Home Technology Structural analysis of Cu-based FeCr reinforced composites prepared by mechanical alloying
Article
Licensed
Unlicensed Requires Authentication

Structural analysis of Cu-based FeCr reinforced composites prepared by mechanical alloying

  • S. O. Yilmaz

    born in Elazig, works in the Namık Kemal University, Faculty of Engineering, Department of Mechanical Engineering, Corlu, Tekirdağ, Turkey. He received his BSc from METU University, Faculty of Engineering, Metallurgy and Materials Engineering Department, Ankara, Turkey in 1989, his MSc from the Institute of Science and Technology, Metallurgy Department in 1992 and his Ph.D from the University of Firat, Institute of Science and Technology, Metallurgy Department, Elazig, Turkey in 1998. He studied metal coating techniques, surface modification, welding, casting and wear.

    , T. Teker

    born in Sivas, works in Sivas Cumhuriyet University, Faculty of Technology, Department of Manufacturing Engineering, Sivas, Turkey. He graduated in Metallurgy Education from Gazi University, Ankara, Turkey, in 1997. He received his MSc and Ph.D degrees from Firat University, Elazig, Turkey in 2004 and 2010, respectively. His research interests metal coating techniques, casting, fusion and welding solid-state welding methods.

    and S. Aydin
Published/Copyright: July 1, 2023
Become an author with De Gruyter Brill

Abstract

Production and structural investigations of Cu-based FeCr reinforced composite were performed by using mechanical alloying, optical microscope, scanning electron microscope, X-ray diffraction and hardness test. The increment in FeCr addition caused the increment in the cold deformation rate. This situation resulted in breakage of the powder particles throughout mechanical alloying.

Thus, the grain dimension of the FeCr powders decreased and the Fe wt.% in the CuCr powders advanced. The collision force between the Cu-Cr powder and the grinding ball weakened with the increase of FeCr concentration and resulted as higher reinforcement size. After mechanical milling, FeCr grains decreased in size more than copper grains due to the ductility of copper grains. The smaller crystals occurred after grinding, and increased the grain boundary zone for further spread of Cr into the Cu. Despite the high sintering process, the high sintering temperature improved the compactness of the alloys, but caused coarsening of the nanoparticles. The mechanical alloying time, reinforcement wt.% and sinter temperature were effective on the micro-hardness of the microstructure.

Kurzfassung

Für die Herstellung und Gefügeuntersuchungen eines Cu-basierten und FeCr-verstärkten Verbundwerkstoffs wurden mechanisches Legieren, Lichtmikroskopie, Rasterelektronenmikroskopie, Röntgenbeugung und Härteprüfungen eingesetzt. Eine Erhöhung der FeCr-Zugabe führte zu einem Anstieg des Kaltverformungsgrads, was wiederum das Aufbrechen der Pulverpartikel während des mechanischen Legierens zur Folge hatte.

Somit nahm die Korngröße der FeCr-Partikel ab und der Gewichtsanteil an Fe in den CuCr-Pulvern stieg an. Die Stoßkräfte zwischen dem CuCr-Pulver und des Mahlkörpers nahm mit dem Anstieg der FeCr-Konzentration ab und führte zu einer Vergröberung der Verstärkungspartikel. Aufgrund der Duktilität der Kupferkörner nahm deren Größe durch das mechanische Mahlen weniger stark ab als die Größe der FeCr-Körner. Nach dem Mahlvorgang waren kleinere Kristalle und größere Korngrenzbereiche zu beobachten, sodass sich Cr weiter in Cu verteilen konnte. Zwar wurde durch die hohe Sintertemperatur die Kompaktheit der Legierungen verbessert, es kam jedoch auch zu einer Vergröberung der Nanopartikel. Die Dauer des mechanischen Legierungsvorgangs, der Gewichtsanteil der Verstärkungsphase sowie die Sintertemperatur wirken sich auf die Mikrohärte des Gefüges aus.

About the authors

Prof. Dr. S. O. Yilmaz

born in Elazig, works in the Namık Kemal University, Faculty of Engineering, Department of Mechanical Engineering, Corlu, Tekirdağ, Turkey. He received his BSc from METU University, Faculty of Engineering, Metallurgy and Materials Engineering Department, Ankara, Turkey in 1989, his MSc from the Institute of Science and Technology, Metallurgy Department in 1992 and his Ph.D from the University of Firat, Institute of Science and Technology, Metallurgy Department, Elazig, Turkey in 1998. He studied metal coating techniques, surface modification, welding, casting and wear.

Prof. Dr. T. Teker

born in Sivas, works in Sivas Cumhuriyet University, Faculty of Technology, Department of Manufacturing Engineering, Sivas, Turkey. He graduated in Metallurgy Education from Gazi University, Ankara, Turkey, in 1997. He received his MSc and Ph.D degrees from Firat University, Elazig, Turkey in 2004 and 2010, respectively. His research interests metal coating techniques, casting, fusion and welding solid-state welding methods.

