Home Technology Investigation of Friction Welding Properties of Steels with Different Chemical and Mechanical Properties Used in the Oil and Gas Industry
Article
Licensed
Unlicensed Requires Authentication

Investigation of Friction Welding Properties of Steels with Different Chemical and Mechanical Properties Used in the Oil and Gas Industry

  • A. Yürük

    Ali Yürük was born in Bozüyük in 1970. He graduated from Gazi University, Faculty of Technical Education, as a metal teacher. He did his doctorate in manufacturing engineering from Karabuk University. He also graduated from Düzce University, Department of Mechanical Engineering and became a mechanical engineer. he also works on welding and welding metallurgy during and after his education. He is still working as a metal technologies teacher at Düzce Borsa İstanbul Vocational and Technical Anatolian High School.

Published/Copyright: August 9, 2023
Become an author with De Gruyter Brill

Abstract

Steels with different mechanical and chemical properties are used together in the oil and gas industry. In this case, it has brought about the necessity of joining steels with different properties by welding. Most of the time, there are problems in welding these steels with different chemical properties. Therefore, in this study, AISI 304 stainless steel, AISI 4140 tempered steel, and S235JR structural steel with different chemical and mechanical properties used in the oil and gas industry were joined by friction welding. Then, macro and microstructure studies as well as hardness measurements, tensile tests, and torsion tests were applied to the produced samples. As a result of the micro-structure studies, it was observed that the martensitic structure was formed in the full deformation region of the joint made of AISI 304 stainless and AISI 4140 tempered steel, while it was determined that the other joints were formed of recrystallized fine grains in the full deformation region with the effect of friction. When the hardness measurement results were examined, it was determined that the hardest region was the full deformation region in all welded joints produced. As a result of the tensile tests, the highest tensile strength obtained was 622.94 N/mm2 in the joint made of AISI 304 stainless steel and AISI 4140 tempered steel. As a result of the torsion tests, the highest torsion moment was measured as 250 Nm in the sample produced from AISI 304 stainless steel and AISI 4140 tempered steel.

Kurzfassung

Stähle mit unterschiedlichen mechanischen und chemischen Eigenschaften kommen in der Öl- und Gasindustrie gemeinsam zum Einsatz. In diesem Fall bedeutet das, dass Stähle mit unterschiedlichen Eigenschaften durch Schweißen gefügt werden müssen. Meist treten beim Schweißen solcher Stähle mit unterschiedlichen chemischen Eigenschaften Schwierigkeiten auf. Vor diesem Hintergrund wurden im Rahmen dieser Untersuchung in der Öl- und Gasindustrie zum Einsatz kommender rostfreier Stahl AISI 304, vergüteter Stahl AISI 4140 und Baustahl S235JR mit unterschiedlichen chemischen und mechanischen Eigenschaften durch Reibschweißen gefügt. An den so hergestellten Proben wurden anschließend am Makro- und Mikrogefüge Untersuchungen und Härtemessungen sowie Zug- und Torsionsversuche durchgeführt. Im Rahmen der Gefügeuntersuchung konnte im Bereich der vollständigen Verformung der Verbindung aus rostfreiem Stahl AISI 304 und vergütetem Stahl AISI 4140 die Ausbildung eines martensitischen Gefüges beobachtet werden, während sich der Bereich der vollständigen Verformung der anderen Verbindungen aufgrund der Reibwirkung aus rekristallisierten feinen Körnern zusammensetzte. Die Auswertung der Ergebnisse der Härtemessungen ergab für den Bereich der vollständigen Verformung aller hergestellten Schweißverbindungen die höchsten Härtewerte. Die im Rahmen der Zugversuche mit 622,94 N/mm2 höchste Zugfestigkeit wurde in der aus rostfreiem Stahl AISI 304 und vergütetem Stahl AISI 4140 hergestellten Verbindung erzielt. Das bei den Torsionsversuchen mit 250 Nm höchste Torsionsmoment wurde in der aus rostfreiem Stahl AISI 304 und vergütetem Stahl AISI 4140 hergestellten Probe ermittelt.

