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Abstract: To promote theoretical understanding for opti-
mizing the entire process parameters (temperature, pres-
sure, flow rate, etc.) and quality indicators (molar fraction,
end-group concentration, and number-average molecular
weight) in the industrial production of polyethylene tere-
phthalate (PET), a dataset construction for production pa-
rameters and product quality indicators was accomplished
in conjunction with industrial process simulation software.
A complete deep learning workflow including data collec-
tion, dataset construction, model training, and evaluation
was established. A prediction method for process-product
quality of PET production based on the residual neural
network (ResNet) network was proposed to reduce the
complexity of quality control in polyester production. The
results show that compared to traditional convolutional
neural network (CNN), ResNet has higher accuracy
(R2 ≥ 0.9998) in predicting the PET production process and
product quality. It can accurately establish the mapping
relationship between production parameters and product
quality indicators, providing theoretical guidance for intel-
ligent production.

Keywords: PET production; artificial neural networks; deep
learning; quality prediction

1 Introduction

Polyethylene terephthalate (PET) is a semi-crystalline poly-
mer, and due to its excellent mechanical properties, corro-
sion resistance, and fiber-forming ability, it is one of the
most widely used fiber materials at present. With the
development of modern industry, the single-line production
capacity of PET often reaches tens of thousands or even
millions of tons. Given the complexity of large-scale pro-
duction process control and the limited referential value of
experimental data, the prediction of polymer product qual-
ity determined by raw materials and process control
remains a challenging issue.1–3

The quality of polymer products is determined by their
microscopic molecular structure and fundamental molecu-
lar parameters, such as the average molecular weight of
homopolymers, molecular weight distribution (MWD), mo-
lecular weight distribution, and composition distribution of
copolymers. These microscopic molecular structures and
basic molecular parameters are directly influenced by pro-
duction parameters.4–6 However, the parameters involved in
the PET production process are numerous and highly
interdependent, such as temperature, pressure, residence
time, stirring and mixing, feed rate, pH value, devolatiliza-
tion, etc. At the same time, some parameters are difficult to
measure in real-time, making the process of parameter
control and optimization face many challenges and
difficulties.7,8

To solve the problems of multi-parameter optimization
and high production testing costs in chemical production,
computer production simulation has emerged. Mechanism-
based modeling is a key part of modern industrial produc-
tion, helping engineers and decision-makers predict,
analyze, and optimize production processes. Mechanism-
based modeling of PET mainly revolves around various
stages of the PET production process, using mathematical
models and software tools such as Aspen, ChemCAD, Pro/II,
etc. Although mechanism-based modeling remains the
mainstream method of chemical process modeling, the
presence of uncertainties and interference factors in actual
industrial processes, as well as various industrial scaling
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effects difficult for mechanism analysis, pose significant
challenges to the application of strict mechanism models in
industrial processes, especially since strict mechanism
models are computationally complex and time-consuming,
making their application in industrial online calculations
very difficult.9,10

In recent years, the successful application of machine
learning (ML) algorithms or artificial intelligence (AI) in
areas such as voice recognition, text classification, and
medical research has attracted widespread attention.
Meanwhile, ML has also achieved significant breakthroughs
in the field of materials research. With the emergence and
rapid development of machine learning, data-driven pro-
duction assistance has become one of the hot research di-
rections. Machine learning models, trained with large
amounts of data, discover correlations between complex
phenomena, overcoming the limitations of human thought.
This provides a new approach for chemical production
simulation. For example, Patrick Taylor and Gareth Conduit
successfully used ML to establish the mapping relationship
between the microchemical changes and creep in alloys.11

Deep learning (DL), as an algorithm in ML, has also received
a high degree of attention. Soowan Park and Karuppasamy
Pandian Marimuthu proposed a DL-based nano-
indentationmethod to reduce the complexity of evaluating
the mechanical properties of polymers. By conducting
nanoindentation tests on polycarbonate and polymethyl
methacrylate, the performance of the trained deep neural
network (DNN) models was validated experimentally. The
trained DNN models were able to accurately predict ma-
terial parameters, aligning well with literature findings.12

