Home Influence of tool geometry on mechanical and microstructural characteristics of friction stir welded cast alloys
Article
Licensed
Unlicensed Requires Authentication

Influence of tool geometry on mechanical and microstructural characteristics of friction stir welded cast alloys

  • B. S. Bindhushree

    B. S. Bindhushree is currently pursuing her Ph.D. Degree in Mechanical Engineering, Dayananda Sagar University, Bengaluru, India. She completed her M. Tech in Computer Integrated Manufacturing in 2019. Her research areas of interest are stir casting, machining and friction stir welding.

    , P. Sevvel

    P. Sevvel obtained his Ph.D. in Mechanical Engineering in 2016 and M.Tech Degree in Industrial Engineering in 2005. He has 17 years of experience. He is working as a Professor in Mechanical Engineering Department in S.A. Engineering College. 1 He has published 40 research papers in various SCI and Scopus indexed journals. His areas of research includes friction stir welding, additive manufacturing etc.

    EMAIL logo
    , S. P. Shanmuganatan , D. Saravanabavan and M. Madhusudan
Published/Copyright: April 25, 2024
Become an author with De Gruyter Brill

Abstract

Cast alloys find suitable applicability in aerospace sector owing to low porosity, high specific strength, corrosion resistance, fluidity and good machinability. The investigation focuses on friction stir welding (FSW) of cast A356 and A2014 alloys with varied range of process parameters, namely tool pin shape (cylinder, threaded cylinder, square, and conical), tool rotation speed (1800–2100 rpm) and welding speed (10–25 mm × min−1). Experimentation on stirwelding was performed based on selected tool pin shape between varied tool rotation and welding speed. The output responses, namely Ultimate tensile strength (UTS) and micro hardness, have been evaluated to study the effect of each tool. The microstructural characteristics of the weld samples were analyzed using optical microscope and scanning electron microscope (SEM) technique. The microstructural observation unveiled that complete fusion prevails between the parent alloys devoid of micro porosities and segregations. The re-crystallization effect resulted in the finer grains. The cylinder-shaped tool with a thread and square shaped tool rendered better strength and hardness properties of 136.6 MPa and 109.4 HV, respectively.

Kurzfassung

Aufgrund ihrer geringen Porosität, hohen spezifischen Festigkeit, Korrosionsbeständigkeit, Fließfähigkeit und guten Bearbeitbarkeit kommen Gusslegierungen in der Luft- und Raumfahrtbranche zum Einsatz. Diese Untersuchung beschäftigt sich mit dem Rührreibschweißen (Friction Stir Welding, FSW) der Gusslegierungen A356 und AA2014 bei den unterschiedlichen Prozessparametern Form des Werkzeugstifts („Pin“) (zylindrisch, zylindrisch mit Gewinde, vierkantig und konisch), Drehzahl des Werkzeugs (1.800–2.100 1/min) und Schweißgeschwindigkeit (10–25 × min−1). Die entsprechenden Rührreibschweißversuche wurden mit Werkzeugen mit ausgewählten Stiftformen bei unterschiedlichen Werkzeugdrehzahlen und Schweißgeschwindigkeiten durchgeführt. Die sich für die Zugfestigkeit (UTS) und Mikrohärte ergebenden Werte wurden zur Untersuchung des Einflusses der einzelnen Werkzeuge ausgewertet. Die Gefügeeigenschaften der Schweißproben wurden mittels Licht- und Rasterelektronenmikroskopie untersucht. Im Rahmen der Gefügeuntersuchung konnte eine vollständige Bindung der Ausgangslegierungen ohne Porosität und Seigerungen festgestellt werden. Durch den Rekristallisationseffekt bildeten sich feinere Körner. Das zylinderförmige Werkzeug mit Gewinde und das vierkantige Werkzeug lieferten mit jeweils 136,6 MPa und 109,4 HV eine bessere Festigkeit und Härte.

