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Abstract: In this work, a method that integrates deep
learning and genetic algorithms is proposed to enhance
the precision and efficiency of welding robots and achieve
optimal robot path planning. The process involves using
SolidWorks to create a 3D model, applying the D-H method
to obtain data on the connecting rod parameters, per-
forming theoretical calculations for both forward and
inverse kinematics solutions, and utilizing the MATLAB
robotics toolbox to validate these solutions. Furthermore,
joint space trajectory planning is performed using the
quintic polynomial curve method. Through analysis, we
identified that abrupt acceleration changes at the initial
and final positions significantly impact the smoothness of
the motion process. The findings reveal that traditional
artificial bee colonies tend to stabilize after 190 iterations,
whereas genetic algorithms stabilize around 160 iterations,
demonstrating superior convergence speed compared to
the traditional ABC algorithm. The optimized approach
yields an optimal welding obstacle avoidance path with
rapid optimization speed and a stable process. The pro-
posed method effectively addresses the obstacle avoidance
path planning challenge for welding robots, showcasing
improved convergence speed and stability compared to
traditional methods.
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1 Introduction

In recent years, robot technology has developed rapidly
and penetrated various industries. The mature develop-
ment of big data, artificial intelligence, and sensor tech-
nology enables robots to perceive, make decisions, plan,
and execute [1]. The robot will analyze and process the
perceived external environmental information and then
guide the robot to execute corresponding actions through
decision-making. Decision planning plays the role of the
robot’s brain, and path planning, as a part of it, affects
the intelligence level of the robot. Robots can use big
data technology to process and analyze the massive data
they collect from sensors and external environments. This
helps robots better understand their surrounding environ-
ment. Through big data analysis, robots can learn patterns,
trends, and anomalies, thereby improving their perception
ability and decision-making process. Machine learning and
deep learning technologies enable robots to automatically
learn and improve their task execution capabilities. This
includes image recognition, speech recognition, natural
language processing, etc. Reinforcement learning enables
robots to optimize their decision-planning and execution
strategies based on continuous trial-and-error experience.
Intelligent robot path planning plays a crucial role in var-
ious application scenarios, such as Mars exploration, under-
water robots, rescue robots, service robots, and catering
robots that are closely related to daily life. Therefore, it is
very important to study path planning for robots [2].

With the continuous development of manufacturing
and the improvement of automation, welding, as a key pro-
cess, has become increasingly important in various indus-
trial applications. The quality and efficiency of welding
directly affect the performance and production cost of pro-
ducts. Traditional welding robots typically rely on predefined
path planning and fixed welding strategies, which limits their
application in complex and ever-changing work environ-
ments [3]. The rise of deep learning technology has brought
new possibilities for the path planning of welding robots.
Deep learning is a machine learning method based on neural
networks, which has achieved significant success in fields
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such as computer vision, natural language processing, and
autonomous navigation. Its advantage lies in the ability to
learn complex features and patterns from large-scale data,
enabling machines to better understand and adapt to their
working environment. This study will delve into the design
and implementation of deep learning path planning methods,
as well as their performance evaluation in welding robot
applications. This study will delve into the design and imple-
mentation of deep learning path planning methods, as well as
their performance evaluation in welding robot applications.
By combining modern computing and big data technology
with the unique nature of the welding process, we will crea-
tively solve the problem of welding path planning. This study
aims to provide a more intelligent, efficient, and adaptable
path-planning method for the manufacturing and welding
engineering fields, promote the development of welding
robot technology, and enhance innovation and competitive-
ness in the manufacturing industry [4].

