Startseite Technik Non-destructive Metallurgical Failure Investigation of Erroneously Heat Treated Hot Gas Path Component Using Replica Technique
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Non-destructive Metallurgical Failure Investigation of Erroneously Heat Treated Hot Gas Path Component Using Replica Technique

  • Andreas Neidel , Tobias Gädicke

    Apprenticeship as a materials testing technician at the welding institute SLV Berlin-Brandenburg. After that, she studied materials science at the Berlin Institute of Technology. She graduated with a masters degree in materials science in 2012. Since November 2012 employment as engineer at the Metallography Laboratory of the Siemens Gas Turbine Works in Berlin. She has been appointed laboratory manager within the Berlin Testing Center of the Large Gas Turbine Engineering Group in 2014. Her main fields of expertise comprise failure analysis and microstructural investigations using the field emission scanning electron microscope.

    und Madeleine Giller

    was born in 1986 and joined the Siemens Energy Sector in 2005 as apprentice in the Berlin Gas Turbine Works. As materials testing technician, his main field of expertise is metallographic target preparation of laser-drilled holes in turbine blading. Also, he is expert in the field of portable metallography by means of the replica technique with both putty and replica foils which he regularly applies to microstructural analyses of large gas turbine casings made of ductile iron and steel castings. He is a lecturer in the DGM seminar on portable metallography. Metallurgical failure analysis of gas turbine engine hot gas path components are another field of expertise of his.

Veröffentlicht/Copyright: 30. April 2022
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Metallic heat shields, used in combustion chambers of heavy-duty gas turbine engines and made of nickel-based superalloys, were accidentally heat treated during fabrication, using wrong parameters. There were concerns about embrittlement. Nondestructive metallurgical material characterization using the replica technique verified embrittlement by secondary phases. In spite of this, it was recommended to the client to use the affected parts as is, this on the grounds that no grain growth was observed and hardness was not elevated. While the case study presented in this contribution may appear trivial at first sight, it interestingly shows how metallographic examinations may sometimes be performed non-destructively, without sacrificing any engine components. The inclined reader should also note the superb quality of the photomicrographs presented in this contribution. They were taken from replica foils, not actual metallographic sections.

Kurzfassung

Für den Einsatz in Brennkammern von Großgasturbinen vorgesehe Metallhitzeschilde aus einer Nickelbasis-Superlegierungen wurden während der Fertigung versehentlich unter Anwendung falscher Parameter wärmebehandelt. Es gab Bedenken bezüglich einer Versprödung. Der Werkstoff wurde unter Anwendung der Replikatechnik zerstörungsfrei charakterisiert, wobei eine Versprödung durch Sekundärphasen nachgewiesen werden konnte. Dem Kunden wurde dennoch empfohlen, die entsprechenden Teile in diesem Zustand zu verwenden. Begründet wurde die Empfehlung damit, dass weder Kornwachstum noch eine erhöhte Härte festgestellt wurde. Die in diesem Beitrag vorgestellte Fallstudie mag auf den ersten Blick trivial erscheinen. Allerdings zeigt sie beispielhaft, wie Turbinenkomponenten ohne Bauteilverlust zuweilen zerstörungsfrei metallographisch untersucht werden können. Der geneigte Leser sei auf die hervorragende Qualität der in diesem Beitrag gezeigten Mikroskopaufnahmen hingewiesen. Die Aufnahmen stammen nicht von tatsächlichen metallographischen Schliffen, sondern hier wurde mit Folienabdrücke gearbeitet.

About the authors

Tobias Gädicke

Apprenticeship as a materials testing technician at the welding institute SLV Berlin-Brandenburg. After that, she studied materials science at the Berlin Institute of Technology. She graduated with a masters degree in materials science in 2012. Since November 2012 employment as engineer at the Metallography Laboratory of the Siemens Gas Turbine Works in Berlin. She has been appointed laboratory manager within the Berlin Testing Center of the Large Gas Turbine Engineering Group in 2014. Her main fields of expertise comprise failure analysis and microstructural investigations using the field emission scanning electron microscope.

Madeleine Giller

was born in 1986 and joined the Siemens Energy Sector in 2005 as apprentice in the Berlin Gas Turbine Works. As materials testing technician, his main field of expertise is metallographic target preparation of laser-drilled holes in turbine blading. Also, he is expert in the field of portable metallography by means of the replica technique with both putty and replica foils which he regularly applies to microstructural analyses of large gas turbine casings made of ductile iron and steel castings. He is a lecturer in the DGM seminar on portable metallography. Metallurgical failure analysis of gas turbine engine hot gas path components are another field of expertise of his.

References / Literatur

[1] Seume, J.; Lechner, C. (Ed.): Stationäre Gasturbinen, Springer-Verlag, Berlin, Heidelberg, Deutschland, 200310.1007/978-3-662-10016-5Suche in Google Scholar

[2] Gädicke, T.: Internal Report BLN MT/2019/0431, Berlin, August 16, 2019Suche in Google Scholar

[3] Neidel, A.; Giller, M.; Riesenbeck, S.; Wöhl, E.: Ageing Tests of Alloy 617 to Simulate Service Embrittlement. Pract. Metallogr. 55 (2018) 12, S. 826–84110.3139/147.110503Suche in Google Scholar

[4] Riesenbeck, S.: Internal Report BLN MT/2020/0036, Berlin, January 15, 2020Suche in Google Scholar

[5] Neidel, A.; Matijasevic-Lux, B.; Riesenbeck, S; Ullrich, T.; Völker, J.; Wallich, S.: Schäden an Brennerkomponenten von Heavy duty-Gasturbinen. Prakt. Metallogr. 47 (2010) 3, S. 135–14910.3139/147.110056Suche in Google Scholar

[6] Betteridge, W.; Heslop, J.: The Nimonic Alloys and Other Nickel-Base High-Temperature Alloys. 2nd Edition 1974. Edward Arnold (Publishers) Limited 1974Suche in Google Scholar

[7] Bürgel, R.: Handbuch Hochtemperatur-Werkstofftechnik – Grundlagen, Werkstoffbeanspruchung, Hochtemperaturlegierungen. Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig/ Wiesbaden, 199810.1007/978-3-322-99904-7_6Suche in Google Scholar

[8] Sims, C. T.; Stoloff, N. S.; Hagel, W. C.: Superalloys II. John Wiley & Sons, New York, 1987Suche in Google Scholar

[9] Donachie, M. J., Donachie, S. J.: Superalloys: A Technical Guide. ASM International, Materials Park, OH, 2nd EditionSuche in Google Scholar

Received: 2020-03-20
Accepted: 2022-02-16
Published Online: 2022-04-30

© 2022 Walter de Gruyter GmbH, Berlin/Boston, Germany

Heruntergeladen am 9.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/pm-2022-0022/pdf
Button zum nach oben scrollen