Startseite Technik Patience Alone is not Enough – A Guide for the Preparation of Low-Defect Sections from Pure Copper
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Patience Alone is not Enough – A Guide for the Preparation of Low-Defect Sections from Pure Copper

  • S. M. Lößlein

    Sarah Marie Lößlein finished her studies in Materials Science and Engineering at Saarland University in 2020. Since 2015 she has been working at the Chair of Functional Materials focusing on steel characterization and surface functionalization by Direct Laser Interference Patterning. Since November 2020 she is a scientific assistant working on the wetting behavior of metallic surfaces.

    EMAIL logo
    , M. Kasper

    Michael Kasper completed an apprenticeship as a materials tester specialising in metal technology. Afterwards, he completed technical school to become a state-certified materials technician. He has been the metallographer of the Chair of Functional Materials at Saarland University since 2020. As an SBB scholarship holder, Michael Kasper is studying materials science and engineering at Saarland University part-time.

    , R. Merz , C. Pauly , D. W. Müller , M. Kopnarski und F. Mücklich
Veröffentlicht/Copyright: 27. Juli 2021
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The preparation of metallographic sections from soft metals such as pure copper constitutes a particular challenge: the high degree of ductility promotes the formation of preparation artifacts and complicates the preparation of homogeneous, low-deformation surfaces. A metallographic preparation routine is therefore presented which has proven effective for pure copper and which can also be applied to additionally soft annealed samples. The subsequent removal of fine crystalline deformation layers is discussed and different setups for electropolishing and its optimization are presented.

Kurzfassung

Weiche Metalle, wie Reinkupfer, stellen eine besondere Herausforderung in der metallographischen Schliffpräparation dar: Die hohe Duktilität fördert die Entstehung von Präparationsartefakten und erschwert die Anfertigung deformationsarmer homogener Oberflächen. Vorgestellt wird daher eine metallographische Präparationsroutine, die sich für Reinkupfer bewährt hat und auch auf zusätzlich weichgeglühte Proben übertragbar ist. Die anschließende Entfernung feinkristalliner Deformationsschichten wird diskutiert und verschiedene Aufbauten zur Elektropolitur und deren Optimierung werden vorgestellt.

About the authors

S. M. Lößlein

Sarah Marie Lößlein finished her studies in Materials Science and Engineering at Saarland University in 2020. Since 2015 she has been working at the Chair of Functional Materials focusing on steel characterization and surface functionalization by Direct Laser Interference Patterning. Since November 2020 she is a scientific assistant working on the wetting behavior of metallic surfaces.

M. Kasper

Michael Kasper completed an apprenticeship as a materials tester specialising in metal technology. Afterwards, he completed technical school to become a state-certified materials technician. He has been the metallographer of the Chair of Functional Materials at Saarland University since 2020. As an SBB scholarship holder, Michael Kasper is studying materials science and engineering at Saarland University part-time.

Acknowledgement

The authors would like to thank for the financial support by the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) in the project “Einfluss von Oberflächentopograpie and -chemie auf das Benetzungsverhalten lasterstrukturierter, metallischer Oberflächen” (Impact of the surface topography and chemistry on the wetting behavior of laser structured metallic surfaces) (435334669) and for the finiancial support by the European Fund for Regional Development (EFRE) (Greater Region Interreg, project: “Pulsatec”). We would like to thank Mr. Yannik Steimer (OST, Eastern Switzerland University of Applied Sciences) for giving us numerous hints with regard to the preparation and Mr. Tobias Fox for proofreading the manuscript.

Danksagung

Die Autoren bedanken sich für die Förderung durch die Deutsche Forschungsgemeinschaft (DFG) in dem Projekt „Einfluss von Oberflächentopograpie und -chemie auf das Benetzungsverhalten lasterstrukturierter, metallischer Oberflächen“ (435334669) und für die Förderung aus Mitteln des Europäischen Fonds für regionale Entwicklung (EFRE, Interreg Großregion, Projekt: „Pulsatec“). Wir danken Herrn Yannik Steimer (OST – Ostschweizer Fachhochschhule) für die zahlreichen Hinweise zur Präparation und Herrn Tobias Fox für das Korrekturlesen des Manuskripts.