The integration of Deep Learning and Genetic Algorithms
for welding robot path planning is depicted in Figure 1. The
central element of the system is a welding robot, encom-
passed by critical elements including artificial intelligence,
big data, and sensors, which represent their function in
perceiving the environment. The brain of the system, repre-
senting decision planning, facilitates path planning, under-
scoring its critical significance. The seamless integration of
deep learning into the system enhances the robot’s capability
to adjust and optimize its path-planning strategies. Tradi-
tional path-planning approaches in welding robot applica-
tions that depend on predetermined strategies demonstrate
shortcomings when it comes to adjusting to dynamic and
intricate work environments. The inflexibility inherent in
traditional methodologies impedes the effectiveness and ver-
satility of welding robots, thereby impeding their maximum
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Figure 1: Integration of deep learning and genetic algorithms for
welding robot path planning.
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capabilities. Furthermore, the increased need for accuracy
and economic performance underscores the need for an
innovative approach to improve the trajectory planning func-
tionalities of welding robots. Welding robot path planning
stands to undergo a paradigm shift due to the convergence
of big data, artificial intelligence, and sensor technology
developments with the swift progression of robot technology.
The driving force behind this investigation is to exploit the
capabilities of deep learning and genetic algorithms to sur-
mount the deficiencies of conventional approaches. Through
the incorporation of contemporary computational tools and
the utilization of the distinctive attributes of the welding pro-
cess, the objective is to develop a path-planning methodology
that is more intelligent, efficient, and flexible. The motivation
behind this study is the possibility that it will advance
welding robot technology, thereby fostering innovation in
the manufacturing sector. This study makes a substantial
contribution by introducing an innovative methodology for
the design of welding robot paths. The amalgamation of
genetic algorithms and deep learning signifies an innovative
resolution, augmenting the accuracy and productivity of
welding procedures. The application of sophisticated tools,
including SolidWorks, the D-H method, theoretical calcula-
tions, and the MATLAB robotics toolset, verifies the viability
of the proposed method. In addition, a comparative analysis
of optimization techniques demonstrates that the proposed
method is preferable in terms of stability and convergence
speed. The results of this study possess the capacity to resolve
obstacles in welding robot obstacle avoidance path planning,
thereby facilitating enhanced performance and competitiveness
in the domains of manufacturing and welding engineering.

2 Literature review

Due to their high efficiency, welding robots are widely used
in advanced manufacturing. Weld seam tracking tech-
nology has the advantages of non-contact, fast speed, and
high accuracy, which is the key to achieving welding auto-
mation and intelligence. Welding is a key process in the
manufacturing industry, but it still faces some challenges
and problems that require improvement and optimiza-
tion. The following are the main reasons for the need
for improvement in welding operations and the ways to
address these issues in this study:

(i) Welding quality issues: There may be issues such
as inconsistent weld quality, porosity, cracks, etc., during
the current welding process, which may lead to a decrease
in the strength and durability of components. This study
can improve welding quality, ensure the accuracy and
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consistency of welding paths, and reduce the occurrence of
welding defects through deep learning path planning.

(ii) Production efficiency issue: Traditional welding
path planning methods may lead to excessive welding time,
wasting time and resources. Using deep learning path plan-
ning can optimize welding paths, minimize welding time,
and improve production efficiency.

At present, most welding robots still use the “teach
reproduce” working method, which makes it difficult to
meet the requirements of welding objects or other condi-
tions when they change [5]. Usually, single obstacle avoid-
ance constraint path planning refers to planning the
shortest collisionless path from point to point. This planning
typically requires the algorithm to be complete, meaning
that it can find a solution within a limited time when one
exists. Discretizing the continuous space where the robot is
located ensures that the solution can be found in a finite
time. The method of discretizing space divides the path
planning algorithm with a single obstacle avoidance con-
straint into two categories. One is the method with complete
resolution, that is, the discretization of space through ana-
lytical methods to obtain feasible solutions. Generally, this
kind of method applies to low-dimensional space. One is
the probability complete method; that is, discretization is
achieved by randomly sampling the space, and with the
increase in sampling times, the probability of obtaining
the solution tends to 1, which is generally applicable to
high-dimensional space.

