Startseite Technik Challenges and possibilities of the manual metallographic serial sectioning process using the example of a quantitative microstructural analysis of graphite in cast iron
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Challenges and possibilities of the manual metallographic serial sectioning process using the example of a quantitative microstructural analysis of graphite in cast iron

  • A. Lemiasheuski

    Anton Lemiasheuski (born in 1992) graduated in mechanical engineering at HTW (Hochschule für Technik und Wirtschaft) Berlin in 2023 and start his PhD in the same year. Since 2023 he is an employee at HTW Berlin and do his research at BAM (Bundesanstalt für materialforschung und -prüfung) in 3D-metallography.

    EMAIL logo
    , A. Kranzmann und A. Pfennig
Veröffentlicht/Copyright: 21. August 2024
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The 3D microstructure analysis presented in this study focuses on the nodular graphite of an EN-GJS grade cast iron. The shape is analyzed based on shape factor and aspect ratio as well as average particle size and distribution. The shape of graphites in cast iron materials is critical to the mechanical properties of these alloys and is essential for the characterization of the material. Metallographic serial sectioning creates a digital twin of the material, which is removed layer by layer and visualized layer by layer under an optical microscope. From this three-dimensional twin, any number of planes can be digitally projected and analyzed. Conventional quantitative 3D analysis examines the voxel count and composition of a body in 3D space. The analysis presented here applies stereological 2D analysis methods to three spatial planes of the material. Two of the planes are digital projections of the twin. The two reconstructed planes of the material are chosen so that the direction vectors of all three planes form an angle of 90° to each other. The methodology is described in detail and the challenges and opportunities of the serial section method presented here are discussed.

Kurzfassung

Die in dieser Studie vorgestellte 3D-Gefüge-Analyse konzentriert sich auf die Kugelgrafite eines Gusseisens des Typs EN-GJS. Es werden die Form anhand des Formfaktors und des Seitenverhältnisses sowie die durchschnittliche Teilchengröße und -verteilung untersucht. Die Form der Grafite in Gusseisenwerkstoffen ist mitentscheidend für die mechanischen Eigenschaften dieser Legierungen und ist bei der Charakterisierung des Werkstoffs unumgänglich. Mittels metallografischen Serienschnittverfahrens wird von dem Schicht für Schicht abgetragenen und lichtmikroskopisch schichtweise dargestellten Werkstoff ein digitaler Zwilling erstellt. Von diesem dreidimensionalen Zwilling lassen sich beliebige Ebenen digital projizieren und analysieren. Eine konventionelle quantitative 3D-Analyse untersucht die Voxelmenge und -zusammensetzung eines Körpers im 3D-Raum. Die hier vorgestellte Analyse wendet stereologische 2D-Analyseverfahren auf drei Raumebenen des Werkstoffs an. Dabei sind zwei der Ebenen digitale Projektionen des Zwillings. Die zwei rekonstruierten Ebenen des Werkstoffs sind so gewählt, dass die Richtungsvektoren aller drei Ebenen einen 90°-Winkel zueinander bilden. Diese Methodik wird eingehend beschrieben sowie Herausforderungen und Möglichkeiten des hier vorgestellten Serienschnittverfahrens diskutiert.

About the author

A. Lemiasheuski

Anton Lemiasheuski (born in 1992) graduated in mechanical engineering at HTW (Hochschule für Technik und Wirtschaft) Berlin in 2023 and start his PhD in the same year. Since 2023 he is an employee at HTW Berlin and do his research at BAM (Bundesanstalt für materialforschung und -prüfung) in 3D-metallography.

References / Literatur

[1] Scott, D. A.; Schwab, R.: Introduction to Metallography, Metallography in Archaeology and Art, Cultural Heritage Science, Springer, (2019), pp. 1–4. 10.1007/978-3-030-11265-3Suche in Google Scholar

[2] Kiderlen, M.: Introduction into Integral Geometry and Stereology, The invariator principle in convex geometry (2013). 10.1007/978-3-642-33305-7_2Suche in Google Scholar

[3] Ganti, A.; Geier, B.; Turner, B. J.; Jenkins, E. J.; Velez, M. A.; Hayes, B.: A Comparison of Porosity Analysis Using 2D Stereology Estimates and 3D Serial Sectioning for Additively Manufactured Ti 6Al 2Sn 4Zr 2Mo Alloy, Pract. Metallogr. 54 (2017) 2, pp. 77–92. 10.3139/147.110432Suche in Google Scholar

