Study on the microstructure and tensile properties of GH5188 high-temperature alloy laser welded joints
-
W.-Q. Song
Wen-Qing Song (1975-), Male, Doctor, Researcher, Research focus: Research and development of new materials, new processes and new technologies for welding aircraft engine parts.Xin Wang (1990-), Male, Doctor, Lecturer, Research focus: Weldability and surface engineering technology of metal materials., G.-D. Liu
Abstract
GH5188 high-temperature alloy has excellent mechanical properties and oxidation resistance and is used in the aerospace field and other harsh working environments. Tension and creep are the main failure modes during component operation. Hence, this work systematically characterizes and discusses the microstructure and properties of the welded joints. The results indicate that the weld metal of GH5188 alloy is mainly composed of long columnar grains, equiaxed dendrites, and carbides in a stable microstructure. Welding heat-affected zone grains are dominated by austenitic grains. Carbides are mainly divided into the two types M6C and M23C6, widely distributed in the weld and heat-affected zone on the grain boundary. The microstructure after the tensile fracture was tested, and the main cause for the fracture of the joint was found to be carbide in the weld structure. The average ultimate tensile strength for the laser welded joints at room temperature is 936.7 MPa and the average elongation after fracture is 19.25 %. The welded joint sample was kept at a temperature of 927 °C with a fixed load of 76 MPa for 36 hours without fracture. In this work, the requirements of relevant enterprises could be met and theoretical support for practical applications could be provided.
Kurzfassung
Die hochwarmfeste Legierung GH5188 bietet hervorragende mechanische Eigenschaften und Oxidationsbeständigkeit und kommt im Bereich Luft- und Raumfahrt sowie in anderen rauen Arbeitsumgebungen zum Einsatz. Hauptversagensmechanismen im Bauteilbetrieb sind Spannungen und Kriechen. In diesem Beitrag werden daher das Gefüge und die Eigenschaften der Schweißverbindungen systematisch charakterisiert und erörtert. Die Ergebnisse zeigen ein sich im Wesentlichen aus langen kolumnaren Körnern, gleichachsigen Dendriten und Karbiden in einem stabilen Gefüge zusammensetzendes Schweißgut der Legierung GH5188. In der Wärmeeinflusszone dominieren austenitische Körner. Karbid wird hauptsächlich in die zwei Typen M6C und M23C6 unterteilt. Diese sind in der Schweiß- und Wärmeeinflusszone an der Korngrenze weit verbreitet. Nach dem Zugbruch wurde das Gefüge untersucht. Als Hauptursache des Bruchs der Schweißnaht wurde im Gefüge der Schweißnaht auftretendes Karbid identifiziert. Die durchschnittliche Zugfestigkeit der lasergeschweißten Verbindungen beträgt bei Raumtemperatur 936,7 MPa, die durchschnittliche Bruchdehnung 19,25 %. Die Probe der Schweißverbindung wurde 36 Stunden lang bei 927 °C mit einer konstanten Last von 76 MPa beaufschlagt, ohne dass es zu einem Bruch kam. Im Rahmen dieses Beitrags konnten die Anforderungen der entsprechenden Unternehmen erfüllt und theoretische Unterstützung für praktische Anwendungen geboten werden.
About the authors
Wen-Qing Song (1975-), Male, Doctor, Researcher, Research focus: Research and development of new materials, new processes and new technologies for welding aircraft engine parts.
Xin Wang (1990-), Male, Doctor, Lecturer, Research focus: Weldability and surface engineering technology of metal materials.
5 Acknowledgments
All the works were funded by the National Science and Technology Project (J2019-VII-0012).
5 Danksagung
Alle Arbeiten wurden im Rahmen des National Science and Technology Project (J2019-VII-0012) finanziert.