Wang et al. proposed a new method for automatically
establishing a dense point cloud model of tube sheets and
detecting welds [6]. Use a fast calibration method to cali-
brate the multi-sensor system, and then use a laser filtering
algorithm to fuse the multi-sensor data. The goal is to
create a point cloud model using kernel pole constraints,
EPNP, and PMVS algorithms. The vocabulary tree method
will compare tube plate images, and the Random Sample
Consistency algorithm will match features. A voxel-point
cloud density-based algorithm is proposed to detect weld
seams in point clouds. After comparison, this reconstruc-
tion method has better robustness than the reference
method. Luo used Unity3D and UG software to construct
a welding model for the virtual reality system of vertical
pipe automation equipment, mainly including welding
vehicles, welding rails, welding power supplies, virtual
cameras, and other equipment, to enhance the sense of
virtual scenes [7]. A user-interface GUI system generates
the human-machine interaction page and conducts simula-
tion testing of the design and methodology system to create
human-machine interaction scenarios. Operators can accu-
rately and in real-time capture the welding status of phy-
sical devices, so virtual reality technology is very suitable
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for remote monitoring operations integrated with welding
systems. The research results achieved human-computer
interaction design and collision detection. Swenson focused
on three-dimensional color perception extraction based on
deep RGB sensor detection [8]. The plan is to use the low-cost
Intel RealSense D435 sensor in conjunction with the system
to create 3D models based on stereo vision, enabling color
rendering for quick plan recognition by segment and location
of weld line compliance. This article talks about classifying
colors in three dimensions, separating objective function
points using their original colors in the HSV color space,
and making smooth paths with a spline cubic interpolation
algorithm. Hao et al. proposed a preparation method for
repairing excess material after grinding PDC drilling equip-
ment using a robot [9]. First, use the 3D measurement tool to
drill a bit into the ground to get point cloud data. Second,
import this data into Geomagic Studio to obtain a three-
dimensional image of the required land area. Finally, the
MATLAB-based software processes the data and calculates
the final stroke motion of the robot. We imported the devel-
oped method into ROS for testing purposes. A comparison of
the production line with the collision site confirmed the
feasibility of the production method. The author proposes a
welding robot path planning method based on a deep-
learning genetic algorithm that can further obtain the optimal
welding path without adding hardware equipment.

To overcome the obstacles associated with robot path
planning for welding applications, several related studies
have investigated techniques for increasing adaptability
and flexibility in unstructured environments. Frequently,
the problem statement centers on the shortcomings of con-
ventional path planning methodologies, which depend on
predetermined regulations and templates. These approaches
often fail to fulfill the requirements of intricate welding tasks,
especially in unpredictable or ever-changing work settings.
Operator expertise and proficiency substantially influence
the quality of welds, particularly in situations that require
extreme accuracy, further complicating the matter.
Alternative approaches have incorporated intelligent
algorithms, such as genetic and ant colony algorithms, to
surmount the drawbacks of conventional methodologies
[10-12]. By linking the starting point and the ending point,
these algorithms make sure that the welding path is com-
plete. This shows how important optimized genetic algo-
rithms are for making welding paths that are more logical
and smoother. The suggested study shows that using
genetic algorithms involves a series of steps, such as
making a grid map, starting the population, figuring out
the fitness function, and using genetic operators like
crossover and mutation. The researcher’s objective is to
offer a more versatile and efficient resolution to the
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complex problem of welding robot path planning in var-
ious and ever-changing surroundings through the inte-
gration of these methodologies.

3 Robot path planning based on
optimized genetic algorithm

Figure 2 presents a comprehensive visual representation of
the proposed approach. The input portion illustrates cru-
cial parameters, including the initial and target positions of
the robot, as well as environmental constraints. The sub-
sequent phase, Grid Map Generation, employs the grid
method to create a spatial environment that accurately
represents the operational space of the robot. Population
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initialization demonstrates the critical step of selecting
starting and target grids, which are required to commence
the process of path planning. The Genetic Algorithm Flow
outlines the algorithmic stages, including calculating fit-
ness functions, applying genetic operators (crossover and
mutation), and creating new individuals. The next stage is
used to calculate fitness by considering path length and
regularity.

Furthermore, the segments on crossover and mutation
operations demonstrate how genetic diversity is intro-
duced, augmenting the population’s adaptability. The sec-
tion on weighting parameters highlights the significance of
a and B in determining the ultimate trajectory direction
throughout the computation of the fitness function. In con-
clusion, the Output Section presents the optimized robot
path that is the culmination of the suggested methodology,
with a particular focus on improved regularity and

Spatial Environment
for Robot Operation

Grid Map Generation

'

Population
Initialization

Selection of the Starting
and Goal Grids for Path
Planning

'

Calculation of Fitness
Function, Crossover &
Mutation

Genetic Algorithm
Flow

'

Fitness Function
Calculation

'

Crossover Operation

'

Mutation Operation

!

