Home Application of the polycaprolactone polymer for the encapsulation of geraniol: evaluation of the efficiency and stability
Article
Licensed
Unlicensed Requires Authentication

Application of the polycaprolactone polymer for the encapsulation of geraniol: evaluation of the efficiency and stability

  • Thaís Karoline Carniel , Pâmela Fagundes , Ana Carolina Vivan , Luciano Luiz Silva , Micheli Zanetti , Francieli Dalcanton , Josiane Maria Muneron de Mello and Márcio Antônio Fiori ORCID logo EMAIL logo
Published/Copyright: May 7, 2021
Become an author with De Gruyter Brill

Abstract

Geraniol has been an attractive compound for food preservation due to its antibacterial and antifungal actions. The main objective of this study was to produce and characterize polycaprolactone (PCL) capsules for the protection of the encapsulated geraniol essential oil. The encapsulation was carried out using a miniemulsion polymerization technique with an efficiency of (95.44 ± 0.60%). The capsules were obtained with a mean size of 148 nm and with a polydispersity index of 0.12. Transmission electron microscopy results confirmed the formation of spherical capsules of PCL coating the geraniol. From the analysis of thermogravimetry, it was possible to prove the thermal protection of geraniol by PCL coating since the release of the encapsulated geraniol occurred with temperatures 100 °C higher than the volatilization temperature of the natural compound. An important observation was that the microcapsules of PCL-geraniol immersed in aqueous suspensions at 4 °C showed good stability over 60 days.


Corresponding author: Márcio Antônio Fiori, Post-Graduate Program in Technology and Innovation Management, Community University of the Chapecó Regions (Unochapecó), Chapecó, 89809-000 SC, Brazil; and Post-Graduate Program in Environmental Sciences, Community University of the Chapecó Regions (Unochapecó), Chapecó 89809-000, SC, Brazil, E-mail:

Acknowledgments

The authors are grateful for the support and infrastructure provided by the Community University of the Region of Chapecó – Unochapecó, UNIEDU Post-Graduate Program, the National Council for Scientific and Technological Development – CNPq and of the Structural Characterization Laboratory (LCE) of the Materials Engineering Department (DEMa) of the Federal University of São Carlos (UFSCar).

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Janjarasskul, T., Tananuwong, K., Kongpensook, V., Tantratian, S., Kokpol, S. LWT – Food Sci. Technol. 2016, 72, 166. https://doi.org/10.1016/j.lwt.2016.04.049.Search in Google Scholar

2. Ahmad, A., Khan, A., Akhtar, F., Yousuf, S., Xess, I., Khan, L. A., Manzoor, N. Eur. J. Clin. Microbiol. Infect. Dis. 2011, 30, 41. https://doi.org/10.1007/s10096-010-1050-8.Search in Google Scholar PubMed

3. Xu, J., Zhou, F., Ji, B. P., Pei, R. S., Xu, N. Lett. Appl. Microbiol. 2008, 47, 174. https://doi.org/10.1111/j.1472-765X.2008.02407.x.Search in Google Scholar PubMed

4. Fai, A. E. C., Stamford, T. C. M., Stamford, T. L. M. Rev. Iberoam. Polímeros 2008, 9, 435.Search in Google Scholar

5. Prakash, B., Kedia, A., Mishra, P. K., Dubey, N. K. Food Contr. 2015, 47, 381. https://doi.org/10.1016/j.foodcont.2014.07.023.Search in Google Scholar

6. Scherer, R., Wagner, R., Duarte, M. C. T., Godoy, H. T. Rev. Bras. Plantas Med. 2009, 11, 442. https://doi.org/10.1590/s1516-05722009000400013.Search in Google Scholar

7. Chen, W., Viljoen, A. M. South Afr. J. Bot. 2010, 76, 643. https://doi.org/10.1016/j.sajb.2010.05.008.Search in Google Scholar