About the authors

B. S. Bindhushree

B. S. Bindhushree is currently pursuing her Ph.D. Degree in Mechanical Engineering, Dayananda Sagar University, Bengaluru, India. She completed her M. Tech in Computer Integrated Manufacturing in 2019. Her research areas of interest are stir casting, machining and friction stir welding.

P. Sevvel

P. Sevvel obtained his Ph.D. in Mechanical Engineering in 2016 and M.Tech Degree in Industrial Engineering in 2005. He has 17 years of experience. He is working as a Professor in Mechanical Engineering Department in S.A. Engineering College. 1 He has published 40 research papers in various SCI and Scopus indexed journals. His areas of research includes friction stir welding, additive manufacturing etc.

References / Literatur

[1] LokeshKumar, P. J.; Sevvel, P.; Loganathan, T. G.: FSW Welding of Aluminium Casting Alloys. Pract. Metallogr. 60 (2023), pp. 289–318.10.1515/pm-2022-1029Search in Google Scholar

[2] Pietras, A.; Rams, B.: Impact of tool rotational speed on the microstructural transitions and tensile properties of the dissimilar AZ80A-Mg-AA6061-Al joints fabricated by friction stir welding. Arch. Foundry. Eng. 16 (2016), pp. 119–124.Search in Google Scholar

[3] Sushilkumar, M.; Rahul, K.; SriKrishna, M.; Abhishek, S.; Anilsingh, Y.; Vishesh Ranjan, K.: Friction stir welding of cast aluminum alloy (A319): Effect of process parameters. Mater. Today. Proc. 56 (2022), pp. 1024–1033. 10.1016/j.matpr.2022.03.271Search in Google Scholar

[4] Jayaraman, M.; Sivasubramanian, R.; Balasubramanian, V.: Establishing relationship between the base metal properties and friction stir welding process parameters of cast aluminium alloys. Mater. Des. 31 (2010), pp. 4567–4576. 10.1016/j.matdes.2010.03.040Search in Google Scholar

[5] Karam, A., Mahmoud, T. S., Zakaria, H. M., Khalifa, T. A.: Friction Stir Welding of Dissimilar A319 and A413 Cast Aluminum Alloys. Arab. J. Sci. Eng. 39 (2014), pp. 6363–6373. 10.1007/s13369-014-1220-6Search in Google Scholar

[6] Sundaravel, Vijayan.; Raju, R.; Rao, S. R. K.: Multiobjective Optimization of Friction Stir Welding Process Parameters on Aluminum Alloy AA 5083 Using Taguchi-Based Grey Relation Analysis. Mater. Manuf. 25 (2010), pp. 1206-1212. DOI10.1080/1042691090353678210.1080/10426910903536782Search in Google Scholar

[7] Vivas, J.; Fernández-Calvo, AI.; Aldanondo, E.; Irastorza, U.; Álvarez, P.: Friction Stir Weldability at High Welding Speed of Two Structural High Pressure Die Casting Aluminum Alloys. J. Manuf. Mater. Process. 6 (2022), p. 160. 10.3390/jmmp6060160Search in Google Scholar

[8] Rajendran, C.; Srinivasan, K.; Balasubramanian, V.; Balaji, H.; Selvaraj, P.: Identifying the combination of friction stir welding parameters to attain maximum strength of AA2014-T6 aluminum alloy joints. Adv. Mater. Process. Technol. 4 (2018), pp. 100–119. 10.1080/2374068X.2017.1410687Search in Google Scholar

[9] Lee, W. B.; Yeon, Y. M.; Jung, S. B.: The improvement of mechanical properties of friction-stirwelded A356 Al alloy. Mater. Sci. Eng. A. 355 (2003), pp. 154–159. :10.1016/S0921-5093(03)00053-4Search in Google Scholar

[10] Jacob, John.; Shanmuganatan, S. P.; Kiran, M. B.; Senthilkumar, V.S.; Krishnamurthy, R.: Investigation of friction stir processing effect on AA 2014-T6. Mater. Manuf. Process. 34 (2018), pp. 159–176. 10.1080/10426914.2018.1532577Search in Google Scholar