Fei Lu13 proposed two models, artificial neural networks
(ANN) and convolutional neural networks (CNN), to pre-
dict the glass-forming ability of various amorphous alloys.
The prediction accuracy of these two models reached
0.77623 and 0.71693, respectively, both over 19 % higher
than that reported in standard predictions. This indicates
that ANN can model complex nonlinear relationships be-
tween input and output variables in the manufacturing
process, which traditional statistical methods may fail to
capture. By integrating ANN with real-time monitoring
systems, they can provide immediate feedback on product
quality, allowing for instantaneous adjustment of process
parameters during production.14 Therefore, ANN can be
used to explore the relationship between polyester pro-
duction quality and processing parameters. Based on this,
this paper uses the residual neural network (ResNet)
model to predict polyester production results and com-
pares it with traditional CNN models in prediction
accuracy.

2 Materials and methods

2.1 Data collection

Deep learning requires a dataset to enable the neural
network to undergo multiple iterations of learning, finding
themapping relationship between feature values and output
values. This dataset describes the hidden correspondence
between processing parameters and product performance.15

The dataset for this paper was generated by simulated pro-
duction in Aspen.

Aspen Plus is a chemical process simulation software
used for designing, simulating, optimizing, and operating
chemical processes. The Aspen software allows engineers
to design and optimize processes without actual experi-
ments, thus saving time and resources. This paper builds
the deep learning dataset by collecting data from PET
production simulations in Aspen under different produc-
tion parameters.

The production process adopts the traditional three-
kettle technique for Aspen process construction, as shown in
Figure 1.16,17 In the feature selection part, this study mainly
focuses on the pressure and temperature of each kettle.
Parameters such as feed ratio, flow rate, stirring, andmixing
as constants. The performance indicators of the product are
represented by the molar fraction of small molecules in the
product, end-group number, and molecular weight. These
small molecules include EG, DEG, TPA, and H2O. To improve
the generalization ability of the model, the dataset con-
struction process needs to include some outlier values. The
values should be larger than the designed production range
to ensure that outliers can be captured during data collec-
tion. The temperature and pressure values for each reaction
kettle are shown in Table 1. To enhance sample coverage,
Latin hypercube sampling (LHS) is used within the value
range as input for Aspen. LHS is a statistical method for

Figure 1: Aspen PET three-kettle production model.
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generating random samples of variables, particularly useful
in computer simulations and complex models. The core idea
of LHS is to ensure that the entire range of each input vari-
able is represented, thus providing better sample coverage
than traditional random sampling. This method is especially
suitable for simulations that need to consider multiple input
parameters or variables, where traditional Monte Carlo
methodsmight require a large number of samples to achieve
the same level of accuracy.18

In the process of feature construction, there are differ-
ences in dimension and magnitude among different pro-
duction parameters, which can increase the difficulty of
training. It is necessary to normalize the feature values, as
shown in the formula below.

Xnorm = x − xmin

xmax − xmin
(1)

Among them, x is the current value, xmin is the minimum
value, xmax is the maximum value, and Xnorm is the
normalized value of x.

The dataset in this paper consists of 80,000 data points,
with an input dimension of 6 and an output dimension of 8.
In this paper, the dataset is split in an 8:2 ratio, meaning 80 %
of the dataset is divided into a training set, used to train the
model’s parameters. This is the main data source for the
model to learn the mapping relationship from input data to
output results; 20 % is divided into a test set, used after the
model development process to obtain an accurate estimate
of the model’s generalization ability on unknown data. 80 %
of the training set is used for training, and 20 % for
validation.19,20

2.2 Machine learning

This paper employs CNN and ResNet to establish the map-
ping relationship between processing parameters and
product performance in the PET production process. Based
on the study in literature,13 which used fully connected ANN
and CNN to predict the crystallization properties of mate-
rials, this study chose three different structures of CNN as
the research subjects. The first type is the CNN with two
convolutional layers as mentioned in the literature, the

second type is a CNN with five convolutional layers, and the
third type is a CNNwith residual blocks, namely ResNet. The
machine learning system, as shown in Figure 2, mainly
consists of three parts: dataset construction, model training,
and model evaluation.