5

5 Acknowledgements

The authors are grateful to Inan Machine Industry and Trade Incorporate Company for their assistance in conducting the experiments.

5

5 Danksagung

Die Autoren danken der Inan Machine Industry und Trade Incorporate Company für deren Unterstützung bei der Durchführung der Untersuchungen.

References / Literatur

[1] Zhang, S.; Zhu, H.; Zhang, L.; Zhang, W.; Yang, H.; Zeng, X.: Microstructure and properties of high strength and high conductivity Cu-Cr alloy components fabricated by high power selective laser melting. Mater. Lett. 237 (2019), pp. 306–309. DOI:10.1016/j.matlet.2018.11.11810.1016/j.matlet.2018.11.118Search in Google Scholar

[2] Shen, D. P.; Zhu, Y. J.; Yang, X.; Tong, W. P.: Investigation on the microstructure and properties of Cu-Cr alloy prepared by in-situ synthesis method. Vacuum, 149 (2018), pp. 207–213. DOI:10.1016/j.vacuum.2017.12.03510.1016/j.vacuum.2017.12.035Search in Google Scholar

[3] Garzón-Manjón, A.; Christiansen, L.; Kirchlechner, I.; Breitbach, B.; Liebscher, C. H.; Springer, H.; Dehm, G.: Synthesis, microstructure, and hardness of rapidly solidified Cu-Cr alloys. J. Alloy. Compd. 794 (2019), pp. 203–209. DOI:10.1016/j.jallcom.2019.04.20910.1016/j.jallcom.2019.04.209Search in Google Scholar

[4] He, W. X.; Wang, E. D.; Hu, L. X.; Yu, Y.; Sun, H. F.: Effect of extrusion on microstructure and properties of a submicron crystalline Cu-5wt.%Cr alloy. J. Mater. Process. Technol. 208 (2008), pp. 1–3. 205-210. DOI:10.1016/j.jmatprotec.2007.12.10710.1016/j.jmatprotec.2007.12.107Search in Google Scholar

[5] Yilmaz, S. O.; Teker, T.; Demir, F.: Effect of mechanical alloying on FeCrC reinforced Ni alloys. Mater. Test. 58 (2016) 4, pp. 337–342. DOI:10.3139/120.11086310.3139/120.110863Search in Google Scholar

[6] Hajalilou, A.; Kianvash, A.; Lavvafi, H.; Shameli, K.: Nanostructured soft magnetic materials synthesized via mechanical alloying: a review. J. Mater. Sci: Mater. Electron. 29 (2018), pp. 1690–1717. DOI:10.1007/s10854-017-8082-010.1007/s10854-017-8082-0Search in Google Scholar

[7] Suryanarayana, C., Joubori, A. A., Wang, Z.: Nanostructured materials and nanocomposites by mechanical alloying: An overview. Met. Mater. Int. 28 (2022), pp. 41–53. DOI:10.1007/s12540-021-00998-510.1007/s12540-021-00998-5Search in Google Scholar

[8] Aguilar, C.; Martinez, V. D. P.; Palacios, J. M.; Ordoñez, S.; Pavez, O.: A thermodynamic approach to energy storage on mechanical alloying of the Cu-Cr system. Scripta Mater. 57 (2007) 3, pp. 213–216. DOI:10.1016/j.scriptamat.2007.04.00610.1016/j.scriptamat.2007.04.006Search in Google Scholar

[9] Sheibani, S.; Heshmati-Manesh, S.; Ataie, A.: Structural investigation on nano-crystalline Cu-Cr supersaturated solid solution prepared by mechanical alloying. J. Alloys Compd. 495 (2010) 1, pp. 59–62. DOI:10.1016/j.jallcom.2010.02.03410.1016/j.jallcom.2010.02.034Search in Google Scholar

[10] Peng, L.; Xie, H.; Huang, G.; Xu, G.; Yin, X.; Feng, X.; Mi, X.; Yang, Z.: The phase transformation and strengthening of a Cu-0.71 wt.-% Cr alloy. J. Alloys Compd. 708 (2017), pp. 1096–1102. DOI:10.1016/j.jallcom.2017.03.06910.1016/j.jallcom.2017.03.069Search in Google Scholar

[11] Suryanarayana, C.: Mechanical alloying: a critical review. Mater. Res. Lett. 10 (2022) 10, pp. 619–647. DOI:10.1080/21663831.2022.207524310.1080/21663831.2022.2075243Search in Google Scholar

[12] Fang, Q.: Kang, Z.: An investigation on morphology and structure of Cu-Cr alloy powders prepared by mechanical milling and alloying. Powder Technol.270 (2015) Part A, pp. 104–111. DOI:10.1016/j.powtec.2014.10.01010.1016/j.powtec.2014.10.010Search in Google Scholar