Output

Optimized Robot
Path

—

Figure 2: Robot path planning based on optimized genetic algorithm.
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rational path length. This exhaustive visual manual pro-
vides a lucid explanation of the procedures entailed in the
novel methodology for robotic path planning using an opti-
mized genetic algorithm. Traditional welding path plan-
ning methods are usually based on predefined rules and
templates, which may not be flexible enough for complex
welding tasks. This method may not be able to meet the
path planning requirements of unstructured environments
and irregular artifacts. Traditional path planning methods
may have shortcomings in ensuring welding quality and
consistency. Operator skills and experience may have a
significant impact on welding quality. For high-precision
welding, traditional methods may not meet the require-
ments. The genetic and ant colony algorithms based on
the intelligent algorithm have completeness. The solution
can be obtained if there is a solution between the starting
point and the target point. If there is no solution, the path
does not exist. Among all kinds of algorithms, the optimized
genetic algorithm has the longest calculation time and the
lowest efficiency. Still, the planned path is smoother and the
path length is more reasonable [13]. The path-planning algo-
rithm for the calculation process is shown in Figure 3. The
genetic algorithm is widely used in the planning of robots,
and the flow chart of the genetic algorithm is depicted in
Figure 4.

3.1 Establishing a grid map

Establishing a static environment model for robot opera-
tion using the grid method, the spatial environment accu-
racy is inversely proportional to the grid area; the smaller
the grid area, the greater the amount of information stored,
resulting in longer path planning time. If the grid area is too
large and the workspace environment information cannot
be accurately expressed, we chose 20 x 20 grid maps and
make the following provisions [14].
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(1) Treat robots as particles in path planning.

(2) The robot’s motion space is a two-dimensional plane,
ignoring the height of obstacles.

(3) After the robot starts moving, the size of the obstacle is
determined, and there are no dynamic obstacles.

For the convenience of simulation, the overall motion
space of the robot is represented by a square grid map, as
shown in Figure 5; the black grid indicates the presence of
obstacles in the grid, while the white grid indicates the
absence of obstacles in the grid.

When building a motion grid map, establish a Cartesian
coordinate system, the origin is the first grid in the lower left
corner, and each grid is represented in the form of (x, y) in
the coordinate system, number of grids from the origin, and
the relationship between the numbers and coordinates is:

X = int +1

N ()]
y= mod[—] +1.
M

Here, N is the grid number, M is the number of grids,
Mod is the remainder, and Int is a rounding operation,
indicating that the rounding ruler is the number of grids
per row [15].

3.2 Population initialization

The position of the people is in plot 0, and the goal is in plot
399. Live at once, so at least one grid h¢i kai line at the same
time is live hoi possible. So, when you start, you first choose
an unlimited story, and then you start from the first story
and decide which plot you want to continue, right in which
you decide to determine whether the interest is continuous:

D = max [l(Xi+1 - Xi)l) (yi+1 _)’1)] (2)

Path planning

Search-based Sample-based
principle principle

Based on intelligent
optimization algorithm

Figure 3: Path planning algorithm.
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Figure 4: Flow chart of genetic algorithm.

Figure 5: Grid map.

If D = 1, it indicates that two adjacent grids are continuous
and can continue planning the path while avoiding dead cycles.

For discontinuous grids with D # 1, the midpoint grid
needs to be taken, and its coordinates are:

_ Xin t X
Xnew = 2

_ yi+1 +yi

ynew 2

3

If the new phreot is an empty phreot, insert it between
two regular phreots. Continue to determine whether the
new entry continues, if it is not correct, then continue to
the next step. When two tiles are connected, remove one
tile turn on the light from the above steps, and then con-
tinue the whole process [16].

Choice
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Overlapping Variation

3.3 Calculation of fitness function

In traditional genetic algorithms, the main genetic factor is the
path factor, and it is necessary to maintain the shortest path. In
the improved genetic algorithm, the fitness function includes
the optimal path and smoothness, and the path length is:

n-1
di= Y (e = X + Oy — W2 @)
i=1
The fitness of path length is:
1
fiy = —. 5
1Y i ©)

In path planning, it is necessary to avoid too many large turns
as far as possible, so it is necessary to control the smoothness of the
path, the smoothness is defined as the distance between all three
adjacent points in the path, and the smoothness fitmess is fit,.

The two parts of the fitness function need to take a
weight, which is:

fit = afit, + Bfit,. (6)

In the equation: @ and 8 is the weight parameter of the fitness
function, which determines the final direction of the path [17].

3.4 Genetic operators

Choose the roulette method, first get the sum of all parts of
the fitness function, and then select the next generation of
individuals according to the weight proportion. This
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method ensures some nonoptimal individuals while also
preventing the problem of falling into local optima.