2.2.1 Convolutional neural network

A CNN is a type of neural network implemented by adding
convolutional layers to the traditional ANN. An artificial
neural network consists of three parts: input layer, hidden
layers, and output layer. The input layer receives the input
data, which in this study are the pressure and temperature
of each kettle, serving as the feature values of the dataset,
with each neuron corresponding to a feature of the input
data. The hidden layers are located between the input and
output layers and can be one or more. The output layer
produces the network’s output; for regression tasks, this is
the predicted result.21,22

Neural network training is divided into two main parts:
forward propagation of information and backward propa-
gation of errors. The forward propagation of information in
a single neuron is calculated as Figure 3.

Where x is the input, w is the weight, and f is the acti-
vation function. After obtaining the predicted value, the
global error is calculated. If the global error exceeds a preset
error, backpropagation is executed combined with the
gradient descent algorithm, modifying the weights and bia-
ses of each layer. The calculations for the backward propa-
gation of error are as follows:

Figure 2: Machine learning system.

Table : Input parameters value range.

Blocks Temperature (°C) Pressure (Pa)

EST – . × 
–. × 



PREPOLY – . × 
–. × 



EVAP – . × 
–. × 


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E = 1
2
∑
n

i=1
(ydi − ypi )2 (2)

wij(k + 1) = wij(k) − η
∂E(k)
∂wij(k) (3)

bij(k + 1) = bij(k) − η
∂E(k)
∂bij(k) (4)

where ydi is the target value, ypi is the predicted value, E is the
global error, η is the learning rate, Wij(k) and Bij(k) are the
connection weights and biases between layers.23

A CNN consists of an input layer, convolutional layers,
pooling layers, fully connected layers, and an output layer,
among which the convolutional and pooling layers are the
most important parts of the serial neural network.24 The
convolutional layer is used for convolution operations,
aiming to extract input data through convolution kernels
and the principle of convolution is shown in Figure 4. The
pooling layer serves to reduce the dimensionality of the data.
Typically, a flattening layer is added to CNNs to transform
the data from the pooling layers into a one-dimensional
vector, facilitating the connections of neurons in the fully
connected layers.

The addition of convolutional layers addresses the issue
of high-dimensional training in fully connected networks,
where an excessive number of parameters increases the
difficulty of training. In this layer, the input data is convo-
luted with a set of learnable filters (also known as convolu-
tional kernels). Each filter slides over the input data,

computing the dot product between the filter and the data it
covers, thus generating new feature maps. This process
captures local features within the input data.25 In the con-
volutional layer, each neuron is connected only to a small
region of the input data (knownas the receptivefield), rather
than being fully connected. This means that each neuron
only needs to focus on a small part of the input data, effec-
tively reducing the number of parameters in the model.
Neurons in the convolutional layer use the sameweights and
biases, a process known as parameter sharing. This signifi-
cantly reduces the number of parameters in the model,
making CNNs easier to train and less prone to overfitting
compared to fully connected networks. By stacking multiple
convolutional layers in a CNN, the network can learn and
recognize patterns at different scales. However, when the
number of layers in a CNN increases to a certain extent, the
error rate tends to saturate or even increase. This is mainly
due to problems like vanishing gradients and exploding
gradients, which aremore severe in deep neural networks.26

2.2.2 ResNet neural network

The ResNet network, building upon the foundation of CNN,
incorporates residual blocks and skip connections (also
known as skip connection), effectively solving the problem
of training deep neural networks. These shortcut paths allow
gradients to be directly back-propagated to earlier layers,
enabling ResNet to train deeper networks more effectively.

