Home Technology Investigation of mechanical and metallographic properties of dissimilar aluminum alloy plates joined by friction stir welding method
Article
Licensed
Unlicensed Requires Authentication

Investigation of mechanical and metallographic properties of dissimilar aluminum alloy plates joined by friction stir welding method

  • S. Ocalir

    Seref Ocalir works as an assistant professor at Tarsus University, Mersin, Turkey. He obtained his BSc and MSc degree from Mersin University and PhD degree from Tarsus University, Turkey, in 2006, 2009 and 2019 respectively. His research interests include friction stir welding, machinability of materials, design and corrosion.

    EMAIL logo
    and A. Ilhan

    Asim Ilhan works as a mechanical engineer in a private company which is the world's leading manufacturers of polyester, fiber, filament yarn, polyesterbased polymers, special polymers and intermediate products. He obtained his BSc degree from Mersin University and MSc degree from Tarsus University. His research interests include friction stir welding, corrosion and artificial aging of metals.

Published/Copyright: June 25, 2025
Become an author with De Gruyter Brill

Abstract

In this study, AA 5083 and AA 6082 aluminum alloy plates were joined by friction stir welding method at different rotational speeds and traverses. Mechanical tests and metallographic examinations were performed on the joints. In tensile test, welding performance was found to be in the range of 66.23 %–77.27 % compared to the tensile strength of the AA 5083 base alloy, and in the range of 62.22 %–72.59 % compared to the tensile strength of the AA 6082 base alloy.

Result of the bending test, splitting was observed at the heat affected zone boundary after surface bending in some parameters. The light microscope examinations, onion ring-shaped shear bands were clearly seen in the center of the welded joints. The hardness values were low on the AA 5083 side, while they tended to increase towards the AA 6082 side.

Kurzfassung

In dieser Arbeit wurden Bleche aus den Aluminiumlegierungen AA 5083 und AA 6082 mit dem Rührreibschweißverfahren bei unterschiedlichen Drehzahlen und Verfahrgeschwindigkeiten miteinander verbunden. Anschließend wurden die Verbindungen mechanischen Tests und metallografischen Untersuchungen unterzogen. Die Tragfähigkeit der Schweißverbindung lag im Zugversuch bei 66,23–77,27 % der Zugfestigkeit der Basislegierung AA 5083 bzw. bei 62,22–72,59 % der Zugfestigkeit der Basislegierung AA 6082.

Das Ergebnis des Biegeversuchs zeigte in einigen Fällen eine Aufspaltung an der Grenze der Wärmeeinflusszone nach Oberflächenbiegung. Lichtmikroskopische Untersuchungen zeigten zwiebelringförmige Scherbänder in der Mitte der Schweißnähte. Die Härtewerte waren auf der Seite der AA 5083 niedriger und nahmen zur Seite der AA 6082 hin tendenziell zu.

About the authors

S. Ocalir

Seref Ocalir works as an assistant professor at Tarsus University, Mersin, Turkey. He obtained his BSc and MSc degree from Mersin University and PhD degree from Tarsus University, Turkey, in 2006, 2009 and 2019 respectively. His research interests include friction stir welding, machinability of materials, design and corrosion.

A. Ilhan

Asim Ilhan works as a mechanical engineer in a private company which is the world's leading manufacturers of polyester, fiber, filament yarn, polyesterbased polymers, special polymers and intermediate products. He obtained his BSc degree from Mersin University and MSc degree from Tarsus University. His research interests include friction stir welding, corrosion and artificial aging of metals.

5

5 Acknowledgments

This study was supported by Tarsus University Scientific Research Projects Coordination Unit. Project Number: OSB.23.004.

The authors are grateful for grant and financial support.

5

5 Danksagung

Diese Studie wurde von der Koordinierungsstelle für wissenschaftliche Forschungsprojekte der Universität Tarsus unterstützt. Projektnummer: OSB.23.004

Die Autoren bedanken sich für die Förderung und finanzielle Unterstützung.

