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Abstract: In order to better realize the optimal trajectory
planning and trajectory control in industrial robots, a method
based on ADAM algorithm is proposed. Taking PUMA 560
industrial robot as the research object, using nonlinear data
sets and mathematical ADAM algorithm function planning,
an optimal calculation method for time trajectory planning of
industrial robot is explored. Finally, the programming, opti-
mization, and simulation of the program code are imple-
mented using MATLAB, and a standardized optimal trajectory
planning is established. The experimental results show that
the running time difference of the trajectory corresponding to
the three joint points is small. In order to synchronize the
position of each joint point in time, it is necessary to choose
the optimal joint point position according to the time trajec-
tory, so as to ensure the synchronization between each key
node. Therefore, the joint node position is adjusted so that the
total time and the final simulation results are basically syn-
chronized in time, and both are 10.35s. It proves that the
improved ADAM algorithm realizes the trajectory optimiza-
tion of industrial robots in terms of time planning, which can
make the various joints of industrial robots basically synchro-
nized in the time trajectory.

Keywords: ADAM algorithm function, trajectory optimiza-
tion, PUMA560

1 Introduction

With the continuous development of modern science and
technology, the application of robotics has become the
most important achievement in the field of automation
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and control in this century. Since the United States devel-
oped the world’s first industrial robot in the 1960s, robot
technology and its products have made considerable pro-
gress and development, and its application has become
more and more far-reaching and extensive, and has become
a necessary tool in computer-integrated manufacturing sys-
tems, factory automation systems, and flexible manufac-
turing systems [1]. The industrial robot is not only a simple
substitute for manual labor, but also an intelligent mechan-
ical device formed by combining the unique expertise of
humans and machines; it has a human-like operation, auto-
matic control, and repeated programming, at the same time,
electromechanical integrated production equipment that
can complete various operations in three-dimensional
space; therefore, it is especially suitable for flexible produc-
tion of various types of variable batches and also plays a
significant role in improving product quality, improving
labor conditions, improving production efficiency and rapid
product upgrading. In addition, in industrial production, it
can also replace humans to complete some monotonous,
repetitive, and even some high-risk and harsh environ-
ment-related work. In practical production applications,
the motion of industrial robots should be stable, and the
impact and vibration should be minimized, so as to improve
the working accuracy and working life of industrial robots
more effectively. Therefore, trajectory planning for robots
is the key and foundation to solve such problems. With
the continuous development of industrial robot trajectory
planning, the optimal trajectory planning of multi-joint indus-
trial robots has become a highly complex nonlinear optimiza-
tion problem [2,3]. Time-optimal trajectory planning has been
applied in many fields of industrial robotics and automation.
At present, most industrial robots adopt the trajectory plan-
ning method based on trapezoidal speed to track the trajec-
tory of a fixed path, which has some disadvantages such as
large calculation amounts and long planning time. Although
the problem of optimal time trajectory planning under geo-
metric path constraints has been basically solved in theory
and practice, the efficiency and adaptability of the algorithm
need to be improved under dynamic constraints.
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At present, there are many scholars at home and
abroad who study the trajectory planning of such robots,
and their research directions and starting points are also
different. According to different optimization objectives,
optimization is generally divided into the following three
situations: Optimization based on time optimization, opti-
mization based on energy minimization, and optimization
based on pulsation minimization. Relatively speaking, the
research on robot trajectory planning algorithms based on
time optimization is the most. In the specific operation of
trajectory planning, after the completion of specific opti-
mization objectives, it is necessary to further select the
planning space through application conditions, generally,
according to the different planning space, the trajectory
planning problems of robots can be divided into two cate-
gories: In joint space and Cartesian space [4], there are
currently three ways to solve the time-optimal problem.
One is dynamic planning, which divides the phase plane
equally into grids, and then uses dynamic planning to find
the minimum time trajectory on the phase plane. The
second is the convex optimization method, which discre-
tizes the position axis into n segments, and then transforms
the temporal optimum problem into n variables, n equality,
and inequality constraints, mainly using the existing effi-
cient convex optimization computing package. The last cate-
gory is the numerical integration method, which is based on
the Pontryagin maximum principle: the optimal time trajec-
tory is the “Bang-Bang” trajectory in the phase plane, and
the velocity curve is obtained through the continuous inte-
gral acceleration. This method is theoretically faster than
the previous two algorithms, but it is easy to cause dyna-
mical singularity problems.

