Home Technology Effect of cold metal transfer (CMT) on the microstructure of as welded 2205 duplex stainless steel
Article
Licensed
Unlicensed Requires Authentication

Effect of cold metal transfer (CMT) on the microstructure of as welded 2205 duplex stainless steel

  • R. Nagar

    Reena Nagar received her Master of Engineering degree in Metallurgical & Materials engineering (Industrial Metallurgy) from the department of Metallurgical & Materials engineering department, The Maharaja Sayajirao University of Baroda. Currently working as Temporary Assistant Professor at The Maharaja Sayajirao University of Baroda, Teaching the subjects material science, physical metallurgy& basic metallurgy.

    EMAIL logo
    , C. Gohil , K. K. Patel , V. Rao

    Vandana Rao She is working as an associate professor at Metallurgical and Materials Engineering department, Faculty of Technology and engineering, The Maharaja Sayajirao university of Baroda.

    and S. Soman
Published/Copyright: June 25, 2025
Become an author with De Gruyter Brill

Abstract

This work aims to study the microstructural variations in 2205 duplex stainless steel welded by cold metal transfer. Duplex stainless steels, characterized by their twophase microstructure of austenite and ferrite, exhibit exceptional mechanical properties and corrosion resistance that can be significantly influenced by welding techniques. Plates of 8 mm thickness, solution annealed at 1070 ˚C, were joined using ER 2209 welding wire and a shielding gas mixture of 98 % Argon and 2 % O2. Microstructural analysis and ferrite content measurements were performed on the welded specimens. The microstructure was observed using three different electrolytic etchants 45KOH, 10KOH and 40NaOH Results showed that the best contrast of microstructure phases is seen in 45KOH etchant, resulting in dark green ferrite and yellow colored austenite as compared to 10KOH and 40NaOH etchant. Various morphologies of austenite were observed in the weld area. The base metal contains elongated pools of austenite in the ferrite matrix. The heat affected zone shows higher percentage of ferrite phase and the weld region shows highest austenite content with different morphologies like grain boundary Austenite, side plates of austenite or Widmanstätten austenite and intergranular austenite.

Kurzfassung

Diese Arbeit befasst sich mit der Untersuchung der mikrostrukturellen Veränderungen des nichtrostenden Duplexstahls 2205 nach dem Cold Metal Transfer Schweißen. Duplex-Edelstähle zeichnen sich durch eine zweiphasige Mikrostruktur aus Austenit und Ferrit aus und besitzen außergewöhnliche mechanische Eigenschaften und Korrosionsbeständigkeit, die durch die Schweißtechnik wesentlich beeinflusst werden können. 8 mm dicke Bleche, die bei 1070 °C lösungsgeglüht wurden, wurden mit einem Schweißdraht ER 2209 und einem Schutzgasgemisch aus 98 % Argon und 2 % O2 gefügt. An den geschweißten Proben wurden Gefügeuntersuchungen und Messungen des Ferritgehalts durchgeführt. Das Gefüge wurde mit drei verschiedenen elektrolytischen Ätzmitteln (45KOH, 10KOH und 40NaOH) untersucht. Die Ergebnisse zeigten, dass der beste Kontrast der Phasen im Gefüge mit dem Ätzmittel 45KOH erzielt wurde, das im Vergleich zu den Ätzmitteln 10KOH und 40NaOH dunkelgrünen Ferrit und gelben Austenit ergab. In der Schweißzone wurden verschiedene Austenitmorphologien beobachtet. Das Grundmetall enthält längliche Austenit-Inseln in der Ferrit-Matrix. Die Wärmeeinflusszone weist einen höheren Ferritgehalt auf, während die Schweißzone den höchsten Austenitgehalt mit verschiedenen Morphologien wie Korngrenzenaustenit, Widmanstätten-Austenit und intergranularen Austenit aufweist.

Schlagwörter: CMT; Duplex; Mikrostruktur; Ferrit

About the authors

R. Nagar

Reena Nagar received her Master of Engineering degree in Metallurgical & Materials engineering (Industrial Metallurgy) from the department of Metallurgical & Materials engineering department, The Maharaja Sayajirao University of Baroda. Currently working as Temporary Assistant Professor at The Maharaja Sayajirao University of Baroda, Teaching the subjects material science, physical metallurgy& basic metallurgy.