About the author

A. Yürük

Ali Yürük was born in Bozüyük in 1970. He graduated from Gazi University, Faculty of Technical Education, as a metal teacher. He did his doctorate in manufacturing engineering from Karabuk University. He also graduated from Düzce University, Department of Mechanical Engineering and became a mechanical engineer. he also works on welding and welding metallurgy during and after his education. He is still working as a metal technologies teacher at Düzce Borsa İstanbul Vocational and Technical Anatolian High School.

References / Literatur

[1] Xinyu, W.; Wenya, L.; Tiejun, M.; Xiawei, Y.; Achilles, V.: Journal of Manufacturing Processes. 46 (2019), pp. 100–108.Search in Google Scholar

[2] Ashfaqa, M.;. Prasad Rao, K.;. Khalid Rafi, H.; Murty B. S.;. Dey, H. C.; Bhaduri, A. K.: Practical Metallography. 48 (2011) 04, pp. 188–207. DOI:10.3139/147.11010110.3139/147.110101Search in Google Scholar

[3] Ananda, Rao, G.; Namanaiah, R.: Materials Today: Proceedings. (2019). DOI:10.1016/j.matpr.2019.09.02810.1016/j.matpr.2019.09.028Search in Google Scholar

[4] Efe, I.; Çiçek, Ö.: Kaynak Kongresi IX. Ulusal Kongre ve Sergisi Bildiriler Kitabı, Turkey, 2015, pp. 459–470ff.Search in Google Scholar

[5] Peihao, G.; Guoliang. Q.; Jun, Z.: Journal of Manufacturing Processes. 47 (2019), pp. 83–97. DOI:10.1016/j.jmapro.2019.09.01610.1016/j.jmapro.2019.09.016Search in Google Scholar

[6] Matthew, R. K.; Steven, R. S.; Daniel, C. A.; Jeffrey, F.; Ryan, H.: Journal of Manufacturing Processes. 39 (2019), pp. 26–39. DOI:10.1016/j.jmapro.2019.01.03810.1016/j.jmapro.2019.01.038Search in Google Scholar

[7] Hao, W.; Guoliang, Q.; Peihao, G.; Xiaofei, M.: Journal of Manufacturing Processes.49 (2020), pp. 18–25. DOI:10.1016/j.jmapro.2019.11.00910.1016/j.jmapro.2019.11.009Search in Google Scholar

[8] Azeen, K. M.; Hawro, K.: IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE). 13 (2016), pp. 113-124.Search in Google Scholar

[9] Handa, A.; Chawla, V.: Indian Academy of Sciences Sådhanå. 45 (2020), pp. 129. DOI:10.1007/s12046-020-01369-310.1007/s12046-020-01369-3Search in Google Scholar

[10] Subhash, C. G.; Madhusudhan, R. G.; Venugopal, R. A.: Ournal Of Iron And Steel Research, Internatıonal. 19 (2012), pp. 64–73. DOI:10.1016/S1006-706X(12)60154-X10.1016/S1006-706X(12)60154-XSearch in Google Scholar

[11] Kaya, Y.: Journal of Polytechnic. 21 (2018), pp. 597–602.Search in Google Scholar

[12] Siddique, A. G.; Vijaya, R. B.; Elanchezhian, C.; Siddhartha, D.; Ramanan, N.: Materials Today: Proceedings. 16 (2019), pp. 766–775.Search in Google Scholar

[13] Shanjeevi, C.; Jeswin, A.; Pavithran, E.; Raju, B.; Materials Today: Proceedings. 16 (2019), pp. 838–842. DOI:10.1016/j.matpr.2019.05.16610.1016/j.matpr.2019.05.166Search in Google Scholar

[14] Gawhar, I. K.; Sherko, A. B.: Journal of Materials Research and Technology. 8 (2019), pp. 1926–1932. DOI:10.1016/j.jmrt.2019.01.01010.1016/j.jmrt.2019.01.010Search in Google Scholar

[15] Billel, C.; Djamel, M.; Riad, B.; Pavol, H.; Martin, F.; Tamás, C.; Brahim, B.; Malik, T.: Materials Science & Engineering A. 758 (2019), pp. 36–46. DOI:10.1016/j.msea.2019.04.08110.1016/j.msea.2019.04.081Search in Google Scholar