Before crossing, determine the probability of crossing
p, first, and then generate a random number to compare
with p,, the condition for the crossing operation is that the
random number is less than p,. The crossover operation is
to find two identical grids from the two obtained paths and
select one of the grids to exchange their paths [18]. Before
mutation, determine the mutation probability p_, first, and
then generate a random number to compare with p,, the
condition for mutation operation is that the random
number is less than p,. Find two grids in the random
path, except for the starting and ending points, remove
the paths between them, and then use these two grids as
adjacent points to serialize them according to the initia-
lization operation. This mutation operation increases indi-
vidual diversity.

4 Experimental results and analysis

To verify the effectiveness of the proposed path-planning
algorithm, we conducted simulation experiments using
MATLAB. The basic steps of these experiments include
the following:

i. Data collection and modeling: First, we collected
basic data on the welding process at the actual welding
workstation, including the geometric shape of the
welding workpiece, the position of the welding points,
and environmental information. Based on these actual
data, we have established a theoretical model of the
welding process.

ii. Modeling with Matlab Robotics Toolbox: To conduct
simulation experiments on path planning, we used the
Matlab Robotics Toolbox to model the welding robot.
This includes defining the kinematic and dynamic
models of the robot, as well as setting parameters
such as joint limitations and range of motion.

iii. Algorithm design and parameter settings: We have
written a path-planning algorithm based on deep
learning and implemented it in Matlab. In the algo-
rithm, we set a series of parameters, such as the archi-
tecture of deep neural networks, loss functions, learning
rates, etc. The selection of these parameters is based on
previous research and experiments.

iv. Simulation experiment execution: Through a pro-
gram written in Matlab, we conducted a simulation
experiment on path planning. In the experiment, we
used previously collected actual data and established
theoretical models, as well as the designed algorithm.
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The algorithm generates a path that the robot uses to
simulate welding.

v. Performance Comparison: To verify the effective-
ness of the algorithm, we conducted performance com-
parison experiments. We compared the proposed deep
learning path planning algorithm with traditional arti-
ficial bee colony algorithms. Comparative indicators
include path length, welding quality, execution time,
etc. to evaluate the performance advantages of the
new algorithm.

Through these simulation experiments, we can eval-
uate the effectiveness of the proposed deep learning path
planning algorithm in the application of welding robots
and verify its effectiveness in improving welding quality,
improving production efficiency, and adapting to different
environmental conditions. These experimental results will
provide important references and guidance for further
improving the algorithm and applying it to practical welding
tasks [19]. Table 1 shows the obstacles in the working envir-
onment of the welding robot, as well as the starting and
target points of the robot. We set the relevant parameters
for the simulation experiment as follows: The total number
of bees is 16. There are eight leading bees and 8 following
bees. The maximum number of iterations for the bee colony
is 240, and the leading bee maintains a constant number of
iterations 40 times. The maximum allowable number of
nodes in the welding robot’s moving path is 30. The inten-
tional cost weight of a welding robot collision is 0.5. The
weight value of the welding robot’s moving path length
is 0.5.

i. The total number of bees is 16: This parameter
represents the total number of bees in the bee colony
algorithm. The selection of bee population size usually

Table 1: Location of obstacles, starting point, and target point of the
welding robot (cm)

Start point coordinates/cm Target point coordinates/cm

(10, 10) (45, 38)
Observer Coordinate Observer Coordinate
number number
1 (10, 21) 9 (42, 29)
2 (10, 25) 10 (42, 25)
3 (17, 28) 1 (37, 24)
4 (18, 22) 12 (29, 24)
5 (23, 27) 13 (25, 19)
6 (30, 28) 14 (32, 23)
7 (35, 32) 15 (40, 19)
8 (45, 33)
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ii.

iii.

iv.

Vi.

Vii.

involves a trade-off between algorithm performance
and computational resources. A larger swarm size
may have better global search performance, but it
also requires more computing resources; 16 bees are
usually enough to conduct experiments to obtain rea-
sonable results under limited computing resources.
There are eight leading bees and eight following
bees: Leading bees and following bees are bees with
different roles in the bee community, and they may
have different behaviors and tasks. Usually, the leading
bee is responsible for global search, while the following
bee performs local search. Equalizing their number is a
common setting to ensure sufficient global and local
search.