References / Literatur
[1] Wen, J.; Fei, C.; Ahn, S. Y.; et al.: Accelerated damage mechanisms of aluminized superalloy turbine blades regarding combined high-and-low cycle fatigue. Surface and Coatings Technology 451 (2022), p. 129048. DOI:10.1016/j.surfcoat.2022.12904810.1016/j.surfcoat.2022.129048Search in Google Scholar
[2] Lin, C.; Yun, L.; Zeng, J.; et al.: Experimental study on FGH95 superalloy turbine disk joint material by oblique laser shock processing. Metals 11 (2021) 11, p. 1770. DOI:10.3390/met1111177010.3390/met11111770Search in Google Scholar
[3] Najmi, M.; Mirbagheri, S. M. H.: CM88Y super-alloy blade metallurgical degradation in a gas turbine. Engineering Failure Analysis 146 (2023), p. 107110. DOI:10.1016/j.engfailanal.2023.10711010.1016/j.engfailanal.2023.107110Search in Google Scholar
[4] Park, K. H.; Withey, P.: Compositions of gamma and gamma prime phases in an as-cast nickel-based single crystal superalloy turbine blade. Crystals 12 (2022) 2, p. 299. DOI:10.3390/cryst1202029910.3390/cryst12020299Search in Google Scholar
[5] Haußmann, L.; Burbaum, B.; Stohr, B.; et al.: Crack-Free Welding of a Co-Base Superalloy with High γ’ Precipitate Fraction [J]. Advanced Engineering Materials 24 (2022) 12, p. 2200609. DOI:10.1002/adem.20220060910.1002/adem.202200609Search in Google Scholar
[6] Sirohi, S.; Gupta, A.; Pandey, C.; et al.: Investigation of the microstructure and mechanical properties of the laser welded joint of P22 and P91 steel [J]. Optics & Laser Technology 147 (2022), p. 107610. DOI:10.1016/j.optlastec.2021.10761010.1016/j.optlastec.2021.107610Search in Google Scholar
[7] Dak, G.; Sirohi, S.; Pandey, C.: Study on microstructure and mechanical behavior relationship for laser-welded dissimilar joint of P92 martensitic and 304L austenitic steel [J]. International Journal of Pressure Vessels and Piping 196 (2022), p. 104629. DOI:10.1016/j.ijpvp.2022.10462910.1016/j.ijpvp.2022.104629Search in Google Scholar
[8] Sirohi, S.; Pandey, S. M.; Tiwari, V.; et al.: Impact of laser beam welding on mechanical behaviour of 2.25 Cr-1Mo (P22) steel [J]. International Journal of Pressure Vessels and Piping 201 (2023), p. 104867. DOI:10.1016/j.ijpvp.2022.10486710.1016/j.ijpvp.2022.104867Search in Google Scholar
[9] Bhanu, V.; Malakar, A.; Gupta, A.; et al.: Electron beam welding of P91 steel and incoloy 800HT and their microstructural studies for advanced ultra super critical (AUSC) power plants [J]. International Journal of Pressure Vessels and Piping 205 (2023), p. 105010. DOI:10.1016/j.ijpvp.2023.10501010.1016/j.ijpvp.2023.105010Search in Google Scholar
[10] Maurya, A. K.; Pandey, S. M.; Chhibber, R.; et al.: Structure-property relationships and corrosion behavior of laser-welded X-70/UNS S32750 dissimilar joint [J]. Archives of Civil and Mechanical Engineering 23 (2023) 2, p. 81. DOI:10.1007/s43452-023-00627-510.1007/s43452-023-00627-5Search in Google Scholar
[11] Kumar, A.; Pandey, C.: Autogenous laser-welded dissimilar joint of ferritic/martensitic P92 steel and Inconel 617 alloy: Mechanism, microstructure, and mechanical properties[J]. Archives of Civil and Mechanical Engineering 22 (2022) 1, p. 39. DOI:10.1007/s43452-021-00365-610.1007/s43452-021-00365-6Search in Google Scholar
[12] Zhang, Y.; Fu, H.; Zhou, X.; et al.: Enhanced mechanical properties of wrought γ’-strengthened Co-base superalloys by adjusting the relative content of Al and Ti. Intermetallics 112 (2019), p. 106543. DOI:10.1016/j.intermet.2019.10654310.1016/j.intermet.2019.106543Search in Google Scholar
[13] Rashidi, G. A. P.; Arabi, H.; Abbasi, M. S.: Effect of cold-rolling on mechanical properties of Haynes 25 cobalt-based superalloy. Metallurgical & Materials Engineering 23 (2017) 1, pp. 31–45. DOI:10.30544/24810.30544/248Search in Google Scholar
[14] Yu, H.; Wang, J.; Qin, H.; et al.: Deformation behavior of a new Ni-Co base superalloy GH4251 during hot compression. Materials Research Express 10 (2023) 1, p. 016511. DOI:10.1088/2053-1591/acb1a110.1088/2053-1591/acb1a1Search in Google Scholar
