Home Recent developments in fire-retardant thermoset resins using inorganic-organic hybrid flame retardants
Article
Licensed
Unlicensed Requires Authentication

Recent developments in fire-retardant thermoset resins using inorganic-organic hybrid flame retardants

  • Ewa Kicko-Walczak EMAIL logo and Grażyna Rymarz
Published/Copyright: January 23, 2018
Become an author with De Gruyter Brill

Abstract

Inorganic-organic hybrid modifiers have attracted attention of scholars worldwide because they combine the advantages of both different components and provide a way for modifying the structure and properties of polymeric materials. The article describes and investigates a positive effect of reduced flammability of thermoset resins resulting from the use of nanocomposites containing new inorganic-organic hybrid flame retardants (FRs) that combine conventional phosphorous/nitrogen modifiers interacting with nanofillers. The impact of these inhibitors on the level of flammability of thermoset resin compositions was defined by determining the value of limiting oxygen index, thermogravimetric and cone calorimeter analysis of thermal destruction processes. Morphology of composites was assessed using a scanning microscope and an analysis of actual scanning electron micrographic images. The analysis of thermal decomposition of the materials under examination confirmed flammability reducing properties of the inorganic-organic hybrid FR used, and a synergist to generate integrated flame retarding effect was observed between conventional modifiers and nanofillers, in particular carbon nanofillers: expandable graphite, graphene and graphene oxide. The inorganic-organic hybrid FR will provide a new solution to efficient FR polymeric materials.

References

[1] Restriction of hazardous substances directive (2002/95/EC) and (1907/2006/EC), effective since 2007.10.1049/ic:20060191Search in Google Scholar

[2] Morgan, AB, Wilkie, CA. Flame Retardant Polymer Nanocomposites, John Wiley and Sons: Hoboken, NJ, 2007.10.1002/0470109033Search in Google Scholar

[3] Samyn F, Bourbigot S, Duquesne S, Delobel R. Thermochim. Acta, 2007, 456, 134.10.1016/j.tca.2007.02.006Search in Google Scholar

[4] Bourbigot S, Le Bras M, Duguesne S, Rochery M. Makromol. Mater. Eng. 2004, 289, 499.10.1002/mame.200400007Search in Google Scholar

[5] Lorenzetti A, Modest M, Gallo E, Shartel B, Besco S, Roso M. Polym. Degrad. Stab. 2012, 97, 2364.10.1016/j.polymdegradstab.2012.07.026Search in Google Scholar

[6] Kicko-Walczak E, Rymarz G. Przem. Chem. 2012, 91, 1552–1557.Search in Google Scholar

[7] KuillaT, Bhadra S, Yao S, Kim NH, Bose S, Lee JH. Progr. Polym. Sci. 2010, 35, 1350–1375.10.1016/j.progpolymsci.2010.07.005Search in Google Scholar

[8] Alongi J, Brancatelli B, Rosace G. J. Appl. Polym. Sci. 2007, 132, 426.Search in Google Scholar

[9] Huang G, Zhuo A, Wang L, Wang X. Mater. Chem. Phys. 2011, 130, 714.10.1016/j.matchemphys.2011.07.047Search in Google Scholar

[10] Lao SC. J. Comp. Mater. 2009, 43, 1803.10.1177/0021998309338413Search in Google Scholar

[11] Mastral JF, Berrueco C, Gea M, Ceamanos J. Polym. Degrad. Stab. 2006, 91, 3330.10.1016/j.polymdegradstab.2006.06.009Search in Google Scholar

[12] Wang R, Zhao D. J. Mater. Chem. A, 2015, 3, 9826–9836.10.1039/C5TA00722DSearch in Google Scholar

[13] Yarahmadi N, Jakubowicz I, Hjertberg T. Polym. Degrad. Stab. 2010, 95, 132.10.1016/j.polymdegradstab.2009.11.043Search in Google Scholar

[14] Kumar AP, Depan T, Tomer NS, Sing RP. Prog. Polym. Sci. 2009, 34, 479–515.10.1016/j.progpolymsci.2009.01.002Search in Google Scholar

[15] Zao M, Liu P, Therm J. Anal. Colorim. 2008, 1, 103.10.1007/s10973-007-8677-4Search in Google Scholar

[16] Nazare S, Kandola BK, Horroks AR. Polym. Adv. Technol. 2006, 17, 294.10.1002/pat.687Search in Google Scholar

[17] Kandare E, Kandola BK, Price D, Nazaré S, Horrocks RA. Polym. Degrad. Stab. 2008, 93, 1996.10.1016/j.polymdegradstab.2008.03.032Search in Google Scholar

[18] Katsoulis C, Kandare E, Kandola BK. J. Fire Sci. 2011, 29, 361.10.1177/0734904111398785Search in Google Scholar

[19] Yu D, Kleemeier M, Wu GM, Schartel B, Liu WQ, Hartwig A. Macromol. Mater. Eng. 2011, 296, 952.10.1002/mame.201100014Search in Google Scholar

[20] Kicko-Walczak E, Rymarz G, Gajlewicz I. Przem. Chem. 2013, 92, 512.Search in Google Scholar

[21] Kicko-Walczak E, Rymarz G, Gajlewicz I. Przem. Chem. 2014, 93, 128.Search in Google Scholar

[22] Kicko-Walczak E, Rymarz G. J. Mech. Eng. A. Aut. 2015, 5, 510–518.10.17265/2159-5275/2015.09.005Search in Google Scholar

[23] Kicko-Walczak E, Rajkiewicz M, Rymarz G. Patent Application 393205 (2010), Patent PL 222564(2015), PCT/PL 2011/000129.Search in Google Scholar

[24] Kicko-Walczak E, Rymarz G, Cichy B, Stechman M. Patent Application 399236 (2012), Pat.Pl(2016), PCT/PL2012/000055.Search in Google Scholar

[25] Kużdżał E, Cichy B, Kicko-Walczak E, Rymarz G. J. Appl. Polym. Sci. 2017, 133, 44371.Search in Google Scholar

[26] Kicko-Walczak E, Rymarz G, Gajlewicz I. Przem. Chem. 2017, 96, 1000–1004.Search in Google Scholar

[27] PN-EN ISO 4589-2:2006 Plastic-determination of burning behavior by oxygen index. Part 2; ambient temperature test.Search in Google Scholar

[28] ISO 5660-1:2002 Reaction-to-fire tests – heat release, smoke production and mass loss rate – part 1: HRR (cone calorimeter method).Search in Google Scholar

Received: 2017-06-30
Accepted: 2017-11-18
Published Online: 2018-01-23
Published in Print: 2018-07-26

©2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 3.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2017-0224/html
Scroll to top button