[13] Chen, C.: Duan, C.; Li, Y.; Feng, X.; Shen, Y.: Effects of Cu content on the microstructures and properties of Cr-Cu composite coatings fabricated via mechanical alloying method. Powder Technol. 277 (2015), pp. 36–46. DOI:10.1016/j.powtec.2015.02.05310.1016/j.powtec.2015.02.053Search in Google Scholar

[14] Liu, Q.; Zhang, X.; Ge, Y.; Wang, J., Cui, J. Z.: Effect of processing and heat treatment on behavior of Cu-Cr-Zr alloys to railway contact wire. Metall. Mater. Trans. 37 (2006), pp. 3233–3238. DOI:10.1007/BF0258615810.1007/BF02586158Search in Google Scholar

[15] Liu, J. L.; Wang, E. D.; Liu, Z. Y.; Hu, L. X.; Fang, W. B.: Phases interface in deformation processed Cu-15 wt.%Cr composite prepared by elemental powders. Mater. Sci. Eng: A. 382 (2004) 1–2, pp. 301–304. DOI:10.1016/j.msea.2004.04.07410.1016/j.msea.2004.04.074Search in Google Scholar

[16] Zhou, H. T.; Zhong, J. W.; Zhou, X.; Zhao, Z. K.: Microstructure and properties of Cu-1.0Cr-0.2Zr-0.03Fe alloy. Mater. Sci. Eng. 498 (2008) 1–2, pp. 225–230. DOI:10.1016/j.msea.2008.07.06110.1016/j.msea.2008.07.061Search in Google Scholar

[17] Fang, Q.; Kang, Z. X.; Gan, Y. W.; Long, Y.: Microstructures and mechanical properties of spark plasma sintered Cu-Cr composites prepared by mechanical milling and alloying. Mater. Des. 88 (2015), pp. 8–15. DOI:10.1016/j.matdes.2015.08.12710.1016/j.matdes.2015.08.127Search in Google Scholar

[18] Shkodich, N. F.; Rogachev, A. S.; Vadchenko, S. G.; Moskovskikh, D. O.; Sachkova, N. V.; Rouvimov, S.; Mukasyan, A. S.: Bulk Cu-Cr nanocomposites by high-energy ball milling and spark plasma sintering. J. Alloy. Compd. 617 (2014), pp. 39–46. DOI:10.1016/j.jallcom.2014.07.13310.1016/j.jallcom.2014.07.133Search in Google Scholar

[19] Zhang, S.; Zhu, H.; Zhang, L.; Zhang, W.; Yang, H.; Zeng, X.: Microstructure and properties of high strength and high conductivity Cu-Cr alloy components fabricated by high power selective laser melting. Mater. Lett. 237 (2019), pp. 306–309. DOI:10.1016/j.matlet.2018.11.11810.1016/j.matlet.2018.11.118Search in Google Scholar

[20] Zhou, J. M.; Zhu, D. G.; Tang, L. T.; Jiang, X. S.; Chen, S.; Peng, X.; Hu C. F.: Microstructure and properties of powder metallurgy Cu-1 %Cr-0.65 %Zr alloy prepared by hot pressing. Vacuum. 131 (2016), pp. 156–163. DOI:10.1016/j.vacuum.2016.06.00810.1016/j.vacuum.2016.06.008Search in Google Scholar

[21] Kommel, L.; Huot, J.; Omranpour Shahreza, B.: Effect of hard cyclic viscoplastic deformation on the microstructure, mechanical properties, and electrical conductivity of Cu-Cr alloy. J. Mater. Eng. Perform. 31 (2022), pp. 9690–9702. DOI:10.1007/s11665-022-06997-w10.1007/s11665-022-06997-wSearch in Google Scholar

[22] Akbari, G.; Taghian, D. M.: Nanostructure Cu-Cr alloy with high dissolved Cr contents obtained by mechanical alloying process. Powder Metall. 54 (2011) 1, pp. 19–23. DOI:10.1179/003258909X1245076832702710.1179/003258909X12450768327027Search in Google Scholar

[23] Uchida, S.; Kimura, T.; Nakamoto, T.; Ozaki, T.; Miki, T.; Takemura, M.; Oka, Y.; Tsubota, R.: Microstructures and electrical and mechanical properties of Cu-Cr alloys fabricated by selective laser melting. 175 (2019), p. 107815. DOI:10.1016/j.matdes.2019.10781510.1016/j.matdes.2019.107815Search in Google Scholar

Received: 2022-11-14
Accepted: 2023-03-16
Published Online: 2023-07-01
Published in Print: 2023-06-30

© 2023 Walter de Gruyter GmbH, Berlin/Boston, Germany

Downloaded on 9.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/pm-2022-1036/html?lang=en
Scroll to top button