26. Sato, K.; Imai, Y. The Optimal Dimensions of hexagonal-boron Nitride Nanosheets as Thermally Conductive Fillers: the Thinner the Better? Curr. Opin. Solid State Mater. Sci. 2024, 29, 101143; https://doi.org/10.1016/j.cossms.2024.101143.Search in Google Scholar
27. Luo, F.; Yang, S.; Yan, P.; Li, H.; Huang, B.; Qian, Q.; Chen, Q. Orientation Behavior and Thermal Conductivity of Liquid Crystal Polymer Composites Based on Three-Dimensional Printing. Compos. Part A: Appl. Sci. and Manuf. 2022, 160, 107059; https://doi.org/10.1016/j.compositesa.2022.107059.Search in Google Scholar
28. Basu, R.; Gess, D. T. Electro-Optic Hybrid Aligned Nematic Device Utilizing Carbon Nanotube Arrays and two-dimensional Hexagonal Boron Nitride Nanosheet as Alignment Substrates. Phys. Rev. E 2021, 104 (5), 054702; https://doi.org/10.1103/physreve.104.054702.Search in Google Scholar PubMed
29. Thakuria, R.; Nath, N. K.; Saha, B. K. The Nature and Applications of π–π Interactions: a Perspective. Cryst. Growth Des. 2019, 19 (2), 523–528; https://doi.org/10.1021/acs.cgd.8b01630.Search in Google Scholar
30. Rubio-Aguinaga, A.; Reglero-Ruiz, J. A.; García-Gómez, A.; Peña Martín, E.; Ando, S.; Muñoz, A.; García, J. M.; Trigo-López, M. Boron nitride-reinforced Porous Aramid Composites with Enhanced Mechanical Performance and Thermal Conductivity. Compos. Sci. Technol. 2023, 242, 110211.10.1016/j.compscitech.2023.110211Search in Google Scholar
31. Yang, Z.; Zeng, J.; Yang, Z.; Tong, Y.; Lai, Y.; Cao, X. Rotational Blow Molding of Thermotropic Liquid Crystal Polymers and Resulting Orientational Structure and Mechanical Properties. Polym 2022, 2022, 125144; https://doi.org/10.1016/j.polymer.2022.125144.Search in Google Scholar
32. Li, H.; Ma, Y.; Huang, Y. Material Innovation and Mechanics Design for Substrates and Encapsulation of Flexible Electronics: a Review. Mater. Horiz. 2021, 8 (2), 383–400; https://doi.org/10.1039/d0mh00483a.Search in Google Scholar PubMed
33. Ji, Y.; Bai, Y.; Liu, X.; jia, K. Progress of Liquid Crystal Polyester(Lcp) for 5G Application. AIEPR 2020, 4 (3), 160–174; https://doi.org/10.1016/j.aiepr.2020.10.005.Search in Google Scholar
34. Wang, J. I. J.; Yamoah, M. A.; Li, Q.; Karamlou, A. H.; Dinh, T.; Kannan, B.; Braumüller, J.; Kim, D.; Melville, A. J.; Muschinske, S. E.; Niedzielski, B. M.; Serniak, K.; Sung, Y.; Winik, R.; Yoder, J. L.; Schwartz, M. E.; Watanabe, K.; Taniguchi, T.; Orlando, T. P.; Gustavsson, S.; Jarillo-Herrero, P.; Oliver, W. D. Hexagonal Boron Nitride as a low-loss Dielectric for Superconducting Quantum Circuits and Qubits. Nat. Mater. 2022, 21 (4), 398–403; https://doi.org/10.1038/s41563-021-01187-w.Search in Google Scholar PubMed
35. Maier, G. Low Dielectric Constant Polymers for Microelectronics. Prog. Polym. Sci. 2001, 26 (1), 3–65; https://doi.org/10.1016/s0079-6700-00-00043-5.Search in Google Scholar
36. Wang, L.; Liu, C.; Shen, S.; Xu, M.; Liu, X. Low Dielectric Constant Polymers for High Speed Communication Network. AIEPR 2020, 3 (4), 138–148; https://doi.org/10.1016/j.aiepr.2020.10.001.Search in Google Scholar
37. Jiang, H.; Cai, Q.; Mateti, S.; Bhattacharjee, A.; Yu, Y.; Zeng, X.; Sun, R.; Huang, S.; Chen, Y. I. Recent Research Advances in Hexagonal Boron nitride/polymer Nanocomposites with Isotropic Thermal Conductivity. Adv. NanoCompos. 2024, 1 (1), 144–156; https://doi.org/10.1016/j.adna.2024.03.004.Search in Google Scholar
38. Zhao, J.; Wang, C.; Wang, C.; Zhang, K.; Yang, B.; Zhao, L.; Chen, X.; Hai, C. Synergistic Effects of Boron Nitride Sheets and Reduced Graphene Oxide on Reinforcing the Thermal Conduction, SERS Performance and Thermal Property of Polyimide Composite Films. J. Appl. Polym. Sci. 2023 (6), 1–15; https://doi.org/10.1002/app.53401.Search in Google Scholar
39. Nejad, S. J. A Review on Modeling of the Thermal Conductivity of Polymeric Nanocomposites. E-POLYMERS 2012, 12 (1), 1–38; https://doi.org/10.1515/epoly.2012.12.1.253.Search in Google Scholar
Supplementary Material
This article contains supplementary material (https://doi.org/10.1515/polyeng-2024-0213).
© 2025 Walter de Gruyter GmbH, Berlin/Boston