References / Literatur

[1] Cloeren, H.-H.: Materialographische Präparationstechniken: Leitfaden für den Praktiker und Einsteiger; Tipps & Tricks; Vermeidung von Artefakten; von der Probenentnahme bis zum fertigen Schliff; Materialographie, Bauteilmaterialographie, Dünnschlifftechnik, Archäo-Materialographie. CTV Heinz-Hubert Cloeren, 2014.Suche in Google Scholar

[2] Maile, K.; Scheck, R.: Metallographie in Qualitätssicherung und Schadensanalyse: Anleitung zum metallographischen Arbeiten – Methodik und Vorgehensweise. Borntraeger, 2019.Suche in Google Scholar

[3] Müller, D. W. et al.:, In-Depth Investigation of Copper Surface Chemistry Modification by Ultrashort Pulsed Direct Laser Interference Patterning, Langmuir, Bd. 36, Nr. 45, S. 13415–13425, Nov. 2020. DOI: 10.1021/acs.langmuir.0c0162510.1021/acs.langmuir.0c01625Suche in Google Scholar

[4] Petzow, G.: Metallographisches, keramographisches, plastographisches Ätzen. Borntraeger, 2006.Suche in Google Scholar

[5] Turley, D. M.; Doyle, E. D.: Factors affecting workpiece deformation during grinding’, Mater. Sci. Eng., Bd. 21, S. 261–271, Jan. 1975. DOI: 10.1016/0025-5416(75)90223-210.1016/0025-5416(75)90223-2Suche in Google Scholar

[6] Davis, J. R.; A. S. M. I. H. Committee: Copper and Copper Alloys. ASM International, 2001.Suche in Google Scholar

[7] Bolton, W.: Newnes Engineering Materials Pocket Book. Elsevier Science, 2016.Suche in Google Scholar

[8] Müller, D. W. et al.: Increasing Antibacterial Efficiency of Cu Surfaces by targeted Surface Functionalization via Ultrashort Pulsed Direct Laser Interference Patterning, Adv. Mater. Interfaces, Bd. 8, Nr. 5, S. 2001656, März 2021, DOI: 10.1002/admi.20200165610.1002/admi.202001656Suche in Google Scholar

[9] Raha, S.; Mallick, R.; Basak, S.; Duttaroy, A. K.: Is copper beneficial for COVID-19 patients?, Med. Hypotheses, Bd. 142, S. 109814, Sep. 2020. DOI: 10.1016/j.mehy.2020.10981410.1016/j.mehy.2020.109814Suche in Google Scholar PubMed PubMed Central

[10] Grass, G.; Rensing, C.; Solioz, M.: Metallic Copper as an Antimicrobial Surface, Appl. Environ. Microbiol., Bd. 77, Nr. 5, S. 1541–1547, März 2011. DOI: 10.1128/AEM.02766-1010.1128/AEM.02766-10Suche in Google Scholar PubMed PubMed Central

[11] Hahn. C. et al.: Pure and Oxidized Copper Materials as Potential Antimicrobial Surfaces for Spaceflight Activities, Astrobiology, Bd. 17, Nr. 12, S. 1183–1191, Dez. 2017. DOI: 10.1089/ast.2016.162010.1089/ast.2016.1620Suche in Google Scholar PubMed

[12] Hofmann, U.; Bögel, A.; Hölzl, H.; Kuhn, H.-A.: The metallography of Copper and Copper alloys, Prakt. Metallogr., Bd. 42, S. 339–364, Juli 2005. DOI: 10.3139/147.10026810.3139/147.100268Suche in Google Scholar

[13] Voort, G. F. V.: Metallographic Specimen Preparation for Electron Backscattered Diffraction Part I, Pract. Metallogr., Bd. 48, Nr. 9, S. 454–473, Sep. 2011. DOI: 10.3139/147.11015110.3139/147.110151Suche in Google Scholar

[14] Struers: Application Note Copper.pdf Zugegriffen: Apr. 12, 2021 [Online]. Verfügbar unter: https://www.struers.com/en/Knowledge/Materials/CopperSuche in Google Scholar

[15] Buehler Sum-Met: the science behind materials preparation; a guide to materials preparation and analysis. Buehler, Lake Bluff, Il, 2004.Suche in Google Scholar