[16] Ma, T. J.; Tang, L. F.; Li, W. Y.; Zhang, Y.; Xiao, Y.; Vairis, A.; Journal of Manufacturing Processes. 34 (2018), pp. 442–450. DOI:10.1016/j.jmapro.2018.06.01110.1016/j.jmapro.2018.06.011Search in Google Scholar

[17] Peng, L.; Honggang, D.; Yueqing, X.; Xiaohu, H.; Shuai, W.; Longwei, P.; Jun, Z.: Journal of Manufacturing Processes. 33 (2018), pp. 54–63. DOI:10.1016/j.jmapro.2018.05.00110.1016/j.jmapro.2018.05.001Search in Google Scholar

[18] Kimura, M.; Iijima, T.; Kusaka, M.; Kaizu, K.; Fuji, A.: Journal of Manufacturing Processes. 24 (2016), pp. 203–211. DOI:10.1016/j.jmapro.2016.09.00410.1016/j.jmapro.2016.09.004Search in Google Scholar

[19] Peng, L.; Haotian, S.; Shuai, W.; Xiaohu, H.; Honggang, D.: Journal of Alloys and Compounds. 814 (2020), p. 152322. DOI:10.1016/j.jallcom.2019.15232210.1016/j.jallcom.2019.152322Search in Google Scholar

[20] Tomoki, M.; Hironobu, A.; Tomokazu, S.; Ryo, Y.; Hisashi, H.; Shozo, O.; Akio, H.: Journal of Materials Processing Tech. 269 (2019), pp. 45–51.Search in Google Scholar

[21] Masoumi, F.; Shahriari, D.; Monajati, H.; Cormier, J.; Flipo, B. C. D.; Devaux, A.; Jahazi, M.: Materials and Design. 183 (2019), p. 108117. DOI:10.1016/j.matdes.2019.10811710.1016/j.matdes.2019.108117Search in Google Scholar

[22] Yu, S.; Wenya, L.; Xinyu, W.; Tiejun, M.; Liang, M.; Xiaomu, D.: Materials Science & Engineering A. 764 (2019), p. 138251 DOI:10.1016/j.msea.2019.13825110.1016/j.msea.2019.138251Search in Google Scholar

[23] Lachowicz, D. S.; Bennett, C.; Axinte, D. A.; Lowth, S.; Walpole, A.; Hannon, C.: International Journal of Machine Tools and Manufacture. 161 (2021), p. 103674. DOI:10.1016/j.ijmachtools.2020.10367410.1016/j.ijmachtools.2020.103674Search in Google Scholar

[24] Aswin, P. R.; Madheswaran S.; Prakash E.; Journal of Physics: Conference Series 1362 (2019), p. 012032. DOI:10.1088/1742-6596/1362/1/012032.10.1088/1742-6596/1362/1/012032Search in Google Scholar

[25] Anitha, P.; Manik, C. M.; Saravanan, V.; Rajakumar, S.: Materials Physics and Chemistry. 1 (2018). DOI:10.24294/mpc.v1i1.97410.24294/mpc.v1i1.974Search in Google Scholar

[26] Margono, B. H.; Chamim, M.; Wiyono, I. A. A.: 3rd International Conference on Chemistry, Chemical Process and Engineering. DOI:10.1063/5.006230710.1063/5.0062307Search in Google Scholar

[27] Rintaro, U.; Hidetoshi, F.; Taketoshi, N.; Akira, M.: Transaction of JWRI. 42 (2013), pp. 33–37.Search in Google Scholar

[28] İrizalp, S. G.; Köroğlu, B. K.: D. E.Ü. F. M. D. 23 (2021), pp. 179–194. DOI:10.21205/deufmd.202123671610.21205/deufmd.2021236716Search in Google Scholar

[29] İrsel, G.: Materials Science & Engineering A. 830 (2022), p. 142320. DOI:10.1016/j.msea.2021.14232010.1016/j.msea.2021.142320Search in Google Scholar

[30] Kumar M. D.; Palani P. K.; Materials Today: Proceedings 41 (2021), pp. 1024–1029. DOI:10.1016/j.matpr.2020.06.38310.1016/j.matpr.2020.06.383Search in Google Scholar