References / Literatur

[1] Majeed, T.; Wahid, M. A.; Alam, M. N.; Mehta, Y.; Siddiquee, A. N.: Friction stir welding: A sustainable manufacturing process. Mater. Today Proc. 46 (2021), pp. 6558–6563. DOI:10.1016/j.matpr.2021.04.02510.1016/j.matpr.2021.04.025Search in Google Scholar

[2] Nagaraja, S.; Anand, P. B.; Mariswamy, M.; Alkahtani, M. Q.; Islam, S.; Khan MA, ... & Bhutto, J. K.: Friction stir welding of dissimilar Al–Mg alloys for aerospace applications: Prospects and future potential. Rev. Adv. Mater. Sci. 63 (2024) 1, pp. 2024003–3. DOI:10.1515/rams-2024-003310.1515/rams-2024-0033Search in Google Scholar

[3] Bag, S.; Akinlabi, E. T.: Eco friendly aspects in hybridization of friction stir welding technology for dissimilar metallic materials. In Encyclopedia of Renewable and Sustainable Materials 1–5 (2020), pp. 225–236. DOI:10.1016/B978-0-12-803581-8.11153-110.1016/B978-0-12-803581-8.11153-1Search in Google Scholar

[4] Nandan, R.; DebRoy, T.; Bhadeshia, H. K. D. H.: Recent advances in friction-stir welding-process, weldment structure and properties. Prog. Mater Sci. 53 (2008) 6, pp. 980–1023. DOI:10.1016/j.pmatsci.2008.05.00110.1016/j.pmatsci.2008.05.001Search in Google Scholar

[5] Kulekci, M. K.; Esme, U.; Ocalir, S.; Ustun, D.; Kazancoglu, Y.: Tensile shear strength and elongation of FSW parts predicted by Taguchi-based fuzzy logic. Mater. Test. 58 (2016) 4, pp. 351–356. DOI:10.3139/120.11085610.3139/120.110856Search in Google Scholar

[6] Öcalır, Ş.; Eşme, U.; Boğa, C.; Külekci, M. K.: Investigation of mechanical and metallographic properties of two different aluminum alloys joined with friction stir welding method using different welding parameters. Sigma J. Eng. Nat. Sci. 38 (2020) 3, pp. 1333–1349.Search in Google Scholar

[7] Dada, O. J.: Fracture mechanics and mechanical behavior in AA5083-H111 friction stir welds. Sci. Afr. 8 (2020), pp. e00265. DOI:10.1016/j.sciaf.2020.e0026510.1016/j.sciaf.2020.e00265Search in Google Scholar

[8] Mjali, K. V.; Mkoko, Z. A.: Varying rotational speeds and their effect on the mechanical properties of friction stir welded 6082-T651 aluminium alloy plates. Manuf. Lett. 35 (2023), pp. 305–313. DOI:10.1016/j.mfglet.2023.08.07010.1016/j.mfglet.2023.08.070Search in Google Scholar

[9] Mahdy, A. A.; Mourad, A.; Mosa, E. S.; Kandil, A.: Influences of pinprofile and transverse speed on microstructure, mechanical properties, and wear behavior of nanocomposite AA6082/WC and fabricated via friction stir processing. J. Radiat. Res. Appl. Sci. 14 (2021) 1, pp. 456–466. DOI:10.1080/16878507.2021.200472010.1080/16878507.2021.2004720Search in Google Scholar

[10] Malopheyev, S.; Vysotskiy, I.; Kulitskiy, V.; Mironov, S.; Kaibyshev, R.: Optimization of processing microstructure-properties relationship in friction-stir welded 6061-T6 aluminum alloy. Mater. Sci. Eng. A 662 (2016), pp. 136–143. DOI:10.1016/j.msea.2016.03.06310.1016/j.msea.2016.03.063Search in Google Scholar

