Abstract
Percutaneous selective laser amygdalo-hippocampectomy (SLAH) procedure is a new minimally invasive alternative to surgical amygdalo-hippocampectomy that involves targeted, controlled laser energy deposition under real-time magnetic resonance imaging (MRI) monitoring within a dedicated “interventional MRI” suite. Technical feasibility, safety and initial efficacy results from our program are encouraging and indicate a potential for paradigm shift in future treatment of patients with exclusively or predominantly focal unilateral seizure onsets within the mesial temporal lobe. Several institutions are currently employing this technology and more long-term follow-up results on larger cohorts of patients are expected in the near future. This article reviews the principles of MRI-guided SLAH, procedure set-up and equipment, the detailed phases of intra-procedural MRI guidance and treatment monitoring, and the MRI appearance of the resultant thermal ablation zones. We conclude with a discussion of our institutional experience at Emory University with MRI-guided SLAH as one of the leading sites offering this state-of-the-art technology.
Zusammenfassung
Die perkutane selektive Amygdala-Hippokampektomie (SLAH) stellt eine neue minimal-invasive Alternative zur chirurgischen Amygdala-Hippokampektomie dar und zeichnet sich durch die gezielte und kontrollierte Deposition von Laserenergie aus. Die Überwachung erfolgt mittels Echtzeit-Magnetresonanztomographie (MRT) in einem eigenen interventionellen MRT-Raum. Technische Machbarkeit, Sicherheit und erste Ergebnisse zur Wirksamkeit sind ermutigend und zeigen das Potenzial für einen Paradigmenwechsel in der zukünftigen Behandlung von Patienten mit ausschließlich oder überwiegend fokalen unilateralen Anfallsherden im mesialen Temporallappen. Das Verfahren wird derzeit in verschiedenen Kliniken eingesetzt; Langzeit-Follow-up-Ergebnisse an größeren Kohorten von Patienten werden in naher Zukunft erwartet. Der vorliegende Artikel gibt einen Überblick über die Prinzipien der MRT-geführten SLAH, den erforderlichen Aufbau und das technische Equipment, die detaillierten Phasen der intraprozeduralen MRT-Führung sowie über das Therapiemonitoring und das MRT-Erscheinungsbild der resultierenden thermischen Ablationszonen. Der Artikel schließt mit einer Diskussion der eigenen Erfahrungen mit der MRT-geführten SLAH an der Emory University, als eine der führenden Institutionen, die diese State-of-the-Art-Technologie anbietet.
Acknowledgments
The authors would like to thank all members of the Interventional MRI Program at Emory University Hospital for their invaluable support and continued dedication to innovative technology and quality patient care. We would also like to acknowledge the technical support of “MRI Interventions, Inc.” while using the ClearPoint® MRI-compatible trajectory guide and of “Visualase® Laser, Inc.” during the delivery of ablative laser energy. Special thanks are warranted to Anil Shitty, PhD for his help with the original figures.
Conflict of interest statement: The authors have no conflict of interest or financial relationship to disclose with regard to the subject matter of this manuscript.
References
[1] Engel J Jr; International League Against Epilepsy (ILAE). A proposed diagnostic scheme for people with epileptic seizures and with epilepsy: report of the ILAE Task Force on Classification and Terminology. Epilepsia 2001;42(6):796–803.10.1046/j.1528-1157.2001.10401.xSearch in Google Scholar PubMed
[2] Thom M, Mathern GW, Cross JH, Bertram EH. Mesial temporal lobe epilepsy: How do we improve surgical outcome? Ann Neurol 2010;68(4):424–34.10.1002/ana.22142Search in Google Scholar PubMed PubMed Central
[3] Engel J Jr, Wiebe S, French J, Sperling M, Williamson P, Spencer D, Gumnit R, Zahn C, Westbrook E, Enos B; Quality Standards Subcommittee of the American Academy of Neurology; American Epilepsy Society; American Association of Neurological Surgeons. Practice parameter: temporal lobe and localized neocortical resections for epilepsy: report of the Quality Standards Subcommittee of the American Academy of Neurology, in association with the American Epilepsy Society and the American Association of Neurological Surgeons. Neurology 2003 25;60(4):538–47. Erratum in: Neurology 2003 22;60(8):1396.10.1212/01.WNL.0000055086.35806.2DSearch in Google Scholar PubMed
[4] Spencer D, Burchiel K. Selective amygdalohippocampectomy. Epilepsy Res Treat 2012;2012:382095.10.1155/2012/382095Search in Google Scholar PubMed PubMed Central
