Home Characterization and comparison of cobalt-base and nickel-base alloys with iron-base intermetallic hard alloys used in wear protection
Article
Licensed
Unlicensed Requires Authentication

Characterization and comparison of cobalt-base and nickel-base alloys with iron-base intermetallic hard alloys used in wear protection

  • S. Friederichs

    Sabine Friederichs was born in 1966 in Hannover. During her studies, she discovered her passion for metallography at the Institute of welding and Machining, at Clausthal University of Technology. She has been employed here as a material tester technican since 1989. During this time, she was able to examine and process a wide range of different materials and thus deepen her knowledge of metallography.

    EMAIL logo
    and S. Lorenz

    Swenja Lorenz studied applied materials science at the University of Applied Science Osnabrück. Since 2016, she has been working in the Wear Department of the Institute of Welding and Machining at Clausthal University of Technology. In her Ph.D. thesis she has been working on intermetallic phases in iron base alloys which can be used for wear protection.

Published/Copyright: February 20, 2024
Become an author with De Gruyter Brill

Abstract

In wear protection, cobalt-base or nickel-base materials are very often used for coatings in order to increase the functionality and service life of components. These materials such as stellite, the nickel-base alloy Colmonoy 56 or Tribaloy T400 are characterized by a high resistance to abrasion, adhesion as well as excellent corrosion resistance even at higher temperatures.

Given the criticality of cobalt and partly also nickel, it is necessary to look for more sustainable alternatives to be used in wear protection. One possibility is to further develop iron-base materials so that they can be used in wear protection to prevent both abrasion and adhesion. In this context, sufficient corrosion resistance is desirable. This paper will elaborate on the development of a novel intermetallic iron-base hard alloy.

Kurzfassung

Im Verschleißschutz werden sehr häufig Kobalt- oder Nickelbasiswerkstoffe für Beschichtungen verwendet, um die Funktionalität und die Lebensdauer von Bauteilen zu erhöhen. Diese Werkstoffe, wie beispielsweise die Stellite, die Nickelbasislegierung Colmonoy 56 oder die Tribaloy-Legierung T400, zeichnen sich durch eine hohe Beständigkeit gegenüber Abrasion, Adhäsion und eine sehr gute Korrosionsbeständigkeit auch bei höheren Temperaturen aus.

Angesichts der Kritikalität von Kobalt und teilweise auch von Nickel ist es nötig nach nachhaltigeren Alternativwerkstoffen im Verschleißschutz zu suchen. Eine Möglichkeit besteht darin, Werkstoffe auf Eisenbasis so weiterzuentwickeln, dass sie im Verschleißschutz sowohl gegen Abrasion als auch gegen Adhäsion Anwendung finden können. Dabei ist eine ausreichende Korrosionsbeständigkeit wünschenswert. In diesem Beitrag wird auf die Entwicklung einer neuartigen intermetallischen Hartlegierung mit einer Eisenbasis eingegangen.

About the authors

S. Friederichs

Sabine Friederichs was born in 1966 in Hannover. During her studies, she discovered her passion for metallography at the Institute of welding and Machining, at Clausthal University of Technology. She has been employed here as a material tester technican since 1989. During this time, she was able to examine and process a wide range of different materials and thus deepen her knowledge of metallography.

S. Lorenz

Swenja Lorenz studied applied materials science at the University of Applied Science Osnabrück. Since 2016, she has been working in the Wear Department of the Institute of Welding and Machining at Clausthal University of Technology. In her Ph.D. thesis she has been working on intermetallic phases in iron base alloys which can be used for wear protection.

References / Literatur

[1] Szurlies, M.; Schippers, A.; Kuhn, T.; Duba, J.: Rohstoffrisikobewertung – Nickel. Datenstand: Februar 2021. Berlin: DERA, 2021. – ISBN 9783-948532-38-3.Search in Google Scholar

[2] Bundesanstalt für Geowissenschaften und Rohstoffe: Kobalt. Informationen zur Nachhaltigkeit. URL: https://www.deutsche-rohstoffagentur.de/DE/Gemeinsames/Produkte/Downloads/Informationen_Nachhaltigkeit/kobalt.pdf?__blob=publicationFile&v=3, letzter Aufruf: 21.06.2023.Search in Google Scholar

[3] Vander Voort, G. F.: Metallography. Principles and practice. 4. Auflage. Materials Park, Ohio: ASM International, 2007. – ISBN 9780871706720.Search in Google Scholar