[11] Naumov, A.; Morozova, I.; Rylkov, E.; Obrosov, A.; Isupov. F.; Michailov, V.; Rudskoy, A.: Metallurgical and mechanical characterization of highspeed friction stir welded AA 6082-T6 aluminum alloy. Materials 12 (2019) 24, pp. 421–1. DOI:10.3390/ma1224421110.3390/ma12244211Search in Google Scholar PubMed PubMed Central

[12] Dai, Q.; Jin, L.; Meng, K.; Liu, H.; Shi, Q.; Chen, G.: Influence of welding speed on the root defects formation and mechanical properties of FSWed 6082-T6 Al alloy joint. Int. J. Adv. Manuf. Technol. 131 (2024) 3, pp. 1097–1106. DOI:10.1007/s00170-024-13107-810.1007/s00170-024-13107-8Search in Google Scholar

[13] Meyghani, B.; Awang, M.: The influence of the tool tilt angle on the heat generation and the material behavior in friction stir welding (FSW). Metals 12 (2022) 11, pp. 183–7. DOI:10.3390/met1211183710.3390/met12111837Search in Google Scholar

[14] Gungor, B.; Kaluc, E.; Taban, E.; Sik, A.: Mechanical, fatigue and microstructural properties of friction stir welded 5083-H111 and 6082-T651 aluminum alloys. Mater. Des. 56 (2014), pp. 84–90. DOI:10.1016/j.matdes.2013.10.09010.1016/j.matdes.2013.10.090Search in Google Scholar

[15] Thangarasu, A.; Murugan, N.; Dinaharan, I.; Vijay, S. J.: Synthesis and characterization of titanium carbide particulate reinforced AA6082 aluminium alloy composites via friction stir processing. Arch. Civ. Mech. Eng. 15(2) (2015), pp. 324–334. DOI:10.1016/j.acme.2014.05.01010.1016/j.acme.2014.05.010Search in Google Scholar

[16] Mendes, N.; Loureiro, A.; Martins, C.; Neto, P.; Pires, J. N.: Effect of friction stir welding parameters on morphology and strength of acrylonitrile butadiene styrene plate welds. Mater. Des. 58 (2014), pp. 457–464. DOI:10.1016/j.matdes.2014.02.03610.1016/j.matdes.2014.02.036Search in Google Scholar

[17] Kumar, J.; Majumder, S.; Mondal, A. K.; Verma, R. K.: Influence of rotation speed, transverse speed, and pin length during underwater friction stir welding (UW-FSW) on aluminum AA6063: A novel criterion for parametric control. Int. J. Lightweight Mater. Manuf. 5 (2022) 3, pp. 295–305. DOI:10.1016/j.ijlmm.2022.03.00110.1016/j.ijlmm.2022.03.001Search in Google Scholar

[18] Kasman, S.; Kahraman, F.; Emiralioğlu, A.; Kahraman, H.: A case study for the welding of dissimilar EN AW 6082 and EN AW 5083 aluminum alloys by friction stir welding. Metals. 7 (2016) 1, pp. 6. DOI:10.3390/met701000610.3390/met7010006Search in Google Scholar

[19] Priyasudana, D.; Crisdion, S. A.; Puspitasari, P.; Pramono, D. D.: Double side friction stir welding effect on mechanical properties and corrosion rate of aluminum alloy AA6061. Heliyon. 9 (2023) 2. DOI:10.1016/j.heliyon.2023.e1336610.1016/j.heliyon.2023.e13366Search in Google Scholar PubMed PubMed Central

[20] Rahmatian, B.; Mirsalehi, S. E.; Dehghani, K.: Metallurgical and mechanical characterization of doublesided friction stir welded thick AA5083 aluminum alloy joints. Trans. Indian Inst. Met. 72 (2019), pp. 2739–2751. DOI:10.1007/s12666-019-01751-810.1007/s12666-019-01751-8Search in Google Scholar

