Application of the polycaprolactone polymer for the encapsulation of geraniol: evaluation of the efficiency and stability
-
Thaís Karoline Carniel
Abstract
Geraniol has been an attractive compound for food preservation due to its antibacterial and antifungal actions. The main objective of this study was to produce and characterize polycaprolactone (PCL) capsules for the protection of the encapsulated geraniol essential oil. The encapsulation was carried out using a miniemulsion polymerization technique with an efficiency of (95.44 ± 0.60%). The capsules were obtained with a mean size of 148 nm and with a polydispersity index of 0.12. Transmission electron microscopy results confirmed the formation of spherical capsules of PCL coating the geraniol. From the analysis of thermogravimetry, it was possible to prove the thermal protection of geraniol by PCL coating since the release of the encapsulated geraniol occurred with temperatures 100 °C higher than the volatilization temperature of the natural compound. An important observation was that the microcapsules of PCL-geraniol immersed in aqueous suspensions at 4 °C showed good stability over 60 days.
Acknowledgments
The authors are grateful for the support and infrastructure provided by the Community University of the Region of Chapecó – Unochapecó, UNIEDU Post-Graduate Program, the National Council for Scientific and Technological Development – CNPq and of the Structural Characterization Laboratory (LCE) of the Materials Engineering Department (DEMa) of the Federal University of São Carlos (UFSCar).
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: None declared.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Janjarasskul, T., Tananuwong, K., Kongpensook, V., Tantratian, S., Kokpol, S. LWT – Food Sci. Technol. 2016, 72, 166. https://doi.org/10.1016/j.lwt.2016.04.049.Search in Google Scholar
2. Ahmad, A., Khan, A., Akhtar, F., Yousuf, S., Xess, I., Khan, L. A., Manzoor, N. Eur. J. Clin. Microbiol. Infect. Dis. 2011, 30, 41. https://doi.org/10.1007/s10096-010-1050-8.Search in Google Scholar PubMed
3. Xu, J., Zhou, F., Ji, B. P., Pei, R. S., Xu, N. Lett. Appl. Microbiol. 2008, 47, 174. https://doi.org/10.1111/j.1472-765X.2008.02407.x.Search in Google Scholar PubMed
4. Fai, A. E. C., Stamford, T. C. M., Stamford, T. L. M. Rev. Iberoam. Polímeros 2008, 9, 435.Search in Google Scholar
5. Prakash, B., Kedia, A., Mishra, P. K., Dubey, N. K. Food Contr. 2015, 47, 381. https://doi.org/10.1016/j.foodcont.2014.07.023.Search in Google Scholar
6. Scherer, R., Wagner, R., Duarte, M. C. T., Godoy, H. T. Rev. Bras. Plantas Med. 2009, 11, 442. https://doi.org/10.1590/s1516-05722009000400013.Search in Google Scholar
7. Chen, W., Viljoen, A. M. South Afr. J. Bot. 2010, 76, 643. https://doi.org/10.1016/j.sajb.2010.05.008.Search in Google Scholar
8. Duarte, M. C. D., Figueira, G. M., Sartoratto, A., Rehder, V. L. G., Delarmelina, C. J. Ethnopharmacol. 2005, 97, 305. https://doi.org/10.1016/j.jep.2004.11.016.Search in Google Scholar PubMed
9. Jirovetz, L., Buchbauer, G., Schmidt, E., Stoyanova, A. S., Denkova, A., Nikolova, R., Geissler, M. J. Essent. Oil Res. 2007, 19, 288. https://doi.org/10.1080/10412905.2007.9699283.Search in Google Scholar
10. Yokomizo, N. K. S., Nakaoka-Sakita, M. Rev. Bras. Plantas Med. 2014, 16, 513. https://doi.org/10.1590/1983-084X/12_097.Search in Google Scholar
11. Syed, I., Sarkar, P. Chem. Pap. 2018, 72, 2659. https://doi.org/10.1007/s11696-018-0501-z.Search in Google Scholar
12. Sarkar, P., Bhunia, A. K., Yao, Y. Food Chem. 2017, 217, 155. https://doi.org/10.1016/j.foodchem.2016.08.071.Search in Google Scholar