[11] Verma, J.; Taiwade, R. V.; Reddy, C.; Khatirkar, R. K.:Effect of friction stir welding process parameters on Mg-AZ31B/Al-AA6061 joints. Mater. Manuf. Process. 33 (2018), pp. 308–314. :10.1080/10426914.2017.1291957Search in Google Scholar

[12] Goel, P.; Siddiquee, A. N.; Khan, N. Z.; Hussain, M. A.; Khan, Z. A.; Abidi, M. H.; Al-Ahmari, A.: Investigation on the Effect of Tool Pin Profiles on Mechanical and Microstructural Properties of Friction Stir Butt and Scarf Welded Aluminium Alloy 6063. Metals. 8 (2018), p. 74. 10.3390/met8010074Search in Google Scholar

[13] Singh, A.; Kumar, V.: Influence of tool pin profiles on friction stir welding with a gap for AA6082-T6 aluminium alloy. Mater. Res. Express. 6 (2019), p. 086543. 10.1088/2053-1591/ab18ccSearch in Google Scholar

[14] Shine, K.; Jayakumar, K.: Effect of tool pin profile on the mechanical and microstructural properties of dissimilar friction stir welded AA5083-H111 and AA6061-T6 aluminium alloys. J. Chin. Inst. Eng. Trans. 45 (2022), pp. 227–236. :10.1080/02533839.2022.2034054Search in Google Scholar

[15] Ilangovan, M.; Rajendra, Boopathy, S.; Balasubramanian, V.: Effect of tool pin profile on microstructure and tensile properties of friction stir welded dissimilar AA 6061eAA 5086 aluminium alloy joints. Def. Technol. 11 (2015), pp. 174–184. 10.1016/j.dt.2015.01.004Search in Google Scholar

[16] Kant, S, Verma, A. S.: Stir Casting Process in Particulate Aluminium Metal Matrix Composite: A Review. J. Mech. Solids. 9 (2017), pp. 61–69.Search in Google Scholar

[17] Nandan, R.; DebRoy, T.; Bhadeshia, H. K.: Recent advances in frictionstir welding – Process, weldment structure and properties. Prog. Mater. Sci. 53 (2008), pp. 980–1023. 10.1016/j.pmatsci.2008.05.001Search in Google Scholar

[18] Manjunath, M.; Subramanian, Pillappan, S.; Kurse, S.: Process parameter analysis of double pass friction stir composite welds. Mater. Manuf. Process. 2023, pp. 1–14. :10.1080/10426914.2023.2190380Search in Google Scholar

[19] ASTM E8, Standard test methods for tension testing of metallic materials. Book of Standards. 2022.Search in Google Scholar

[20] Mahoney, M. W.; Rhodes, C. G.; Flintoff, J. G.; Bingel, W. H.; Spurling, R. A.: Properties of Friction-Stir-Welded 7075 T651 Aluminum. Metall. Mater. Trans. A. 29 (1998), pp. 1955–1964. 10.1007/s11661-998-0021-5Search in Google Scholar

[21] Nunes, A.: Heat Input and Temperature Distribution in Friction Stir Welding. J. Mater. Process. Manuf. Sci. 7 (1998), p. 163. 10.1106/55TF-PF2G-JBH2-1Q2BSearch in Google Scholar

[22] Kasirajan, G.; Rengarajan, S.; Raghav. G. R.; Rao, V. S.; Nagarajan, K. J.: Tensile and wear behaviour of friction stir welded AA5052 and AA6101-T6 aluminium alloys: effect of welding parameters. Metall. Res. Technol. 117 (2020), p. 405. 10.1051/metal/2020039Search in Google Scholar

[23] Mishra, R. S.; Ma, Z. Y.: Friction stir welding and processing. Mater. Sci. Eng. R Rep. 50 (2005), pp. 1–78. 10.1016/j.mser.2005.07.001Search in Google Scholar