[4] ASTM International G75 – 07: Standard Test Method for Determination of Slurry Abrasivity (Miller Number) and Slurry Abrasion Response of Materials (SAR Number). 2013.Search in Google Scholar

[5] Haynes, E.: Alloys of cobalt with chromium and other metals. The Journal of Industrial and Engineering Chemistry, 5 (1913) 3, S. 189–191. DOI:10.1021/ie50051a00610.1021/ie50051a006Search in Google Scholar

[6] Hasan, M. S.; Mazid, A. M.; Clegg, R.: The Basics of Stellites in Machining Perspective. International Journal of Engineering Materials and Manufacture, 1 (2016) 2, S. 35–50. DOI:10.26776/ijemm.01.02.2016.0110.26776/ijemm.01.02.2016.01Search in Google Scholar

[7] Deloro Stellite: Beschichtungswerkstoffe.Search in Google Scholar

[8] Wu, W.; Wu, L.-T.: The wear behavior between hardfacing materials. Metallurgical and Materials Transaction A, 27 (1996) 11, S. 3639–3648. DOI:10.1007/BF0259545510.1007/BF02595455Search in Google Scholar

[9] Wang, R.; Satake, Y.; Li, Y.; Xiao, T.; Honda, M.; Fukuhara, H.; Hiramatsu, S.: Microstructure of Nibased hard facing alloy and its polarization behavior in aqueous solution with different pH and chloride concentration. Corrosion Communications, 3 (2021), S. 1–9. DOI:10.1016/j.corcom.2021.11.00110.1016/j.corcom.2021.11.001Search in Google Scholar

[10] Wesling, V.; Reiter, R.; Kamper, S.: Eisenbasierte intermetallische Hartlegierungen im adhäsiven Verschleiß. Verschleißschutz durch Auftragschweißen (2018), S. 17–21.Search in Google Scholar

[11] Cameron, C. B.; Ferriss, D. P.: Tribaloy Intermetallic Materials: New Wear- and Corrosion-Resistant Alloys. Anti-Corrosion Methods and Materials, 22 (1975) 4, S. 5–8. DOI:10.1108/eb01016510.1108/eb010165Search in Google Scholar

[12] Kamper, S.: Eisenbasierte intermetallische Hartlegierungen für den Verschleißschutz am Beispiel von Einschneckenextrudern. TU Clausthal, 2019.Search in Google Scholar

[13] Peng, J.; Fang, X.; Marx, V.; Jasnau, U.; Palm, M.: Isothermal oxidation behavior of TribaloyTM T400 and T800. npj Materials Degradation, 2 (2018) 1. DOI:10.1038/s41529-018-0060-310.1038/s41529-018-0060-3Search in Google Scholar

[14] Tavakoli, A.; Liu, R.; Wu, X. J.: Improved mechanical and tribological properties of tin-bronze journal bearing materials with newly developed tribaloy alloy additive. Materials Science and Engineering: A, 489 (2008) 1–2, S. 389–402. DOI:10.1016/j.msea.2007.12.03010.1016/j.msea.2007.12.030Search in Google Scholar

[15] Xie, Y.; Yao, M. X.: Measurement of the threshold galling stress of hardfacing alloys. Wear, 255 (2003) 1–6, S. 509–516. DOI:10.1016/S0043-1648(03)00114-510.1016/S0043-1648(03)00114-5Search in Google Scholar

[16] Gottstein, G.: Materialwissenschaft und Werkstofftechnik. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. – ISBN 978-3-642-36602-4.Search in Google Scholar

[17] Thoma, D. I.: Intermetallics: Laves Phase. Encyclopedia of Materials: Science and Technology, Volume 5 (2001), S. 4205–5213. DOI:10.1016/B0-08-043152-6/00739-710.1016/B0-08-043152-6/00739-7Search in Google Scholar

[18] Okamoto, H.: Phase diagrams of binary iron alloys. Materials Park, Ohio: ASM International, 1993. – ISBN 0-87170-469-2.Search in Google Scholar

[19] Predel, B. (Hrsg.): Numerical data and functional relationships in science and technology. New series. Berlin: Springer, 1995. – ISBN 3-540-58428-5.Search in Google Scholar

Received: 2023-06-27
Accepted: 2023-07-11
Published Online: 2024-02-20
Published in Print: 2024-02-26

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 25.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/pm-2024-0012/html
Scroll to top button