13. Rehman, A., Ahmad, T., Aadil, R. M., Spotti, M. J., Bakry, A. M., Khan, I. M. Food Sci. Technol. 2019, 90, 35. https://doi.org/10.1016/j.tifs.2019.05.015.Search in Google Scholar
14. Bakry, A. M., Abbas, S., Ali, B., Majeed, H., Abouelwafa, M. Y., Mousa, A., Liang, L. Compr. Rev. Food Sci. Food Saf. 2016, 15, 143. https://doi.org/10.1111/1541-4337.12179.Search in Google Scholar
15. Nunes, G. L., Silva, T. M., Holkem, A. T., Schley, V., Menezes, C. R. Cienc. Nat. 2015, 37, 132. https://doi.org/10.5902/2179-460X19742.Search in Google Scholar
16. Antonietti, M., Landfester, K. Prog. Polym. Sci. 2002, 27, 689. https://doi.org/10.1016/S0079-6700(01)00051-X.Search in Google Scholar
17. Zanetti, M., Mazon, L. R., Meneses, A. C., Silva, L. L., Araújo, P. H. H., Fiori, M. A., Oliveira, D. Mater. Sci. Eng. C 2019, 97, 198. https://doi.org/10.1016/j.msec.2018.12.005.Search in Google Scholar PubMed
18. Favaro-Trindade, C. S., Pinho, S. C., Rocha, G. A. Braz. J. Food Technol. 2008, 11, 103.Search in Google Scholar
19. Trakoolwannachai, V., Kheolamai, P., Ummartyotin, S. Compos. B Eng. 2019, 173, 106974. https://doi.org/10.1016/j.compositesb.2019.106974.Search in Google Scholar
20. Pan, C. T., Wang, S. Y., Yen, C. K., Zeng, S. W., Kumur, A., Liang, S. S., Liu, Z. H., Wen, Z. H., Mohamed, M. G., Kaushik, A. C., Chien, S. T., Shiue, Y. L., Kuo, S. W. J. Nanosci. Nanotechnol. 2020, 20, 5162–5174. https://doi.org/10.1166/jnn.2020.18533.Search in Google Scholar PubMed
21. Rosato, A., Vitali, C., Laurentis, N., Armenise, D., Milillo, M. A. Phytomedicine 2007, 14, 727–732. https://doi.org/10.1016/j.phymed.2007.01.005.Search in Google Scholar PubMed
22. Mirante, D. C., Paula, J. P. Desenvolvimento tecnológico e avaliação da atividade antimicrobiana de micropartículas de polilisina e de nanocápsulas contendo óleo essencial de Melaleuca Alternifólia Cheel (myrtaceae), 2015. 87f. Dissertação (Mestrado em Ciências Farmacêuticas), Universidade Estadual de Ponta Grossa, Ponta Grossa, 2015.Search in Google Scholar
23. Cho, E. J., Holback, H., Liu, K. C., Abouelmagd, S. A., Park, J., Yeo, Y. Mol. Pharm. 2013, 10, 2093. https://doi.org/10.1021/mp300697h.Search in Google Scholar PubMed PubMed Central
24. Bae, K. H., Lee, Y., Park, T. H. Biomacromolecules 2007, 8, 650. https://doi.org/10.1021/bm0608939.Search in Google Scholar PubMed
25. Cipitria, A., Skelton, A., Dargaville, T. R., Dalton, P. D., Hutmacher, D. W. J. Mater. Chem. 2011, 21, 9419. https://doi.org/10.1039/c0jm04502k.Search in Google Scholar
26. Hoidy, W. H., Al-Mulla, E. A. J., Al-Janabi, K. W. J. Polym. Environ. 2010, 18, 608. https://doi.org/10.1007/s10924-010-0240-x.Search in Google Scholar
27. Wany, A., Kumar, A., Nallapeta, S., Jha, S., Nigam, V. K., Pandey, D. M. Plant Growth Regul. 2013, 73, 133. https://doi.org/10.1007/s10725-013-9875-7.Search in Google Scholar
28. Aytac, Z., Yildiz, Z. I., Kayaci-Senirmak, F., Keskin, N. O. S., Tekinay, T., Uyar, T. Advances 2016, 6, 46089. https://doi.org/10.1039/c6ra07088d.Search in Google Scholar
29. Fernández, M. J., Fernández, M. D., Cobos, M. RSC Adv. 2014, 4, 21435. https://doi.org/10.1039/c4ra02172j.Search in Google Scholar
30. Giongo, J. L., Vaucher, R. A., Ourique, A. F., Steffler, M. R. C., Frizzo, C. O., Hennemman, B., Santos, R. C. V., Lopes, L. Q. S., Rech, V. C., Nishihira, V. S. K., Raffin, R. R. P., Gomes, P., Steppe, M. Int. J. Pharm. Pharmaceut. Sci. 2016, 8, 271. https://doi.org/10.22159/ijpps.2016v8i12.15108.Search in Google Scholar
31. Unger, M., Vogel, C., Siesler, H. W. Appl. Spectrosc. 2010, 64, 805. https://doi.org/10.1366/000370210791666309.Search in Google Scholar PubMed