[24] Jayaraman, M.; Balasubramanian, V.: Trans. Nonferrous Met. Soc. China. 23 (2013), pp. 605–615. 10.1016/S1003-6326(13)62506-6Search in Google Scholar

[25] Abolusoro, O. P.; Akinlabi, E. T.; Kailas, S. V.: Impact of tool profile on mechanical behavior and material flow in friction stir welding of dissimilar aluminum alloys. Materwiss. Werksttech. 51 (2020), pp. 725–731. 10.1002/mawe.202000002Search in Google Scholar

[26] Karthikeyan, L.; Senthilkumar, V. S.; Balasubramanian, V.; Natarajan, S.: Mechanical property and microstructural changes during friction stir processing of cast aluminum 2285 alloy. Mater. Des. 30 (2009), pp. 2237–2242. 10.1016/j.matdes.2008.09.006Search in Google Scholar

[27] Cavaliere, P.; Squillace, A.: High temperature deformation of friction stir processed 7075 aluminium alloy. Mater. Charact. 55 (2005), pp. 136–142. 10.1016/j.matchar.2005.04.007Search in Google Scholar

[28] Batool, A.; Anjum, N. A.; Khan, M. Y.: Impact of pin tool designs on the mechanical properties and microstructure of aluminum alloys AA7075-AA6061. J. Chin. Inst. Eng. 44 (2021), pp. 683–93 10.1080/02533839.2021.1940293Search in Google Scholar

[29] Ahmed, S.; Rahman, R. A.; Awan, A.; Ahmad, S.; Akram. W.; Amjad, M.; Yahya, M. Y.; Rahimian, Koloor, S. S.: Optimization of Process Parameters in Friction Stir Welding of Aluminum 5451 in Marine Applications. J. Mar. Sci. Eng. 10 (2022), p. 1539. 10.3390/jmse10101539Search in Google Scholar

[30] Yash, Dugar.; Nishant, Singh.; Ajit, Kumar.; Gowtham, Vinayagamurthy.; Shanmuganatan, S. P.; Madhusudan, Manjunath.: Microstructural studies and parametric optimization of dissimilar friction stir welds. Weld. Int. 37 (2023), pp. 206–225. ’ 10.1080/09507116.2023.2211283Search in Google Scholar

[31] Ma, Z. Y.; Sharma, S. R.; Mishra, R. S.: Microstructural Modification of As-Cast Al-Si-Mg Alloy by Friction Stir Processing. Metall. Mater. Trans. A. 37 (2006), pp. 3323–3336. 10.1007/BF02586167Search in Google Scholar

[32] Sharma, S. R.; Ma, Z. Y.; Mishra, R. S.: Effect of friction stir processing on fatigue behavior of A356 alloy. Scr. Mater. 51 (2004), pp. 237–241. 10.1016/S1359-6462(04)00239-8Search in Google Scholar

[33] Santella, M. L.; Engstrom, T.; Storjohann, D.; Pan, T. Y.: Effects of friction stir processing on mechanical properties of the cast aluminum alloys A319 and A356. Scr. Mater. 53 (2005), pp. 201–206. 10.1016/j.scriptamat.2005.03.040Search in Google Scholar

[34] Mallapur, D. G.; Udupa, K. R.; Kori, S. A.: Influence of grain refiner and modifier on the microstructure and mechanical properties of A356 alloy. J. Eng. Sci. Technol. 2 (2010), pp. 4487–4493.Search in Google Scholar

[35] Sato, Y. S.; Park, S. H.; Kokawa, H.: Microstructural Factors Governing Hardness in Friction-Stir Welds of Solid-Solution-Hardened Al Alloys. Metall. Mater. Trans. A. 32 (2001), pp. 3033–3042. 10.1007/s11661-001-0178-7Search in Google Scholar

Received: 2023-06-19
Accepted: 2024-01-10
Published Online: 2024-04-25
Published in Print: 2024-04-25

© 2024 Walter de Gruyter GmbH, Berlin/Boston, Germany

Downloaded on 22.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/pm-2023-1055/html
Scroll to top button