[15] Pariyar, A.; John, A.; Perugu, C. S.; et al.: Influence of laser beam welding parameters on the microstructure and mechanical behavior of Inconel X750 superalloy. Manufacturing Letters 35 (2023), pp. 3–38. DOI:10.1016/j.mfglet.2022.11.00510.1016/j.mfglet.2022.11.005Search in Google Scholar
[16] Zhou, H. J.; Cai, S. P.; Dong, J. X.; et al.: Microstructure-dependent mechanical properties of an electron beam welded Ni-Co based superalloy. Materials Letters 357 (2024), p. 135801. DOI:10.1016/j.matlet.2023.13580110.1016/j.matlet.2023.135801Search in Google Scholar
[17] Wu, J.; Wang, X.; Wang, W.; et al.: Microstructure and strength of selectively laser melted AlSi10Mg. Acta Materialia 117 (2016), pp. 311–320. DOI:10.1016/j.actamat.2016.07.01210.1016/j.actamat.2016.07.012Search in Google Scholar
[18] Pandey, C.; Mahapatra, M. M.; Kumar, P.; et al.: Softening mechanism of P91 steel weldments using heat treatments[J]. Archives of Civil and Mechanical Engineering 19 (2019), pp. 297–310. DOI:10.1016/j.acme.2018.10.00510.1016/j.acme.2018.10.005Search in Google Scholar
[19] Kumar, S.; Pandey, C.; Goyal, A.: A microstructural and mechanical behavior study of heterogeneous P91 welded joint [J]. International Journal of Pressure Vessels and Piping 185 (2020), p. 104128. DOI:10.1016/j.ijpvp.2020.10412810.1016/j.ijpvp.2020.104128Search in Google Scholar
[20] Kumar, A.; Bhattacharyya, A.; Pandey, C.: Structural integrity assessment of Inconel 617/P92 steel dissimilar welds produced using the shielded metal arc welding process [J]. Journal of Materials Engineering and Performance (2023), p. 1–19. DOI:10.1007/s11665-023-08363-w10.1007/s11665-023-08363-wSearch in Google Scholar
[21] Kumar, A.; Pandey, C.: Development and evaluation of dissimilar gas tungsten arc-welded joint of P92 steel/inconel 617 alloy for advanced ultra-supercritical boiler applications [J]. Metallurgical and Materials Transactions A 53 (2022) 9, pp. 3245–3273. DOI:10.1007/s11661-022-06723-010.1007/s11661-022-06723-0Search in Google Scholar
[22] Pandey, C.; Saini, N.; Mahapatra, M. M.; et al.: Study of the fracture surface morphology of impact and tensile tested cast and forged (C&F) Grade 91 steel at room temperature for different heat treatment regimes [J]. Engineering Failure Analysi. 71 (2017), pp. 131–147. DOI:10.1016/j.engfailanal.2016.06.01210.1016/j.engfailanal.2016.06.012Search in Google Scholar
[23] Chen, J.; Guo, M.; Yang, M.; et al.: Double minimum creep processing and mechanism for γ’ strengthened cobalt-based superalloy. Journal of Materials Science & Technology 112 (2022), pp. 123–129. DOI:10.1016/j.jmst.2021.10.01510.1016/j.jmst.2021.10.015Search in Google Scholar
[24] Yao, Z. F.; Bao, L. K.; Yang, M. J.; et al.: Thermally stable strong > 101> texture in additively manufactured cobalt-based superalloys. Scripta Materialia 242 (2024), p. 115942. DOI:10.1016/j.scriptamat.2023.11594210.1016/j.scriptamat.2023.115942Search in Google Scholar
[25] Dak, G.; Guguloth, K.; Vidyarthy, R. S.; et al.: Creep rupture study of dissimilar welded joints of P92 and 304L steels [J]. Welding in the World (2024), pp. 1–24. DOI:10.1007/s40194-024-01757-x10.1007/s40194-024-01757-xSearch in Google Scholar
© 2025 Walter de Gruyter GmbH, Berlin/Boston, Germany
Articles in the same Issue
- Inhalt
- Editorial
- Editorial
- How can stainless CrNi steel be etched to clearly characterize the individual phases?
- Study on the microstructure and tensile properties of GH5188 high-temperature alloy laser welded joints
- Characterization of an electric resistance welded steel plate
- Failure Analysis
- Failure of an impeller blade of a first stage air compressor
- Picture of the Month
- Picture of the Month
- News
- News
- Meeting Diary
- Meeting Diary
Articles in the same Issue
- Inhalt
- Editorial
- Editorial
- How can stainless CrNi steel be etched to clearly characterize the individual phases?
- Study on the microstructure and tensile properties of GH5188 high-temperature alloy laser welded joints
- Characterization of an electric resistance welded steel plate
- Failure Analysis
- Failure of an impeller blade of a first stage air compressor
- Picture of the Month
- Picture of the Month
- News
- News
- Meeting Diary
- Meeting Diary