Home Study on the thermal and structural properties of gamma-irradiated polyethylene terephthalate fibers
Article
Licensed
Unlicensed Requires Authentication

Study on the thermal and structural properties of gamma-irradiated polyethylene terephthalate fibers

  • Adel A. El-Zahhar EMAIL logo , Khalid M. Yassien and Mohamed A. El-Bakary
Published/Copyright: January 29, 2020
Become an author with De Gruyter Brill

Abstract

Polyethylene terephthalate (PET) fiber samples were irradiated using different gamma radiation doses. The physicochemical and structural properties of the irradiated PET samples, either the pristine sample or the sample chemically modified with polyethylene glycol (PEG), were assessed using X-ray diffraction (XRD), differential scanning calorimetry (DSC), and Fourier transform infrared (FTIR) spectroscopy. The surface morphology and characteristics of the irradiated PET fiber samples were investigated using scanning electron microscopy (SEM). The pristine and PEG-modified PET fibers were exposed to gamma radiation with doses ranging from 0.5 to 20 kGy. The FTIR analysis results showed certain degradation via irradiation, deduced from a decrease in the intensities of most of the PET original infrared bands. The XRD and DSC analysis results indicated the reduction of crystallinity upon irradiation of pristine and modified PET fibers. Conversely, an improvement in the crystallinity was observed at high doses compared with low doses. The crystallinity of the PEG-modified PET was found to be improved. Two types of morphological changes, wrinkles and small particles, were observed on the PET fiber surface due to gamma irradiation.

  1. Research funding: The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through the Research Groups Program under grant number R.G.P1./72/40.

References

[1] Chikaoui K, Izerrouken M, Djebara M, Abdesselam M. Radiat. Phys. Chem. 2017, 130, 431–435.10.1016/j.radphyschem.2016.10.002Search in Google Scholar

[2] Nanda P, De SK, Manna S, De U, Tarafdar S. Nucl. Instrum. Methods Phys. Res. Sect. B 2010, 268, 73–78.10.1016/j.nimb.2009.09.063Search in Google Scholar

[3] Apel P. Nucl. Instrum. Methods Phys. Res. Sect. B 2003, 208, 11–20.10.1016/S0168-583X(03)00634-7Search in Google Scholar

[4] Aarya S, Dev K, Shakir M, Ahmed B, Wahab M. J. Appl. Polym. Sci. 2012, 125, 3575–3581.10.1002/app.36397Search in Google Scholar

[5] Aarya S, Dev K, Raghuvanshi SK, Krishna J, Wahab M. Radiat. Phys. Chem. 2012, 81, 458–462.10.1016/j.radphyschem.2011.12.023Search in Google Scholar

[6] Kumar V, Sonkawade R, Chakarvarti S, Singh P, Dhaliwal A. Radiat. Phys. Chem. 2012, 81, 652–658.10.1016/j.radphyschem.2012.02.027Search in Google Scholar

[7] Forsythe J, Hill D. Prog. Polym. Sci. 2000, 25, 101–136.10.1016/S0079-6700(00)00008-3Search in Google Scholar

[8] Mallick B, Patel T, Behera R, Sarangi S, Sahu S, Choudhury R. Nucl. Instrum. Methods Phys. Res. Sect. B 2006, 248, 305–310.10.1016/j.nimb.2006.04.153Search in Google Scholar

[9] Mishra R, Tripathy S, Sinha D, Dwivedi K, Ghosh S, Khathing D, Müller M, Fink D, Chung W. Nucl. Instrum. Methods Phys. Res. Sect. B 2000, 168, 59–64.10.1016/S0168-583X(99)00829-0Search in Google Scholar

[10] Bhat N, Naik S. Text. Res. J. 1984, 54, 868–874.10.1177/004051758405401213Search in Google Scholar

[11] Lungulescu EM. Contributions to the study and characterization of degradation processes of the insulating polymeric materials in high-energy radiation fields (PhD thesis). University of Bucharest Chemistry Faculty Doctoral School in Chemistry: Romania, 2014.Search in Google Scholar

[12] Evans L. The Large Hadron Collider: A Marvel of Technology. EPFL Press: Lausanne, Switzerland, 2009.Search in Google Scholar