[5] Gleissner U, Helmstaedter C, Schramm J, Elger CE. Memory outcome after selective amygdalohippocampectomy: a study in 140 patients with temporal lobe epilepsy. Epilepsia 2002;43(1):87–95.10.1046/j.1528-1157.2002.24101.xSearch in Google Scholar PubMed
[6] Gleissner U, Helmstaedter C, Schramm J, Elger CE. Memory outcome after selective amygdalohippocampectomy in patients with temporal lobe epilepsy: one-year follow-up. Epilepsia 2004;45(8):960–2.10.1111/j.0013-9580.2004.42203.xSearch in Google Scholar PubMed
[7] Lewin JS, Nour SG, Meyers ML, Metzger AK, Maciunas RJ, Wendt M, Duerk JL, Oppelt A, Selman WR. Intraoperative MRI with a rotating, tiltable surgical table: a time use study and clinical results in 122 patients. AJR Am J Roentgenol 2007;189(5):1096–103.10.2214/AJR.06.1247Search in Google Scholar PubMed
[8] Nimsky C, Ganslandt O, Von Keller B, Romstöck J, Fahlbusch R. Intraoperative high-field-strength MR imaging: implementation and experience in 200 patients. Radiology 2004;233(1):67–78.10.1148/radiol.2331031352Search in Google Scholar PubMed
[9] Pamir MN, Ozduman K, Dinçer A, Yildiz E, Peker S, Ozek MM. First intraoperative, shared-resource, ultrahigh-field 3-Tesla magnetic resonance imaging system and its application in low-grade glioma resection. J Neurosurg 2010;112(1):57–69.10.3171/2009.3.JNS081139Search in Google Scholar PubMed
[10] Claus EB, Horlacher A, Hsu L, Schwartz RB, Dello-Iacono D, Talos F, Jolesz FA, Black PM. Survival rates in patients with low-grade glioma after intraoperative magnetic resonance image guidance. Cancer 2005;103(6):1227–33.10.1002/cncr.20867Search in Google Scholar PubMed
[11] Nimsky C, Ganslandt O, von Keller B, Fahlbusch R. Preliminary experience in glioma surgery with intraoperative high-field MRI. Acta Neurochir Suppl 2003;88:21–9.10.1007/978-3-7091-6090-9_5Search in Google Scholar
[12] Chicoine MR, Lim CC, Evans JA, Singla A, Zipfel GJ, Rich KM, Dowling JL, Leonard JR, Smyth MD, Santiago P, Leuthardt EC, Limbrick DD, Dacey RG. Implementation and preliminary clinical experience with the use of ceiling mounted mobile high field intraoperative magnetic resonance imaging between two operating rooms. Acta Neurochir Suppl 2011;109:97–102.10.1007/978-3-211-99651-5_15Search in Google Scholar
[13] Lang MJ, Kelly JJ, Sutherland GR. A moveable 3-Tesla intraoperative magnetic resonance imaging system. Neurosurgery 2011;68(1 Suppl Operative):168–79.10.1227/NEU.0b013e3182045803Search in Google Scholar
[14] Nour SG, Monson DK. MRI-guided musculoskeletal soft tissue interventions. Top Magn Reson Imaging 2011;22(4):197–205.10.1097/RMR.0b013e31828291c0Search in Google Scholar
[15] http://www.oxforddictionaries.com/definition/english/ablation[Accessed on February 19, 2014].Search in Google Scholar
[16] Izzo F. Other thermal ablation techniques: microwave and interstitial laser ablation of liver tumors. Ann Surg Oncol 2003;10(5):491–7.10.1245/ASO.2003.07.016Search in Google Scholar
[17] Germer CT, Albrecht D, Roggan A, Buhr HJ. Technology for in situ ablation by laparoscopic and image-guided interstitial laser hyperthermia. Semin Laparosc Surg 1998; 5(3):195–203.10.1177/155335069800500307Search in Google Scholar
[18] Pearce J. Mathematical models of laser-induced tissue thermal damage. Int J Hyperthermia 2011;27(8):741–50.10.3109/02656736.2011.580822Search in Google Scholar
[19] Jacques SL, Wang L. Monte Carlo modeling of light transport in tissues. In: Welch AJ, van Gemert MJC, editors. Optical-thermal response of laser-irradiated tissue. New York: Plenum Press; 1995, p. 73–100.10.1007/978-1-4757-6092-7_4Search in Google Scholar
[20] Muralidharan V, Christophi C. Interstitial laser thermotherapy in the treatment of colorectal liver metastases. J Surg Oncol 2001;76(1):73–81.10.1002/1096-9098(200101)76:1<73::AID-JSO1014>3.0.CO;2-0Search in Google Scholar
[21] Germer CT, Roggan A, Ritz JP, Isbert C, Albrecht D, Müller G, Buhr HJ. Optical properties of native and coagulated human liver tissue and liver metastases in the near infrared range. Lasers Surg Med 1998;23(4):194–203.10.1002/(SICI)1096-9101(1998)23:4<194::AID-LSM2>3.0.CO;2-6Search in Google Scholar
[22] Willie JT, Laxpati NG, Drane DL, Gowda A, Appin C, Hao C, Brat DJ, Helmers SL, Saindane A, Nour SG, Gross RE. Real-time magnetic resonance-guided stereotactic laser amygdalohippocampotomy for mesial temporal lobe epilepsy. Neurosurgery 2014. doi: 10.1227/NEU.0000000000000343.10.1227/NEU.0000000000000343Search in Google Scholar PubMed PubMed Central