[31] Abdul, K. Sk.; Ramesh, B. P.; Ravi, K. B.; Seshu, K. A.: Transactions of the Indian Institute of Metals. 73 (2020), pp. 465–478.Search in Google Scholar

[32] Özdemir, N.; Sarsılmaz, F.; Hasçalık, A.: Materials and Design. 28 (2007), pp. 301–307. DOI:10.1016/j.matdes.2005.06.01110.1016/j.matdes.2005.06.011Search in Google Scholar

[33] Purwanto H.; Journal of Chemical Process and Material Technology. 1 (2022), pp. 8–14. DOI:10.36499/jcpmt.v1i1.588110.36499/jcpmt.v1i1.5881Search in Google Scholar

[34] Ertek, E. H.; Kaçar, R.: Materials Research. 18 (2015), pp. 503–508. DOI:10.1590/1516-1439.30811410.1590/1516-1439.308114Search in Google Scholar

[35] Ammar, J. H.; Taoufik, B.; Djamel, M.: Acta Metallurgıca Slovaca.26 (2020), pp. 78–84. DOI:10.36547/ams.26.3.63110.36547/ams.26.3.631Search in Google Scholar

[36] Celik, S.; Ersozlu, I.: Materials and Design. 30 (2009), pp. 970–976. DOI:10.1016/j.matdes.2008.06.07010.1016/j.matdes.2008.06.070Search in Google Scholar

[37] Ünal, E.; Karaca, F.; Sarsılmaz, F.: Journal of the Faculty of Engineering and Architecture of Gazi University. 34 (2019), pp. 701–708.Search in Google Scholar

[38] Lashgari, H. R.; Li, S.;. Kong, C.; Asnavandi, M.; Zangeneh, Sh.; Journal of Manufacturing Processes 64 (2021), pp. 1517–1528. DOI:10.1016/j.jmapro.2021.03.00810.1016/j.jmapro.2021.03.008Search in Google Scholar

[39] Handa, A.; Chawla, V.: Materials Engineering. 21 (2014), pp. 94–103.Search in Google Scholar

[40] Ding, Y.; You, G.; Wen. H.; Li, P.; Tong, X.; Zhou, Y.: Journal of Alloys and Compounds. 803 (2019), pp. 176–184. DOI:10.1016/j.jallcom.2019.06.13610.1016/j.jallcom.2019.06.136Search in Google Scholar

[41] Kumar A. S.; Khadeer Sk. A.; Rajinikanth V.; Pahari S.; Kumar B. R.; Materials Science & Engineering A 824 (2021), p. 141844. DOI:10.1016/j.msea.2021.141844.10.1016/j.msea.2021.141844Search in Google Scholar

[42] Handa, A.; Chawla, V.: Sadhana. 40 (2015), pp. 1639–1655. DOI:10.1007/s12046-015-0389-z10.1007/s12046-015-0389-zSearch in Google Scholar

[43] Handa, A.; Chawla, V.: Cogent Engineering. (2014), pp. 1-10. DOI:10.1080/23311916.2014.93699610.1080/23311916.2014.936996Search in Google Scholar

[44] Kırık, İ.; Özdemir, N.: SAÜ. Fen Bilimleri Dergisi. 16 (2012), pp. 69–75. DOI:10.5505/saufbe.2012.0726910.5505/saufbe.2012.07269Search in Google Scholar

[45] Banerjee, A.; Ntovas, M.; Da Silva, L.; Rahimi, S.; Manufacturing Letters. 33 (2022), pp. 33–37. DOI:10.1016/j.mfglet.2022.07.00210.1016/j.mfglet.2022.07.002Search in Google Scholar

[46] Ion, M.; Victor, B.; Corneliu, C.: Journal of Materials Processing Technology. 212 (2012), pp. 1892–1899. DOI:10.1016/j.jmatprotec.2012.04.01010.1016/j.jmatprotec.2012.04.010Search in Google Scholar

Received: 2022-07-18
Accepted: 2023-06-07
Published Online: 2023-08-09
Published in Print: 2023-07-30

© 2023 Walter de Gruyter GmbH, Berlin/Boston, Germany

Downloaded on 9.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/pm-2022-1023/pdf
Scroll to top button