As shown in Figure 5, (a) represents a traditional CNN
network, (b) represents a ResNet network. H(x) is the output
function after convolution operations, x represents input
parameters, and y represents output. ResNet refers to a stack
of several layers as a block. For a given block, the function it
can approximate is denoted as F(x). Instead of having F(x)
directly learn the expected underlying mapping H(x), it is
more advantageous to learn the residual H(x) − x, thus
defining F(x) = H(x) − x. Consequently, the original forward
path becomes F(x) + x, using F(x) + x to approximate H(x).
The authors believe this approach may be easier to optimize
because, compared to making F(x) learn an identity

Figure 3: Forward propagation of information in a neuron.

Figure 4: Principle of convolution. Figure 5: The difference between CNN and ResNet.
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mapping, making F(x) approximate zero is much simpler.
Thus, for redundant blocks, simply having F(x)→ 0 achieves
an identity mapping without reducing performance. In this
way, each layer learns the residual or difference between the
input and the desired output, rather than directly learning
the output. This enables ResNet to better handle the van-
ishing gradient problem in deep networks.27

2.2.3 Hyperparameter settings

In the construction and training of neural networks, setting
a large number of hyperparameters is involved. This
includes the choice of normalizationmethods, loss functions,
activation functions, and optimizers.

Batch normalization (BN) is a technique used to speed
up the training of neural networks. It normalizes the inputs
to each layer, making their mean 0 and variance 1, thereby
addressing the so-called “internal covariate shift” problem,
which refers to the inconsistency in data distribution
between layers of the network.28

Batch normalization is typically performed after con-
volutional or fully connected operations and before the
activation function. Specifically, for a given batch of data
B = {x1, x2,…, xm}, the batch normalization operation can be
divided into the following steps:

Compute the mean μb and variance σ2 of the batch data
B. Normalize the batch data B, as shown in equation (5):

x̂i = (xi − ub)̅̅̅̅̅̅̅(σ2 + ϵ)√ (5)

where ε is a very small number to prevent division by zero.
Scale and shift the normalized data, as shown in equation (6):

yi = γx̂i + β (6)

where γ and β are learnable parameters used to restore the
original distribution of the data.

In this paper, Huber loss is used for the calculation of the
loss value. A loss function measures the difference between
the predicted values of a neural network and the actual
values, serving as a key guiding factor for the optimization
algorithm to find the best parameters. It not only quantifies
the prediction error but also guides the direction of network
weight updates through gradient information. Huber loss is
a commonly used loss function in regression problems,
especially when data may contain outliers or noise. It com-
bines the characteristics ofmean squared error and absolute
error, reducing the impact of outliers on the model while
maintaining sufficient differentiability and mitigating
the impact of outliers. The derivative of Huber loss is also
relatively easy to calculate, making it convenient for use
in optimization algorithms like gradient descent.29

loss =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
2
a2 if |a| ≤ δ

δ|a| − 1
2
δ2 otherwise

(7)

a represents the difference between the predicted and actual
values, and δ is a hyperparameter that determines the point
at which the loss function transitions from quadratic loss to
linear loss. In this paper, Huber loss with δ = 1 is used to
calculate the loss value.

Learning rate (LR) is a key hyperparameter in neural
network training, controlling the speed at which model
weights are updated during training. The learning rate is a
positive real number, typically between 0 and 1. It is used to
scale the magnitude of weight and bias updates, as in
equations (3) and (4). If LR is too high, convergence can be
difficult; if LR is too low, convergence can be slow.30 In this
study, a dynamic learning rate is chosen, decreasing as the
number of epochs increases. In the early stages of training, a
higher LR speeds up model convergence, while in the later
stages, a lower LR helps stabilize convergence. The learning
rate update strategy is as follows:

LR = Floor(epoch/step)*δ (8)

Floor(x) is the floor function, step is the step length, and
δ is the scaling coefficient, where step = 100 and δ = 0.8.