8. Duarte, M. C. D., Figueira, G. M., Sartoratto, A., Rehder, V. L. G., Delarmelina, C. J. Ethnopharmacol. 2005, 97, 305. https://doi.org/10.1016/j.jep.2004.11.016.Search in Google Scholar PubMed

9. Jirovetz, L., Buchbauer, G., Schmidt, E., Stoyanova, A. S., Denkova, A., Nikolova, R., Geissler, M. J. Essent. Oil Res. 2007, 19, 288. https://doi.org/10.1080/10412905.2007.9699283.Search in Google Scholar

10. Yokomizo, N. K. S., Nakaoka-Sakita, M. Rev. Bras. Plantas Med. 2014, 16, 513. https://doi.org/10.1590/1983-084X/12_097.Search in Google Scholar

11. Syed, I., Sarkar, P. Chem. Pap. 2018, 72, 2659. https://doi.org/10.1007/s11696-018-0501-z.Search in Google Scholar

12. Sarkar, P., Bhunia, A. K., Yao, Y. Food Chem. 2017, 217, 155. https://doi.org/10.1016/j.foodchem.2016.08.071.Search in Google Scholar

13. Rehman, A., Ahmad, T., Aadil, R. M., Spotti, M. J., Bakry, A. M., Khan, I. M. Food Sci. Technol. 2019, 90, 35. https://doi.org/10.1016/j.tifs.2019.05.015.Search in Google Scholar

14. Bakry, A. M., Abbas, S., Ali, B., Majeed, H., Abouelwafa, M. Y., Mousa, A., Liang, L. Compr. Rev. Food Sci. Food Saf. 2016, 15, 143. https://doi.org/10.1111/1541-4337.12179.Search in Google Scholar

15. Nunes, G. L., Silva, T. M., Holkem, A. T., Schley, V., Menezes, C. R. Cienc. Nat. 2015, 37, 132. https://doi.org/10.5902/2179-460X19742.Search in Google Scholar

16. Antonietti, M., Landfester, K. Prog. Polym. Sci. 2002, 27, 689. https://doi.org/10.1016/S0079-6700(01)00051-X.Search in Google Scholar

17. Zanetti, M., Mazon, L. R., Meneses, A. C., Silva, L. L., Araújo, P. H. H., Fiori, M. A., Oliveira, D. Mater. Sci. Eng. C 2019, 97, 198. https://doi.org/10.1016/j.msec.2018.12.005.Search in Google Scholar PubMed

18. Favaro-Trindade, C. S., Pinho, S. C., Rocha, G. A. Braz. J. Food Technol. 2008, 11, 103.Search in Google Scholar

19. Trakoolwannachai, V., Kheolamai, P., Ummartyotin, S. Compos. B Eng. 2019, 173, 106974. https://doi.org/10.1016/j.compositesb.2019.106974.Search in Google Scholar

20. Pan, C. T., Wang, S. Y., Yen, C. K., Zeng, S. W., Kumur, A., Liang, S. S., Liu, Z. H., Wen, Z. H., Mohamed, M. G., Kaushik, A. C., Chien, S. T., Shiue, Y. L., Kuo, S. W. J. Nanosci. Nanotechnol. 2020, 20, 5162–5174. https://doi.org/10.1166/jnn.2020.18533.Search in Google Scholar PubMed

21. Rosato, A., Vitali, C., Laurentis, N., Armenise, D., Milillo, M. A. Phytomedicine 2007, 14, 727–732. https://doi.org/10.1016/j.phymed.2007.01.005.Search in Google Scholar PubMed

22. Mirante, D. C., Paula, J. P. Desenvolvimento tecnológico e avaliação da atividade antimicrobiana de micropartículas de polilisina e de nanocápsulas contendo óleo essencial de Melaleuca Alternifólia Cheel (myrtaceae), 2015. 87f. Dissertação (Mestrado em Ciências Farmacêuticas), Universidade Estadual de Ponta Grossa, Ponta Grossa, 2015.Search in Google Scholar