[4] Tsai, S. P.; Konijnenberg, P. J.; Gonzalez, I.: Development of a new, fully automated system for electron backscatter diffraction (EBSD)-based large volume threedimensional microstructure mapping using serial sectioning by mechanical polishing, and its application to the analysis of special boundaries in 316L stainless steel, Rev. Sci. Instrum. 93 (2022), p. 093707. 10.1063/5.0087945Suche in Google Scholar PubMed

[5] Bargmann, S.; Klusemann, B.; Markmann, J.; Schnabel, J. E.; Schneider, K.; Soyarslan, C.; Wilmers, J.: Generation of 3D representative volume elements for heterogeneous materials: A review, Progress in Materials Science (2018), pp. 322–384. 10.1016/j.pmatsci.2018.02.003Suche in Google Scholar

[6] Li, S.; Ge, B.: A review of sample thickness effects on high-resolution transmission electron microscopy imaging, Micron 130 (2019). 10.1016/j.micron.2019.102813Suche in Google Scholar PubMed

[7] Uchic, M. D.; Holzer, L.; Inkson, B. J.; Principe, E. L.; Munroe, P: Three Dimensional Microstructural Characterization Using Focused Ion Beam To mography, MRS Bulletin Volumen 32 (2007), pp. 408–416. 10.1557/mrs2007.64Suche in Google Scholar

[8] Spowart, J. E.: Automated serial sectioning for 3-D analysis of microstructures, Scpripta Materialia 55 (2006), pp. 5–10. 10.1016/j.scriptamat.2006.01.019Suche in Google Scholar

[9] Ruxanda, R. E.; Stefanescu, D. M.; Piwonka, T. S.: Microstructure Characterization of Ductile Thin Wall Iron Castings, AFS Trans 2 (2002), pp. 1131–1148.Suche in Google Scholar

[10] De Santisa, A.; Di Bartolomeob, O.; Iacoviello, D.; Iacoviello, F.: Quantitative shape evaluation of graphite particles in ductile iron, Journal of Materials Processing Technology 196 (2008), pp. 292–302. 10.1016/j.jmatprotec.2007.05.056Suche in Google Scholar

[11] Ma, Z.; Yang, Z.; Guo, Y.; Li, J.; Liang, M.; Wang, S.: Quantitative Characterization of Graphite Morphology in Cast Iron from 3D Perspective, Journal of Physics: Conference Series 1622 012124 (2020). 10.1088/1742-6596/1622/1/012124Suche in Google Scholar

[12] Lekakh, S. N.; Qing, J.; Richards, V. L.; Peaslee, K. D.: Graphite Nodule Size Distribution in Ductile Iron, Missouri University of Science and Technology, Rolla, Missouri (2015).Suche in Google Scholar

[13] Chuang, C.; Singh, D.; Kenesei, P.; Almer, J.; Hryna, J.; Huff, R.: 3D quantitative analysis of graphite morphology in high strength cast iron by high-energy X-ray tomography, Scpripta Materialia 106 (2015), pp. 5–8. 10.1016/j.scriptamat.2015.03.017Suche in Google Scholar

[14] Yin, Y.; Tu, Z.; Zhou, J.; Zhang, D.; Wang, M.; Guo, Z.; Liu, C.; Chen, X.: 3D Quantitative Analysis of Graphite Morphology in Ductile Cast Iron by X-ray Microtomography, Metallurgical and Materials Transactions A. 48 A (2017), pp. 3794–3803. 10.1007/s11661-017-4130-xSuche in Google Scholar

[15] Bartels, C.; Gerhards, R.; Hanselka, H.; Herfurth, K.; Kaufmann, H.; Kleinkröger, W.; Lampic, M.; Löblich, H.; Menk, W.; Pusch, G.; Schmidt, T.; Schütt, K.-H.; Tölke, P.; Warnke, E. P.: Gusseisen mit Kugelgrafit, Herstellung – Eigenschaften – Anwendung, Bundesverband der Deutschen Gießerei-Industrie (BDG) (2010).Suche in Google Scholar

[16] Tanaka Y.; Yang, Z.; Miyamoto, K.: Evaluation of Fatigue Limit of Spheroidal Grafite Cast Iron, Materials Transactions, JIM 36 (1995) 6, pp. 749–756. 10.2320/matertrans1989.36.749Suche in Google Scholar