The optimizer (optimization function) is an algorithm
used to adjust network parameters to minimize the loss
function. Optimization algorithms iteratively update the
weights (w) and biases (b) of the neural network, enabling the
model to better fit the training data. In this study, Adam is
chosen as the optimization algorithm for themodel. The Adam
optimization algorithm combines the advantages of many
previous optimization algorithms and has shown fast, stable
training performance in many practical applications. The
Adam algorithm maintains estimates of the first moment (the
moving average of the gradient) and the second moment (the
moving average of the squared gradient) in each step of iter-
ation. It combines the advantages ofMomentumandRMSProp
with bias correction, and its calculation process is as follows:31

Set the learning rate α, the decay rates of the first
moment estimate β1, the decay rates of the second moment
estimate β2, and a very small constant ε to maintain
numerical stability.

Initialize the first and second moment estimates:

m = 0, v = 0 (9)

Calculate the gradient:
θt is the parameter at time step t, f is the loss function.

gt = ∇f (θt) (10)
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Update the first moment estimate (exponentially
weighted moving average of the gradient):

mt = β1 ⋅mt−1 + (1 − β1) ⋅ gt (11)

Update the second moment estimate (exponentially
weighted moving average of the squared gradient):

vt = β2 ⋅ vt−1 + (1 − β2) ⋅ g2
t (12)

Bias correction:

m̂t = mt

1 − βt1
, v̂t = vt

1 − βt2
(13)

Update parameters:

θt+1 = θt − α ⋅
m̂t̅̅
vt

√ + ϵ
(14)

An activation function is a mathematical function in
neural networks that transforms the input signal of a node
(neuron). Its primary purpose is to convert the input signal
into an output signal and to determine whether the neuron
should be “activated”. They introduce non-linear charac-
teristics, enabling neural networks to fit complex, non-linear
functions.32 This study selects the LeakyReLu (α = 0.01)
function as the activation function, which allows a small part
of the negative input to pass through. Leaky ReLU addresses
the “dying ReLU” problem in the ReLU (rectified linear unit)
function by introducing a small positive slope α, ensuring
that the output is not completely zero even if the input is
negative. Like ReLU, it does not involve complex operations
such as exponentials or logarithms, making the computation
of Leaky ReLU highly efficient.33

ReLu(x) = max(0, x) (15)

LeakyReLu(x) = { αx if x < 0
x if x ≥ 0 (16)

Additionally, the computational setup for this research
included Windows 10 as the operating system, with the
following hardware specifications:
(a) CPU: AMD Ryzen7 5800x
(b) GPU: RTX 3090 (24G)
(c) RAM: 32 GB.

3 Results and discussion

To evaluate model performance, this study utilizes three
indicators: Loss, R2, and MAPE, to characterize the model.
Loss primarily represents the error between predicted
values and actual values, and HuberLoss is used as the loss

function in this study. R2, or the coefficient of determination,
is used to describe the degree of fit of the model to the data.
Its value ranges between 0 and 1, mainly used in regression
analysis. The closer the value of R2 is to 1, the better the fit.
MAPE is the mean absolute percentage error, used to mea-
sure the accuracy of the prediction model. The smaller the
value of MAPE, the higher the accuracy of the prediction
model. R2 is primarily used to evaluate the goodness of fit of
the model, while MAPE is used to evaluate the accuracy of
the prediction model. Both have their limitations, so in
practical applications, a combination of various evaluation
indicators is often used. Their calculation expressions are as
follows (yi is the actual value, and ŷi is the predicted value):

R2 = 1 −
∑n

i=1 (yi − ŷi)
2

∑n
i=1 (yi − y2)2 (17)