[23] Nour SG, Kooby DA, Maithel SK, Staley CA 3rd, Kitajima HD, Powell TE, Bowen M, Gowda A, Small W, Torres W. Percutaneous laser ablation of hepatic metastases with realtime magnetic resonance thermometry monitoring. Abstract of the 33rd Annual Meeting of the American Society for Laser in Medicine and Surgery (ASLMS). April 5–7, 2013. Boston, MA, USA. http://www.aslms.org/annualconference/documents/SURGICAL.PDF [Accessed February 19, 2014].Search in Google Scholar
[24] Pearce JA. Cover illustration. Medical instrumentation. J Assoc Adv Med Instrum 1984;18:248.Search in Google Scholar
[25] Nour SG, Lewin JS. Radiofrequency thermal ablation: the role of MR imaging in guiding and monitoring tumor therapy. Magn Reson Imaging Clin N Am 2005;13(3):561–81.10.1016/j.mric.2005.04.007Search in Google Scholar PubMed
[26] Truwit CL, Liu H. Prospective stereotaxy: a novel method of trajectory alignment using real-time image guidance. J Magn Reson Imaging 2001;13(3):452–7.10.1002/jmri.1065Search in Google Scholar PubMed
[27] Liu H, Hall WA, Truwit CL. Neuronavigation in interventional MR imaging. Prospective stereotaxy. Neuroimaging Clin N Am 2001;11(4):695–704.Search in Google Scholar
[28] Samset E, Hirschberg H. Image-guided stereotaxy in the interventional MRI. Minim Invasive Neurosurg 2003; 46(1):5–10.10.1055/s-2003-37967Search in Google Scholar PubMed
[29] Merkle EM, Nour SG, Lewin JS. MR imaging follow-up after percutaneous radiofrequency ablation of renal cell carcinoma: findings in 18 patients during first 6 months. Radiology 2005;235(3):1065–71.10.1148/radiol.2353040871Search in Google Scholar PubMed
©2014 by Walter de Gruyter Berlin/Boston
Articles in the same Issue
- Frontmatter
- Editorial
- Laser interstitial thermal therapy (LITT) of the brain – Experiences and new indications
- Magazine section
- Snapshots
- Reviews
- Laser interstitial thermal therapy with and without MRI guidance for treatment of brain neoplasms – A systematic review of the literature
- Laser interstitial thermal therapy for treatment of post-radiosurgery tumor recurrence and radiation necrosis
- MRI-guided laser interstitial thermal therapy of intracranial tumors and epilepsy: State-of-the-art review and a case study from pediatrics
- Original contributions
- Percutaneous selective laser amygdalo-hippocampectomy (SLAH) for treatment of mesial temporal lobe epilepsy within an interventional MRI suite
- Interstitial laser irradiation of cerebral gliomas – neurobiological background, technique and typical results
- Prognostic factors of overall survival after laser interstitial thermal therapy in patients with glioblastoma
- Laser interstitial thermal therapy as a novel treatment modality for brain tumors in the thalamus and basal ganglia
- Preliminary research report
- Endoscopic fluorescence visualization of 5-ALA photosensitized central nervous system tumors in the neural tissue transparency spectral range
- Congress announcements
- 21st Annual Meeting of the Deutsche Gesellschaft für Lasermedizin (DGLM) e.V.
- Congresses 2014/2015
Articles in the same Issue
- Frontmatter
- Editorial
- Laser interstitial thermal therapy (LITT) of the brain – Experiences and new indications
- Magazine section
- Snapshots
- Reviews
- Laser interstitial thermal therapy with and without MRI guidance for treatment of brain neoplasms – A systematic review of the literature
- Laser interstitial thermal therapy for treatment of post-radiosurgery tumor recurrence and radiation necrosis
- MRI-guided laser interstitial thermal therapy of intracranial tumors and epilepsy: State-of-the-art review and a case study from pediatrics
- Original contributions
- Percutaneous selective laser amygdalo-hippocampectomy (SLAH) for treatment of mesial temporal lobe epilepsy within an interventional MRI suite
- Interstitial laser irradiation of cerebral gliomas – neurobiological background, technique and typical results
- Prognostic factors of overall survival after laser interstitial thermal therapy in patients with glioblastoma
- Laser interstitial thermal therapy as a novel treatment modality for brain tumors in the thalamus and basal ganglia
- Preliminary research report
- Endoscopic fluorescence visualization of 5-ALA photosensitized central nervous system tumors in the neural tissue transparency spectral range
- Congress announcements
- 21st Annual Meeting of the Deutsche Gesellschaft für Lasermedizin (DGLM) e.V.
- Congresses 2014/2015