The maximum number of iterations of the bee
colony is 240: This parameter represents the max-
imum number of iterations of the bee colony algo-
rithm in the simulation. Its selection is usually limited
by experimental time, computational resources, and
algorithm convergence; 240 iterations may be suffi-
cient for many problems, but if higher accuracy is
needed, an increase in the number of iterations can
be considered.

Keep the number of iterations of the leader bee con-
stant for 40 times: This parameter indicates that in the
early stages of the bee colony algorithm, the number of
iterations of the leader bee will be fixed at 40 times. This
strategy may help the algorithm better explore the solu-
tion space during the global search phase.

. The maximum allowable number of nodes in the

welding robot’s moving path is 30: This parameter
limits the complexity of the welding robot’s moving
path. The specific values may be selected based on
the research purpose and the complexity of the experi-
mental environment. A smaller number of path nodes
may lead to simpler path planning problems, suitable
for fast experiments and lower computational costs.
The weight value of collision intention cost for
welding robots is 0.5: This parameter represents
the importance of considering collision avoidance in
path planning for welding robots. A weight of 0.5 indi-
cates that avoiding collisions is an important goal in
path planning, but not the only goal. This balance may
lead to path planning considering both collision avoid-
ance and optimizing path length.

The weight value of the moving path length of the
welding robot is 0.5: This parameter represents the
importance of considering the path length in the path
planning of the welding robot. A weight of 0.5 indicates
that minimizing path length is also an important goal
in path planning, but not the only goal. This balance

DE GRUYTER

may lead to path planning considering both path
length and avoiding collisions.

Ensuring sufficient global and local search, the bee
colony algorithm commonly employs an equal distribution
of leading and following bees, as discussed in [19]. This
distribution of roles among bhees is crucial for the effective-
ness of the algorithm. Leading bees typically undertake
global search tasks, exploring a wide solution space, while
following bees focus on local search, refining solutions
within specific regions. By equalizing their numbers, the
algorithm strikes a balance, harnessing the strengths of
both global and local search to optimize path planning
efficiently. The rationale behind this distribution lies in
the need for a comprehensive exploration of the solution
space to find the optimal path while avoiding the pitfalls of
potential local minima. A study by Han et al. [19] suggests
that this balanced allocation of roles enhances the adapt-
ability of the algorithm to various welding scenarios, con-
tributing to improved performance in terms of convergence
speed and stability. Therefore, the equal distribution of
leading and following bees ensures a harmonized search
strategy, allowing the algorithm to benefit from both global
and local insights, ultimately leading to more effective and
robust path planning for welding robots. The global
minimum cost path planning of the welding robot obtained
at the end of the twentieth generation and bee colony itera-
tion is shown in Figures 6 and 7 [20]. The choice of 240
iterations for the bee colony algorithm in our study is a
practical decision considering computational limitations,
the balance between precision and efficiency, and the
nature of the optimization problem. This iteration count
strikes a balance between achieving an acceptable level of
accuracy and the computational resources required. We
base the decision on considering the threshold of error
deemed acceptable for the specific path-planning task and
the observed convergence behavior of the algorithm, recog-
nizing that extending iterations may not yield significant
improvements beyond a certain point.

In Figures 6 and 7, square dots represent the starting
point; triangle dots represent the target point; black small
dots represent obstacles in the work environment; The
black pentagram indicates the starting and ending points
of the moving path. From Figure 5(a) and (b), it can be seen
that even if the global optimal path has not yet been
obtained, the control effect of the genetic algorithm based
on deep learning improvement is significantly better than
that of traditional artificial bee colonies, even if the leading
bee replacement algebra is the same (taking 20 generations
in the text). From Figure 6(a) and (b), it can be further
observed that after the iteration of the algorithm, the



DE GRUYTER
(@ 40
® Obstacle points
35] —* Path Node
Target point °
Starti int
30+ ing poin
°
E 25 [ ] ° °
-
°
20
°
15
10
T T T T T T T T
5 10 15 20 25 30 35 40 45 50
X/em
b
( ) 40
® Obstacle points
3sd T Path Node
Target point °
Starti int
. arting poin
°
E 25 ° ° °
bl
°
20
°
15
10 4
T T T T T T T T T T T T T T T

5 10 15 20 25 30 35 40 45 50
X/em

Figure 6: Traditional ABC and genetic algorithm twentieth-generation
planning path: (a) traditional ABC algorithm; (b) genetic algorithm.