[17] Shiraki, N.; Usui, Y.; Kanno, T.: Effects of Number of Grafite Nodules on Fatigue Limit and Fracture Originsin Heavy Section Spheroidal Grafite Cast Iron, Mater. Trans. 57 (2016), pp. 379–84. 10.2320/matertrans.F-M2015841Suche in Google Scholar

[18] Piwowarsky, E.: Hochwertiges Gusseisen, Springer-Verlag (1953).Suche in Google Scholar

[19] Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; Tinevez, J.; James White, D.; Hartenstein, V.; Eliceiri, K.; Tomancak, P.; Cardona, A.: Fiji – an Open Source platform for biological image analysis, Nat Methods 9 (2012) 7. 10.1038/nmeth.2019Suche in Google Scholar PubMed PubMed Central

[20] Berkiten, S.; Rusinkiewicz, S.: Alignment of Images Captured Under Different Light Directions, Princeton University (2014).Suche in Google Scholar

[21] Szeliski, R.: Image Alignment and Stitching: A Tutorial, Computer Graphics and Vision 2 (2006) 1, pp. 1–104. 10.1561/0600000009Suche in Google Scholar

[22] Parsania, P. S.; Virparia, P. V.: A Review: Image Interpolation Techniques for Image Scaling, International Journal of Innovative Research in Computer and Communication Engineering 2 (2014) 12.Suche in Google Scholar

[23] Parui, K.; Minj, A. E.: Image Interpolation techniques in digital image processing (2017).Suche in Google Scholar

[24] Saltykov, S. A.: Stereometrische Metallographie, VEB Deutscher Verlag für Grundstoffindustrie Leipzig (1974).Suche in Google Scholar

[25] Papula, L.: Mathematik für Ingenieure und Naturwissenschaftler, 14. Auflage, Springer Fachmedien Wiesbaden (2014). 10.1007/978-3-658-05620-9Suche in Google Scholar

[26] Kral, M. V.; Spanos, G.: Three-dimensional analysis of proeutectoid cementite precipitates, Acta mater. 47 (1999) 2, pp. 711–724. 10.1016/S1359-6454(98)00321-8Suche in Google Scholar

[27] Kral, M. V.; Mangan, M. A.; Spanos, G.; Rosenberg, R. O.: Three-dimensional analysis of microstructures, Materials Characterization 45 (2000), pp. 17–23. 10.1016/S1044-5803(00)00046-2Suche in Google Scholar

[28] Li, M.; Ghosh, S.; Rouns, T. N.; Weiland, H.; Richmond, O.; Hunt, W.: Serial Sectioning Method in the Construction of 3-D Microstructures for Particle-Reinforced MMCs, Mater Charact. 41 (1998), pp. 81–95. 10.1016/S1044-5803(98)00023-0Suche in Google Scholar

[29] Chawla, N.; Ganesh, V. V.; Wunsch, B.: Three-dimensional (3D) microstructure visualization and finite element modeling of the mechanical behavior of SiC particle reinforced aluminum composites, Scripta Materialia 51 (2004), pp. 161–165. 10.1016/j.scriptamat.2004.03.043Suche in Google Scholar

[30] Alkemper, J.; Voorhees, P. W.: Quantitative serial sectioning analysis, Journal of Microscopy 201 (2001) 3, pp. 388–394. 10.1046/j.1365-2818.2001.00832.xSuche in Google Scholar PubMed

[31] RoboMetBrochure_12012023, UES, Inc. (2023)Suche in Google Scholar

[32] Tsai, S. P.; Konijnenberg, P. J.; Gonzalez, I.: Development of a new, fully automated system for electron backscatter diffraction (EBSD)-based large volume threedimensional microstructure mapping using serial sectioning by mechanical polishing, and its application to the analysis of special boundaries in 316L stainless steel, Rev. Sci. Instrum. 93 (2022), 09370. 10.1063/5.0087945Suche in Google Scholar PubMed

[33] Lemiasheuski, A.; Bettge, D.; Pfennig, A.; Bajer, E.; Oder, G.; Göbel, A.; Hesse, R.: Development of an automated 3D metallography system and some first application examples in microstructural analysis, Pract. Metallogr. 60 (2023), pp. 676–691. 10.1515/pm-2023-0057Suche in Google Scholar

Received: 2024-05-22
Accepted: 2024-06-06
Published Online: 2024-08-21
Published in Print: 2024-08-27

© 2024 Walter de Gruyter GmbH, Berlin/Boston, Germany

Heruntergeladen am 9.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/pm-2024-0066/pdf
Button zum nach oben scrollen