V. Rao

Vandana Rao She is working as an associate professor at Metallurgical and Materials Engineering department, Faculty of Technology and engineering, The Maharaja Sayajirao university of Baroda.

References / Literatur

[1] Aguiar, I. V.; Escobar, D. P.; Santos, D. B.; Modenesi, P. J.: Microstructure characterization of a duplex stainless steel weld by electron backscattering diffraction and orientation imaging microscopy techniques. Revista Materia. 20 (2015) 1, pp. 212–226. DOI:10.1590/S1517-707620150001.002210.1590/S1517-707620150001.0022Search in Google Scholar

2 Nagar, R.; Patel, K. K.; Parmar, A.: Study and Characterization of Sigma Phase in Duplex Stainless Steel 2205 (03Kh22N6M2). Metal Science and Heat Treatment. 65 (2024) 9–10, pp. 558–562. DOI:10.1007/s11041-024-00969-810.1007/s11041-024-00969-8Search in Google Scholar

3 Zhang, X.; Wang, K.; Zhou, Q.; Ding, J.; Ganguly, S.; Marzio, G. et al.: Microstructure and mechanical properties of TOP-TIG-wire and arc additive manufactured super duplex stainless steel (ER2594). Materials Science and Engineering A. 762 (2019), p 138097. DOI:10.1016/j.msea.2019.13809710.1016/j.msea.2019.138097Search in Google Scholar

4 Invernizzi, B. P.; Silva, L. G., das Neves, M. D. M.: Mechanical Properties for Circumferential Welding Applied to UNS S32750 Super Duplex Stainless Steel Using the GMAW Process with CMT Control. Engineering 11 (2019) 9, pp. 576–591. DOI:10.4236/eng.2019.11904010.4236/eng.2019.119040Search in Google Scholar

5 Eriksson, M.; Lervåg, M.; Sørensen, C.; Robertstad, A.; Brønstad, B. M.; Nyhus, B. et al.: Additive manufacture of superduplex stainless steel using WAAM. MATEC Web of Conferences 7 (2018) 188, p. 03014. DOI:10.1051/matecconf/20181880301410.1051/matecconf/201818803014Search in Google Scholar

6 Bi, X.; Li, R.; Hu, Z.; Gu, J.; Jiao, C.: Microstructure and Texture of 2205 Duplex Stainless Steel Additive Parts Fabricated by the Cold Metal Transfer (CMT) Wire and Arc Additive Manufacturing (WAAM). Metals (Basel) 12 (2022) 10, p. 1655. DOI:10.3390/met1210165510.3390/met12101655Search in Google Scholar

7 Gowthaman, P. S.; Bhoominathan, M.; Justin, M. A.; Ajaykarthick, G.; Kumar, R. M.: Effect on Various Parameter of Stainless Steel 316L Weld Bead Geometry using Cold Metal Transfer (CMT) Process. Journal of Mines, Metals and Fuels (2022), pp. 419–424. DOI:10.18311/jmmf/2022/3201810.18311/jmmf/2022/32018Search in Google Scholar

8 Cong, B.; Ding, J.; Williams, S.: Effect of arc mode in cold metal transfer process on porosity of additively manufactured Al-6.3 %Cu alloy. The International Journal of Advanced Manufacturing Technology 76 (2015) 9–12, pp. 1593–1606. DOI:10.1007/s00170-014-6346-x10.1007/s00170-014-6346-xSearch in Google Scholar

9 Cui, S.: Pang, S.: Pang, D.: Zhang, Z.: Influence of Welding Speeds on the Morphology, Mechanical Properties, and Microstructure of 2205 DSS Welded Joint by K-TIG Welding. Materials 14 (2021) 12, p. 3426. DOI:10.3390/ma1412342610.3390/ma14123426Search in Google Scholar PubMed PubMed Central

10 Luengas, L. O.; Morales, E. V.; De Souza, L. F. G.; Bott, I. S.: Austenite transformation in duplex stainless steels under fast cooling rates. In: MS and T 2019 . Materials Science and Technology (2019), p. 1010–1017. DOI:10.7449/2019/MST_2019_1010_101710.7449/2019/MST_2019_1010_1017Search in Google Scholar

Received: 2024-12-16
Accepted: 2025-05-22
Published Online: 2025-06-25
Published in Print: 2025-07-28

© 2025 Walter de Gruyter GmbH, Berlin/Boston, Germany

Downloaded on 9.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/pm-2025-0041/pdf
Scroll to top button