23. Cho, E. J., Holback, H., Liu, K. C., Abouelmagd, S. A., Park, J., Yeo, Y. Mol. Pharm. 2013, 10, 2093. https://doi.org/10.1021/mp300697h.Search in Google Scholar PubMed PubMed Central

24. Bae, K. H., Lee, Y., Park, T. H. Biomacromolecules 2007, 8, 650. https://doi.org/10.1021/bm0608939.Search in Google Scholar PubMed

25. Cipitria, A., Skelton, A., Dargaville, T. R., Dalton, P. D., Hutmacher, D. W. J. Mater. Chem. 2011, 21, 9419. https://doi.org/10.1039/c0jm04502k.Search in Google Scholar

26. Hoidy, W. H., Al-Mulla, E. A. J., Al-Janabi, K. W. J. Polym. Environ. 2010, 18, 608. https://doi.org/10.1007/s10924-010-0240-x.Search in Google Scholar

27. Wany, A., Kumar, A., Nallapeta, S., Jha, S., Nigam, V. K., Pandey, D. M. Plant Growth Regul. 2013, 73, 133. https://doi.org/10.1007/s10725-013-9875-7.Search in Google Scholar

28. Aytac, Z., Yildiz, Z. I., Kayaci-Senirmak, F., Keskin, N. O. S., Tekinay, T., Uyar, T. Advances 2016, 6, 46089. https://doi.org/10.1039/c6ra07088d.Search in Google Scholar

29. Fernández, M. J., Fernández, M. D., Cobos, M. RSC Adv. 2014, 4, 21435. https://doi.org/10.1039/c4ra02172j.Search in Google Scholar

30. Giongo, J. L., Vaucher, R. A., Ourique, A. F., Steffler, M. R. C., Frizzo, C. O., Hennemman, B., Santos, R. C. V., Lopes, L. Q. S., Rech, V. C., Nishihira, V. S. K., Raffin, R. R. P., Gomes, P., Steppe, M. Int. J. Pharm. Pharmaceut. Sci. 2016, 8, 271. https://doi.org/10.22159/ijpps.2016v8i12.15108.Search in Google Scholar

31. Unger, M., Vogel, C., Siesler, H. W. Appl. Spectrosc. 2010, 64, 805. https://doi.org/10.1366/000370210791666309.Search in Google Scholar PubMed

32. Fiori, K. P., Torres, M. P. R., Schons, J. I., Ribeiro, E. B., Nogueira, R. M., Vasconcelos, L. G., Andrighetti, C. R., Jacinto, M. J., Valladão, D. M. S. Quim. Nova 2017, 40, 1051. https://doi.org/10.21577/0100-4042.20170113.Search in Google Scholar

33. Gustmann, P. C., Cotrim, A. C. M., Pires, E. M., Andrighetti, C. R., Valladão, D. M. S., Ribeiro, E. B. J. Appl. Pharmaceut. Sci. 2017, 7, 92. https://doi.org/10.7324/JAPS.2017.70813.Search in Google Scholar

34. Torres, M. P. R., Esprendor, R. V. F., Bonaldo, S. M., Elton Brito Ribeiro, E. B., Valladão, D. M. S. Acta Amazonica 2019, 49, 246. https://doi.org/10.1590/1809-4392201802702.Search in Google Scholar

35. Cai, K., Ode, M., Murakami, H. Colloid. Surface. Physicochem. Eng. Aspect. 2006, 284, 458. https://doi.org/10.1016/j.colsurfa.2006.03.028.Search in Google Scholar

36. Guterres, S. S., Fessi, H., Barratt, G., Devissaguet, J. P., Puisieux, F. Int. J. Pharm. 1995, 113, 57. https://doi.org/10.1016/0378-5173(94)00177-7.Search in Google Scholar

Received: 2021-02-05
Accepted: 2021-04-13
Published Online: 2021-05-07
Published in Print: 2021-07-27

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 15.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2021-0026/html
Scroll to top button