[13] Dey S, Maulik A, Raha S, Swapan KS, Syam D. In: Proceedings of the 33rd International Cosmic Ray Conference, the Astroparticle Physics Conference, Rio de Janeiro, 2013.Search in Google Scholar

[14] Kumar V, Sonkawade RG, Chakarvarti SK, Kulriya P, Kant K, Singh NL, Dhaliwal AS. Vacuum 2011, 86, 275–279.10.1016/j.vacuum.2011.07.001Search in Google Scholar

[15] Kumar V, Ali Y, Sonkawade RG, Dhaliwal AS. Nucl. Instrum. Methods Phys. Res. Sect. B 2012, 287, 10–14.10.1016/j.nimb.2012.07.007Search in Google Scholar

[16] Virendra S, Tejvir S, Amita C, Bandyopadhyay SK, Pintu S, Witte K, Scherer UW, Alok S. Nucl. Instrum. Methods Phys. Res. Sect. B 2006, 244, 243–247.10.1016/j.nimb.2005.11.039Search in Google Scholar

[17] Mallick B. Appl. Phys. A 2015, 119, 653–657.10.1007/s00339-015-9009-3Search in Google Scholar

[18] Mallick B, Behera RC, Patel T. Bull. Mater. Sci. 2005, 28, 593–598.10.1007/BF02706348Search in Google Scholar

[19] Mallick B, Patel T, Behera RC. Indian J. Phys. 2006, 80, 621–624.Search in Google Scholar

[20] Singh R, Samra KS, Kumar R, Singh L. Radiat. Phys. Chem. 2008, 77, 575–580.10.1016/j.radphyschem.2007.06.014Search in Google Scholar

[21] Saeedeh M, Abdellah A, Charles D. Poly. Eng. Sci. 2010, 50, 1956–1968.10.1002/pen.21727Search in Google Scholar

[22] Wei C, Thomas JM. Macromolecules 1998, 31, 3648–3655.10.1021/ma9710601Search in Google Scholar

[23] Singh N, Sharma A, Avasthi D. Nucl. Instrum. Methods Phys. Res. Sect. B 2003, 206, 1120–1123.10.1016/S0168-583X(03)00935-2Search in Google Scholar

[24] Yue QF, Wang CX, Zhang LN, Ni Y, Jin XY. Polym. Degrad. Stab. 2011, 96, 399–403.10.1016/j.polymdegradstab.2010.12.020Search in Google Scholar

[25] Papaleo R, De Araujo M, Livi R. Nucl. Instrum. Methods Phys. Res. Sect. B 1992, 65, 442–446.10.1016/0168-583X(92)95082-3Search in Google Scholar

[26] Steckenreiter T, Balanzat E, Fuess H, Trautmann C. Nucl. Instrum. Methods Phys. Res. Sect. B 1997, 131, 159–166.10.1016/S0168-583X(97)00364-9Search in Google Scholar

[27] Ramola R, Chandra S, Negi A, Rana J, Annapoorni S, Sonkawade R, Kulriya P, Srivastava A. Phys. B Condensed Matter 2009, 404, 26–31.10.1016/j.physb.2008.09.033Search in Google Scholar

[28] Zhudi Z, Wenxue Y, Xinfang C. Radiat. Phys. Chem. 2002, 65, 173–176.10.1016/S0969-806X(02)00194-9Search in Google Scholar

[29] Guzman A, Carlson J, Bares J, Pronko P. Nucl. Instrum. Methods Phys. Res. Sect. B 1985, 7, 468–472.10.1016/0168-583X(85)90414-8Search in Google Scholar

[30] Ciesla K, Starosta W. Nucl. Instrum. Methods Phys. Res. Sect. B 1995, 105, 115–119.10.1016/0168-583X(95)00822-5Search in Google Scholar

[31] Höhne G, Hemminger WF, Flammersheim HJ. Differential Scanning Calorimetry. Springer Science & Business Media: Verlag, Berlin, Heidelberg, 2013.Search in Google Scholar

[32] Menchaca-Campos C, Barrera-Díaz C, Martínez-Barrera G, Gencel O. Matrix 2012, 1, 15–21.10.1155/2013/389162Search in Google Scholar

Received: 2019-07-19
Accepted: 2019-11-15
Published Online: 2020-01-29
Published in Print: 2020-01-28

©2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 26.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2019-0234/html?lang=en
Scroll to top button