[21] Moni, V.: Mechanical properties of friction stir welded 5083-h321 and 6082-t651 dissimilar aluminium alloys [Doctoral dissertation]. Cape Peninsula University of Technology, (2020).Search in Google Scholar

[22] Abolusoro, O. P.; Khoathane, M. C.; Mhike, W.; Omoniyi, P.; Kailas, S. V.; Akinlabi, E. T.: Influence of welding parameters and post weld heat treatment on mechanical, microstructures and corrosion behaviour of friction stir welded aluminium alloys. J. Mater. Res. Technol. 32 (2024), pp. 634–648. DOI:10.1016/j.jmrt.2024.07.17510.1016/j.jmrt.2024.07.175Search in Google Scholar

[23] Hussein, W.; Al-Shammari, M. A.: Fatigue and fracture behaviours of FSW and FSP joints of AA5083-H111 aluminium alloy. IOP Conf. Ser.: Mater. Sci. Eng. 454 (2018) 1, pp. 01205–5. DOI:10.1088/1757-899X/454/1/01205510.1088/1757-899X/454/1/012055Search in Google Scholar

[24] Palanivel, R.; Mathews, P. K.; Murugan, N.; Dinaharan, I.: Effect of tool rotational speed and pin profile on microstructure and tensile strength of dissimilar friction stir welded AA5083-H111 and AA6351-T6 aluminum alloys. Mater. Des. 40 (2012), pp. 7–16. DOI:10.1016/j.matdes.2012.03.02710.1016/j.matdes.2012.03.027Search in Google Scholar

[25] Mohan, D. G.; Wu, C.: A review on friction stir welding of steels. Chin. J. Mech. Eng. 34 (2021) 1, pp. 13–7. DOI:10.1186/s10033-021-00655-310.1186/s10033-021-00655-3Search in Google Scholar

[26] Shaik, B.; Harinath Gowd, G.; Durga Prasad, B.: Investigations on friction stir welding to improve aluminum alloys. IntechOpen (2021). DOI:10.5772/intechopen.9625010.5772/intechopen.96250Search in Google Scholar

[27] Commin, L.; Rotinat, R.; Pierron, F.; Masse, J. E.; Barrallier, L.: Identification of shear bands in wrought magnesium alloy friction stir welds and laser beam welds. Mater. Sci. Technol. 25 (2009) 10, pp. 1215–1221. DOI:10.1179/174328409X42199710.1179/174328409X421997Search in Google Scholar

[28] Ma, Z.; Pilchak, A.; Juhas, M.; Williams, J.: Microstructural refinement and property enhancement of cast light alloys via friction stir processing. Scr. Mater. 58 (2008), pp. 361–366. DOI:10.1016/j.scriptamat.2007.09.06210.1016/j.scriptamat.2007.09.062Search in Google Scholar

[29] Naderi, M.; Abbasi, M.; Saeed-Akbari, A.: Enhanced mechanical properties of a hotstamped advanced high-strength steel via tempering treatment. Metall. Mater. Trans. A 44 (2013), pp. 1852–1861. DOI:10.1007/s11661-012-1546-110.1007/s11661-012-1546-1Search in Google Scholar

[30] Fouladi, S.; Ghasemi, A. H.; Abbasi, M.; Abedini, M.; Khorasani, A. M.; Gibson, I.: The effect of vibration during friction stir welding on corrosion behavior, mechanical properties, and machining characteristics of stir zone. Metals 7 (2017) 10, pp. 42–1. DOI:10.3390/met710042110.3390/met7100421Search in Google Scholar

Received: 2024-10-12
Accepted: 2025-05-30
Published Online: 2025-06-25
Published in Print: 2025-07-28

© 2025 Walter de Gruyter GmbH, Berlin/Boston, Germany

Downloaded on 9.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/pm-2025-0044/html
Scroll to top button