32. Fiori, K. P., Torres, M. P. R., Schons, J. I., Ribeiro, E. B., Nogueira, R. M., Vasconcelos, L. G., Andrighetti, C. R., Jacinto, M. J., Valladão, D. M. S. Quim. Nova 2017, 40, 1051. https://doi.org/10.21577/0100-4042.20170113.Search in Google Scholar
33. Gustmann, P. C., Cotrim, A. C. M., Pires, E. M., Andrighetti, C. R., Valladão, D. M. S., Ribeiro, E. B. J. Appl. Pharmaceut. Sci. 2017, 7, 92. https://doi.org/10.7324/JAPS.2017.70813.Search in Google Scholar
34. Torres, M. P. R., Esprendor, R. V. F., Bonaldo, S. M., Elton Brito Ribeiro, E. B., Valladão, D. M. S. Acta Amazonica 2019, 49, 246. https://doi.org/10.1590/1809-4392201802702.Search in Google Scholar
35. Cai, K., Ode, M., Murakami, H. Colloid. Surface. Physicochem. Eng. Aspect. 2006, 284, 458. https://doi.org/10.1016/j.colsurfa.2006.03.028.Search in Google Scholar
36. Guterres, S. S., Fessi, H., Barratt, G., Devissaguet, J. P., Puisieux, F. Int. J. Pharm. 1995, 113, 57. https://doi.org/10.1016/0378-5173(94)00177-7.Search in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Material properties
- The effect of cooling rate on crystallization behavior and tensile properties of CF/PEEK composites
- Polypropylene hybrid composites: Effect of reinforcement of sisal and carbon fibre on mechanical, thermal and morphological properties
- Comparative study on interface morphology and tensile property of CFRTP/Ti6Al4V laser joining joint under various groove dimensions
- Preparation and assembly
- Investigating the electrical percolation threshold of ternary composite films with different compatibility between polymer blends
- Application of modified starch in high-temperature-resistant colloidal gas aphron (CGA) drilling fluids
- Production of elastomer-based highly conductive hybrid nanocomposites and treatment with sulfuric acid
- Application of the polycaprolactone polymer for the encapsulation of geraniol: evaluation of the efficiency and stability
- Engineering and processing
- Influence of fabrication parameters on the elastic modulus and characteristic stresses in 3D printed PLA samples produced via fused deposition modelling technique
- Influence of extrusion screw speed on the properties of halloysite nanotube impregnated polylactic acid nanocomposites
- Use of virgin/recycled polyethylene blends in rotational moulding
Articles in the same Issue
- Frontmatter
- Material properties
- The effect of cooling rate on crystallization behavior and tensile properties of CF/PEEK composites
- Polypropylene hybrid composites: Effect of reinforcement of sisal and carbon fibre on mechanical, thermal and morphological properties
- Comparative study on interface morphology and tensile property of CFRTP/Ti6Al4V laser joining joint under various groove dimensions
- Preparation and assembly
- Investigating the electrical percolation threshold of ternary composite films with different compatibility between polymer blends
- Application of modified starch in high-temperature-resistant colloidal gas aphron (CGA) drilling fluids
- Production of elastomer-based highly conductive hybrid nanocomposites and treatment with sulfuric acid
- Application of the polycaprolactone polymer for the encapsulation of geraniol: evaluation of the efficiency and stability
- Engineering and processing
- Influence of fabrication parameters on the elastic modulus and characteristic stresses in 3D printed PLA samples produced via fused deposition modelling technique
- Influence of extrusion screw speed on the properties of halloysite nanotube impregnated polylactic acid nanocomposites
- Use of virgin/recycled polyethylene blends in rotational moulding