[16] Powell, C. J.; Jablonski, A.: Surface Sensitivity of Auger-Electron Spectroscopy and X-ray Photoelectron Spectroscopy, S. 7, 2011. DOI: 10.1384/jsa.17.17010.1384/jsa.17.170Suche in Google Scholar

[17] Biesinger, M. C.: Advanced analysis of copper X-ray photoelectron spectra: Advanced analysis of copper X-ray photoelectron spectra, Surf. Interface Anal., Bd. 49, Nr. 13, S. 1325–1334, Dez. 2017. DOI: 10.1002/sia.623910.1002/sia.6239Suche in Google Scholar

[18] Higgins, D.L.; Pang, B.; Millett, J.C.F. et al: Contrasting the Microstructural and Mechanical Response to Shock Loading of Cold-Rolled Copper with Annealed Copper, Metall. Mater. Trans. A 46, 4518–4521 (2015). DOI: 10.1007/s11661-014-2398-710.1007/s11661-014-2398-7Suche in Google Scholar

[19] Parmar, V. et al.:, Relationship between Dislocation Density and Antibacterial Activity of Cryo-Rolled and Cold-Rolled Copper, Materials, Bd. 12, Nr. 2, S. 200, Jan. 2019. DOI: 10.3390/ma1202020010.3390/ma12020200Suche in Google Scholar

[20] Salbert, G.: Metallographie Grundlagen und Anwendung, 1. Gebrüder Bornträger Stuttgart, 2010.Suche in Google Scholar

[21] Doeser, B. A.; Thomas, S. W.; Moon J. R.: Thermal etching of copper, Acta Metall., Bd. 24, Nr. 8, S. 773–778, Aug. 1976. DOI: 10.1016/0001-6160(76)90111-510.1016/0001-6160(76)90111-5Suche in Google Scholar

[22] Watermeyer, P.: Vibratory Polishing of a Nickel-Based Superalloy (MAR 247) Using VibroMet 2, Pract. Metallogr., Bd. 49, Nr. 7, S. 412–427, Juli 2012. DOI: 10.3139/147.11017810.3139/147.110178Suche in Google Scholar

[23] Padhi, D.; Yahalom, J.; Gandikota, S.; Dixit, G.: Planarization of Copper Thin Films by Electropolishing in Phosphoric Acid for ULSI Applications, J. Electrochem. Soc., Bd. 150, Nr. 1, S. G10, Nov. 2002. DOI: 10.1149/1.152341510.1149/1.1523415Suche in Google Scholar

[24] Vidal, R.; West, A. C.: Copper Electropolishing in Concentrated Phosphoric Acid: I . Experimental Findings, J. Electrochem. Soc., Bd. 142, Nr. 8, S. 2682, Aug. 1995. DOI: 10.1149/1.205007410.1149/1.2050074Suche in Google Scholar

[25] Edwards, J.: The Mechanism of Electropolishing of Copper in Phosphoric Acid Solutions: II. The Mechanism of Smoothing, J. Electrochem. Soc., Bd. 100, Nr. 8, S. 223C, Aug. 1953. DOI: 10.1149/1.278112910.1149/1.2781129Suche in Google Scholar

[26] Platzman, I.; Brener, R.; Haick, H.; Tannenbaum, R.: Oxidation of Polycrystalline Copper Thin Films at Ambient Conditions, J. Phys. Chem. C, Bd. 112, Nr. 4, S. 1101–1108, Jan. 2008. DOI: 10.1021/jp076981k10.1021/jp076981kSuche in Google Scholar

[27] Han, W.; Fang, F.: Fundamental aspects and recent developments in electropolishing, Int. J. Mach. Tools Manuf., Bd. 139, S. 1–23, Apr. 2019. DOI: 10.1016/j.ijmachtools.2019.01.00110.1016/j.ijmachtools.2019.01.001Suche in Google Scholar

[28] Gils, S. V. et al.: Electropolishing of Copper in H3PO4 : Ex Situ and In Situ Optical Characterization, J. Electrochem. Soc. Bd. 154, Nr. 3, C175 – C180, Jan. 2007. DOI: 10.1149/1.2429044Suche in Google Scholar

Received: 2021-05-02
Accepted: 2021-05-03
Published Online: 2021-07-27
Published in Print: 2021-07-31

© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany

Heruntergeladen am 9.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/pm-2021-0031/html?lang=de
Button zum nach oben scrollen