MAPE = 1
n
∑
n

i=1

⃒⃒⃒⃒⃒
⃒⃒⃒yi − ŷi

⃒⃒⃒⃒⃒
⃒⃒⃒⃒⃒⃒⃒

yi
⃒⃒⃒⃒ (18)

Figure 6 shows the change in the degree of fit during the
training process of models with different network struc-
tures. Graphs (a), (b), and (c) show the performance of
different network structures in terms of loss, MAPE, and R2

during the training process, respectively. The horizontal axis
represents the epoch, i.e., the number of training rounds.
From (a), it can be seen that around 1,000 iterations, the Loss
value gradually stabilizes, indicating that the network has
nearly converged. ConvNet1 and ConvNet2 show a smoother
and more stable decline in Loss value during training
compared to ResNet, but their converged Loss values are
much higher than ResNet. This indicates that ConvNet1 and
ConvNet2 have issues with gradient anishing and cannot
fully learn the mapping relationship between processing
parameters and product performance indicators in poly-
ester production. In (b), it can be seen that the MAPE of the
networks initially drops sharply. However, after a sharp
decline, ConvNet1 and ConvNet2 tend to stabilize withminor
fluctuations, suggesting that they cannot improve the accu-
racy of the model’s predictions in subsequent learning and
fail to accurately predict some dimensions of the output
values. In contrast, ResNet, after a sharp decline, experi-
ences significant fluctuations before stabilizing, suggesting
that the high initial learning rate caused overly aggressive
model parameter updates. With the decline in the learning
rate, the model can steadily improve the accuracy of its
predictions in subsequent iterations. In (c), the trend of R2 is
similar toMAPE. Both ConvNet1 and ConvNet2 rapidly rise to
a high level at the beginning of training and then maintain
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minor fluctuations. ResNet also rapidly rises to a high level
initially but, after several significant fluctuations, stabilizes.
This indicates that the ResNet network structure is superior

in fitting this task compared to ConvNet1 and ConvNet2. An
overview of the training curves in Figure 6 shows that dur-
ing the initial adaptation period of training, the loss of
ConvNet1 and ConvNet2 sharply decreases, whereas ResNet
experiences significant fluctuations and its loss remains
higher than that of ConvNet1 and ConvNet2 at Epoch below
500. This occurs because, although residual connections are
designed to help with gradient flow and alleviate the van-
ishing gradient problem in deep networks, the network still
needs time to adapt to this type of connection. At this stage,
the residual blocks may not yet have started effectively
learning the ‘residual’, which ideally should represent the
minimal necessary adjustments to transform the input into
the output, leading to a large discrepancy between the initial
outputs and the targets. In later training stages, the
convergence time for ConvNet1 and ConvNet2 is earlier than
that for ResNet. This is because ConvNet1 and ConvNet2
complete the learning of shallow mapping relationships
early in training and fail to learn deep mapping relation-
ships, whereas ResNet continues to learn complex mapping
relationships in subsequent training, which is crucial for the
overall network performance and generalization capability.

From the training process, it is evident that the ResNet
network has stronger feature extraction capabilities and is
more suitable for learning the mapping relationship
between processing parameters and product performance
indicators in polyester production. Meanwhile, the limited
improvement of ConvNet2 compared to ConvNet1 also sug-
gests that simply increasing the number of network layers
does not effectively enhance network performance.

To verify the performance of different networks on the
test set, scatter plots between predicted values and actual
values were drawn, as shown in Figure 7. Table 2 is the
output parameter table. The closer the scatter points are to
the diagonal line, the closer the predicted values are to the
actual values, indicating better predictive performance of
the network for that output value. As can be seen from
Figure 7, the scatter plots of predicted-actual values for each
output show that the ResNet network maintains very good
prediction accuracy (R2 ≥ 0.999) for every output value,while
ConvNet1 and ConvNet2 networks have R2 values ranging
between 0.833–0.988 and 0.811–0.999 for different
dimensions.