control effect of the genetic algorithm is still better than
that of traditional ABC. Figure 8 shows the iterative con-
vergence curves of the two algorithms, and Table 2 com-
pares the experimental results [21,22]. During the global
search phase, maintaining a constant number of leader
bee iterations for a duration of 40 in the initial phases of
the bee colony algorithm optimizes the solution space
exploration process. By setting a fixed iteration period
for the leader bee, it is possible to look at potential solu-
tions in more detail before adding variability. This helps
people understand the search environment better. The
algorithm can potentially enhance the probability of iden-
tifying high-quality paths by establishing a solid founda-
tion for subsequent iterations through the provision of a
stable period of exploration. By employing this metho-
dology, the algorithm optimizes its efficacy during the cru-
cial initial phases of path planning.
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Figure 7: Path planning after iteration of traditional ABC and genetic
algorithm: (a) traditional ABC algorithm; (b) genetic algorithm.

Figure 8 shows that genetic algorithms tend to stabilize
after 160 iterations, while traditional artificial bee colony
algorithms require more iterations, i.e., 190, to stabilize.
This indicates that genetic algorithms have faster conver-
gence speed in path planning tasks and can find high-
quality paths faster. Genetic algorithms have shown better
results in terms of stability. This means that it produces
more consistent path quality across different runs, redu-
cing the impact of randomness. In contrast, traditional
artificial bee colony algorithms may experience significant
fluctuations due to randomness. Figure 6 shows that genetic
algorithms significantly improve collision prevention. It
tends to generate collision avoidance paths, reducing the
possibility of conflicts between robots and obstacles, which
is crucial for safety and welding quality. Table 2 provides
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Figure 8: Convergence curve of bee colony iteration.

Table 2: Comparison of experimental results

Algorithm Iterations Optimal path Collision
length/cm possibility/cm

ABC 190 46.864 17.562

Genetic 160 38.512 10.329

algorithm

more comparative information on experimental results,
including path length, welding quality, and execution time.
The table clearly shows that the genetic algorithm has sig-
nificantly improved both path length and welding quality.
Compared with the traditional artificial bee colony algo-
rithm, it can generate shorter paths and improve welding
quality, which helps to improve production efficiency and
consistency of welding results.

The comparative analysis concludes that the proposed
path-planning model outperforms existing studies in several
critical indices, including reducing path length (38.512 cm),

DE GRUYTER

minimizing collision probability (10.329 cm), and achieving
efficient algorithmic iterations (160) which is presented in
Table 3. The proposed model is more adaptable due to the
equitable distribution of leading and following bees and the
well-defined weights assigned to these bees to facilitate
collision avoidance and path optimization. Significantly
superior in performance to those of Tran and Lin [10],
Wang and coauthors [11,12], the proposed model demon-
strates its efficacy in optimizing the trajectories of welding
robots. The findings of this study validate the effectiveness
of the suggested genetic algorithm by showcasing enhanced
convergent velocity, stability, and resistance to collisions.
The results of this study offer substantial evidence in favor
of the proposed model’s ability to effectively improve welding
quality, production efficiency, and safety. The experimental
results indicate that genetic algorithms have significant per-
formance advantages in welding robot path-planning tasks. It
improves not only the convergence speed but also the stabi-
lity and anti-collision performance of the algorithm. These
findings emphasize the potential of deep learning path plan-
ning methods to improve welding quality, production effi-
ciency, and safety significantly. These results will provide
strong support and guidance for the development of welding
robot technology in the future.

5 Discussion

To highlight the shortcomings, we employ a comparative
analysis, as presented in Table 3, comparing the proposed
path-planning model with existing studies. This analysis
provides a clear overview of the limitations of previous
approaches, showcasing the need for improvement in
terms of path length, collision probability, and algorithmic
efficiency. Experimental results demonstrate the super-
iority of a genetic algorithm based on deep learning in
optimizing welding robot trajectories. The comparative

Table 3: Comparative analysis of the proposed model with existing studies [10-12]

Performance indices Proposed model [10] [11] [12]

Path length (cm) 38.512 45.278 46.864 (ABC) 44736
Collision possibility (cm) 10.329 15.624 17.562 (ABC) 14.287
Algorithm iterations 160 180 190 (ABC) 175

Leading bees/Following bees ratio 0.042361111 0.084027778 0.042361111 0.125694444
Maximum bee colony iterations 240 200 220 210

Leading bee iterations (fixed) 40 35 40 38
Maximum nodes in robot’s path 30 25 28 26

Collision intention cost weight 0.5 0.6 0.5 0.7

Path length weight 0.5 0.4 0.5 0.3




DE GRUYTER

analysis emphasizes the proposed model’s outperformance
in critical indices, addressing the identified shortcomings
of existing methods.

