Home Segmented chip formation during machining under the influence of different atmospheres
Article
Licensed
Unlicensed Requires Authentication

Segmented chip formation during machining under the influence of different atmospheres

  • F. Schaper

    Florian Schaper

    studied mechanical engineering at Leibniz University Hannover from 2012 to 2020. He is a research assistant at the Institute of Production Engineering and Machine Tools at Leibniz University Hannover in the department cutting technology since 2020.

    and B. Lengacker

    Benjamin Lengacker

    absolved an Apprenticeship as a material tester at Baker Hughes Celle from 2017 to 2021. He is now part of the analytics team at the Institute of Production Engineering and Machine Tools at Leibniz University Hannover since 2021. His main fields of expertise comprise metallography on various sorts of materials such as metals, plastics and ceramics.

Published/Copyright: October 23, 2022
Become an author with De Gruyter Brill

Abstract

High temperatures and a pronounced segmented chip are characteristic of titanium machining processes. The formation of segmented chips induces an alternating high frequency mechanical load on the tool and thus promotes tool failure. The presence of oxygen triggers a multitude of chemical interactions during the chip forming process. However, the oxygen content’s impact during titanium machining, especially on the chip formation, is unknown. In order to draw conclusions on this process, the machining tests were carried out while varying the oxygen content. The thus produced chips were metallographically examined. The varying degree of segmentation could then be visualized by boundary etching and subsequently be evaluated.

Kurzfassung

Hohe Temperaturen und ein stark ausgeprägter Segmentspan sind charakteristisch für die Titanzerspanung. Die Segmentspanbildung führt zu einer hochfrequenten mechanischen Wechsellast des Werkzeugs und begünstigt somit das Werkzeugversagen. Durch die Anwesenheit von Sauerstoff kommt es während des Spanbildungsvorgangs zu einer Vielzahl chemischer Wechselwirkungen. Welchen Einfluss der Sauerstoffgehalt bei der Titanzerspanung, insbesondere auf die Spanbildung hat, ist bisher jedoch unbekannt. Um Rückschlüsse auf den besagten Prozess ziehen zu können, wurden die Zerspanversuche unter Variation des Sauerstoffgehalts durchgeführt und die dabei erzeugten Späne metallographisch untersucht. Mittels Korngrenzenätzung konnte so die verschieden stark ausgeprägte Segmentierung im Span sichtbar gemacht und anschließend ausgewertet werden.

About the authors

F. Schaper

Florian Schaper

studied mechanical engineering at Leibniz University Hannover from 2012 to 2020. He is a research assistant at the Institute of Production Engineering and Machine Tools at Leibniz University Hannover in the department cutting technology since 2020.

B. Lengacker

Benjamin Lengacker

absolved an Apprenticeship as a material tester at Baker Hughes Celle from 2017 to 2021. He is now part of the analytics team at the Institute of Production Engineering and Machine Tools at Leibniz University Hannover since 2021. His main fields of expertise comprise metallography on various sorts of materials such as metals, plastics and ceramics.

References / Literatur

[1] Denkena, B.; Helmecke, P.; Hülsemeyer, L., CIRP Annals 64 (2015) 1, pp. 61–64. DOI: 10.1016/j.cirp.2015.04.05610.1016/j.cirp.2015.04.056Search in Google Scholar

[2] Ezugwu, E. O.; Wang, Z. M.:, Journal of Materials Processing Technology 68 (1997) 3, pp. 262–274. DOI: 10.1016/S0924-0136(96)00030-110.1016/S0924-0136(96)00030-1Search in Google Scholar

[3] Da Silva, R. B.; Machado, A. R.; Ezugwu, E. O.; Bonney, J.; Sales, W. F.: Journal of Materials Processing Technology 213 (2013) 8, pp. 1459–1464. DOI: 10.1016/j.jmatprotec.2013.03.00810.1016/j.jmatprotec.2013.03.008Search in Google Scholar

[4] Hartung, P. D.; Kramer, B. M.; von Turkovich, B. F.: CIRP Annals 31 (1982) 1, pp. 75–80. DOI: 10.1016/S0007-8506(07)63272-710.1016/S0007-8506(07)63272-7Search in Google Scholar

[5] Komanduri, R.; Turkovich, B. F.; Wear 69 (1981) 2, pp. 179–188. DOI: 10.1016/0043-1648(81)90242-810.1016/0043-1648(81)90242-8Search in Google Scholar

[6] Grove, T.: Hochleistungszerspanung von Titan, Universität Hannover, Dissertation, 2015Search in Google Scholar

[7] Kreis, W.: Verschleißursachen beim Drehen von Titanwerkstoffen, Technische Hochschule Aachen, Dissertation, 1973Search in Google Scholar

[8] Recht, R. F.; Journal of Applied Mechanics 31 (1964) 2, pp. 189–193. DOI: 10.1115/1.362958510.1115/1.3629585Search in Google Scholar

[9] Ben Amor, R.: Thermomechanische Wirkmechanismen und Spanbildung bei der Hochgeschwindigkeitszerspanung, Universität Hannover, Dissertation, 2003Search in Google Scholar

[10] Bergmann, B.: Grundlagen zur Auslegung von Schneidkantenverrundungen, Universität Hannover, Dissertation, 2015Search in Google Scholar

Received: 2022-07-20
Accepted: 2022-08-09
Published Online: 2022-10-23
Published in Print: 2022-10-30

© 2022 Walter de Gruyter GmbH, Berlin/Boston, Germany

Downloaded on 26.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/pm-2022-0065/html
Scroll to top button