ConvNet1, for most parameters, has predicted values
relatively close to the y = x line, but there is a noticeable
deviation in predictions for certain dimensions such as
[wH20] [wDEG] and [wEG]. ConvNet2 also shows a similar trend
to ConvNet1 in predictions for most dimensions, but its
predictions are closer to the actual values for [MEG] and
[MEA]. Overall, ResNet’s predicted values are closer to the

Figure 6: Learning curves of different networks during training.
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y = x line, showing the best fit. This indicates that while
ConvNet1 and ConvNet2 perform well in predicting certain
dimensions, they cannot accurately predict all output di-
mensions simultaneously and exhibit significant accuracy
differences across different outputs, especially in
[wH20][wDEG] and [wEG] compared to ResNet. This suggests
that ConvNet1 and ConvNet2 are unable to effectively learn
the complex mapping relationships in the dataset during

training. In contrast, ResNet provides accurate predictions
across all dimensions, indicating that ResNet’s network
structure has stronger feature extraction and generalization
capabilities.

To evaluate the model’s robustness, 5 % Gaussian noise
was added to the training set, and the model was trained
under these noisy conditions. Adding Gaussian noise helps to
simulate real-world conditions of data collection. Due to the

Figure 7: Performance of different network
structures on the test set.
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complexity of the real production environment, measure-
ments tend to be inaccurate, and the data obtained has
certain errors. In a real production environment, the model
needs to learn the mapping relationship between features
and outputs from these error-containing data which can
distort the training process. Therefore, training in a training
set with added Gaussian noise can test whether the model
can learn the correspondingmapping relationship fromdata
with noise. Figure 8 shows the test results. The straight red
line represents an equality of actual and predicted values,

Table : Output parameters.

Parameter Label Unit

HO mole fraction ½wH
� %

DEG mole fraction [wDEG] %
EG mole fraction [wEG] %
TPA mole fraction [wTPA] %
T DEG [MEdeg] kmol/h
T EG [MEG] kmol/h
T TPA [MEA] kmol/h
Molecular weight MW g/mol

Figure 8: Robustness test of the ResNet
network.
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indicating 100% accuracy. If the data points are primarily
concentrated on the red line, it implies that the model can
accurately predict the target values. As canbe seen inFigure8,
the ResNet model, even when trained with the presence of
noise, still maintains a high prediction accuracy (R2 ≥ 0.999),
demonstrating good robustness. This indicates that themodel
can effectively handle noise in the input data and extract key
features from it. This demonstrates the model’s strong
generalization ability, enabling it to cope with data variations
that may be encountered in real-world applications.

4 Conclusions

This study utilized the ResNet network combinedwith Aspen
engineering modeling technology. Using a PET production
model built by Aspen and employing the LHS algorithm to
obtain random combinations of input parameters, an input-
output dataset was generated to validate the feasibility of
predicting PET production results through neural networks.

The results show that the ResNet neural network,
compared to two types of CNN networks, demonstrated
higher prediction accuracy (R2 ≥ 0.999) in predicting PET
production outcomes, with no significant accuracy differ-
ences across various output dimensions. While the two CNN
networks (ConvNet1 and ConvNet2) approached the perfor-
mance of ResNet in some dimensions, they could not accu-
rately predict all output dimensions simultaneously. For
instance, there were noticeable deviations in predictions for
[wH20] [wDEG] and [wEG], exhibiting significant accuracy
differences across different outputs. Moreover, the ResNet,
even after training with datasets containing Gaussian noise,
maintained stable prediction accuracy, indicating that the
ResNet network has good robustness in predicting PET
production outcomes. We based on simulated data, explored
the potential and feasibility of using artificial intelligence
technology in polyester production. However, polyester
production often involves other manufacturing stages such
as thickening and spinning, which could be included in
model training in future studies. Our research focused only
on a forward model, which predicts product performance
based on production process parameters. Future research
could explore a reverse model, where product performance
is the input and optimal process parameters are the output.
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