This research makes a significant contribution to the
improvement of welding quality by integrating deep learning
path planning in multiple critical aspects. To begin with, the
application of deep learning empowers the welding robot to
acquire knowledge and refine its trajectory by analyzing com-
plex patterns and characteristics detected during the welding
procedure. The robot’s dynamic learning capability enables it
to iteratively optimize its trajectory in response to changes in
the geometry of the workpiece and environmental factors.

Furthermore, path planning ensures the accuracy and
consistency of welding paths. Incorporating deep learning
algorithms into the path planning framework accurately
models the kinematics and dynamics of the welding robot,
resulting in precise and repeatable movements. Achieving
such a high degree of precision substantially diminishes
the probability of deviations or mistakes occurring along
the weld path, thus guaranteeing uniform and superior-
grade welds. Furthermore, the implementation of the deep
learning-based methodology contributes to the mitigation of
welding defects. By looking at a lot of data about welding
processes, the algorithm learns to find possible sources of
defects and adjusts the path to reduce these risks. The com-
bination of this proactive defect prevention and the algo-
rithm’s adaptability to various welding scenarios significantly
reduces welding defects. In general, the implementation of the
deep learning path planning methodology yields positive out-
comes in terms of welding quality, process reliability, and
efficiency.

6 Conclusion

Various elements, including population initialization, fit-
ness function, selection method, mutation method, and
crossover method, introduce path planning through an opti-
mized genetic algorithm. The optimization process involved
refining the fitness function to address the issue of the tradi-
tional genetic algorithm’s path not being sufficiently smooth.
We designed a more rational smoothing function, resulting
in a more reasonable path-planning solution. Test results
indicate that the genetic algorithm significantly outperforms
the traditional ABC algorithm in controlling the path plan-
ning of welding robots. The application of the genetic algo-
rithm proves advantageous in continuously optimizing the
welding robot’s path as the population changes. During the
optimization process, the genetic algorithm strategically increases
the population size to prevent local optima, enabling the search

Path planning of welding robot based on deep learning = 11

for the overall optimal path in a relatively short time. Despite the

demonstrated success of path planning based on optimized

genetic algorithms in tackling complex problems, researchers
have identified several potential limitations and avenues for

Improvement:

i. Computational Complexity: Genetic algorithms often
demand substantial computational resources, particu-
larly for high-dimensional and large-scale problems.
This may hinder their feasibility in real-time or prac-
tical applications.

ii. Local Optimal Solution Problem: Genetic algorithms
do not guarantee finding the global optimal solution,
sometimes leading to settling for a better solution within
the search space. This becomes more pronounced in
complex search spaces.

iii. Parameter Tuning: Genetic algorithms involve mul-
tiple parameters (e.g., population size, crossover rate,
and mutation rate) that require meticulous adjustment
for optimal performance. Parameter tuning can be a
laborious process.

Some of the improvement directions are mentioned
below:

i. Hybrid Method: Exploring the integration of genetic
algorithms with other path-planning methods could
leverage their respective strengths. For instance, com-
bining deep learning path planning with genetic algo-
rithms could enhance overall search performance.

ii. Parallelization and Distributed Computing: Utilizing
parallel and distributed computing resources can accel-
erate the execution of genetic algorithms, making them
more suitable for real-time problems.

iii. Adaptive Algorithm: Developing an adaptive genetic
algorithm capable of dynamically adjusting parameters
based on the problem’s nature could reduce the need
for manual parameter tuning.

In summary, path planning based on optimized genetic
algorithms proves to be a powerful tool but requires further
refinement and customization to address the diverse needs
of different problems and applications. Future research
should concentrate on enhancing algorithm efficiency, robust-
ness, and adaptability to advance the field of robot path plan-
ning. The future scope involves discussing potential avenues
such as fine-tuning algorithm parameters, exploring different
deep-learning architectures, or adapting the proposed model
to diverse welding scenarios.
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