Based on this result, this article presents a method
based on the ADAM algorithm. This article takes the trajec-
tory planning of industrial robot as the research direction,
analyzes the working principle of the ADAM algorithm and
the optimal time planning of industrial robots, takes the
method of PUMA560 industrial robot as the research object,
and uses MATLAB to implement program code program-
ming, optimization, and simulation to establish a standar-
dized optimal trajectory scheme. The joint node position is
adjusted so that the total time, and the final simulation
results are basically synchronized in time, both 10.35s.
The improved ADAM algorithm realizes the trajectory opti-
mization of the industrial robot in terms of time planning,
which makes each joint point of the industrial robot basi-
cally synchronized in the time track. From the practical
point of view, the research on trajectory planning of indus-
trial robots with the goal of time optimization has very
important guiding significance for the practical application
of industrial robot technology.
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2 Research methods

2.1 Mechanical and manual mechanical
model

After decades of research and development, many grati-
fying achievements have been made in the control field of
manipulators (industrial robots), and control methods have
also emerged in endlessly. The most classical PID control is
still widely used in some simple systems, but its perfor-
mance is relatively poor in complex systems. This requires
an accurate mathematical model of the manipulator to
improve its performance. The neural network algorithm
is widely used in the control of manipulators, especially in
the track tracking calculation of manipulators, integrating
it with the corresponding control method can meet the
requirements of trajectory and tracking of the manipulator.
Therefore, the research of adaptive trajectory tracking algo-
rithms based on RBF neural networks has great practical
significance [5,6].

Without considering external interference, for a DOF
manipulator, the Lagrange method is used to establish its
dynamic equation as follows (1):

M(q)G + Vu(q, 94 + G(q) = 7. m

In the actual system, it is difficult to obtain (1) the
dynamics model with medium and high accuracy. In the
process of considering uncertain factors, it is necessary to
cover a series of factors that are not taken into account or
intentionally omitted when modeling. In the process of
designing the actual mechanical manual control system,
the above two factors must be considered to improve its
working performance by improving the accuracy of the
system [7]. This method belongs to the inverse dynamics
control strategy. The complete robot dynamics model is as
follows (2):

M(q)j + (g, 94 + G(q@) + F(q) + ta = 7. )

Generally speaking, (1) and (2) are referred to as
the nominal and actual systems of the manipulator,
respectively.

2.2 Design of trajectory tracking controller
Letg,(t) € R" be the ideal trajectory in the workspace, and
define as follows (3) and (4):
e(t) = q4(t) - q(0), 3
s(t) = é(t) + A e(f), @
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Where A=A € R™" is a positive definite matrix.
According to the above formula, the robot dynamic filter
tracking error is the formula (5):

Ms(t) = =Vps — T+ h(x) + F(§) + 13 5)

2.2.1 Neural network

Adaptive control and robust control are used to improve
the adaptability of the robot visual servo system to these
uncertain factors. RBF neural network is used to compen-
sate for the uncertain part, and the following formula (6)
can be obtained:

R(x) = WT{(x) + €(x). (6)

When N is in an infinite state, the neural network
reconstruction error will be in an infinitesimal state. For
€y >0, ] € )|l < ex. The vector field {(x) is a Gaussian
function. The following formula (7) can be obtained by
dividing the matrix points:

— ol
_MJL 2., N. ™)

1

{00 = exp

The center position vector ¢; € R of the RBF Gaussian
function and the width vector g; € R of the Gaussian func-
tion are predetermined, the local search ADAM algorithm
can select ¢; and g;. The mechanical and manual mechan-
ical equation can be converted into the following equa-
tion (8):

Ms(t) = Vs = 7+ h(x) + F(4) + 13 + €x).  (®)

2.2.2 Adaptive constraints

According to formulas (2) and (4) and the reconstruction
error constraint €y of neural network, formula (9) can be
obtained:

IF(@) + ta + ()|l < a+Dbllgll + ¢ + en. )

B =a+b|q| + c+ ey is defined as an adaptive con-
straint, or can be written as the following formula (10):

B =Q"(lde. (10)

For the fixed positive parameter k, Q € R¥ is a vector
function of known joint velocity, and ¢ € R¥ is a parameter
vector. According to formulas (8)-(10), the control torque
input is proposed to achieve the desired trajectory. In adap-
tive control, the unknown parameters of the controlled
object need to be estimated online and adjusted gradually
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to continuously improve the control performance of the
system until the goal of gradual error convergence is achieved
[8-10]. The following formula (11):

52

B’s

. 1
Blisll + &

T=h+Ks+ WX+

2.3 CNN and Adam optimizer
2.3.1 CNN

CNN is essentially an input-output mapping. Through training,
CNN will automatically obtain this mapping ability without the
need to derive accurate algebraic expressions. Since the weights
of neural modules on the same feature mapping surface are the
same, the network can be learned in parallel mode, which is
also a major advantage of convolutional neural network over
other network models [11,12].

Using the back-propagation algorithm and supervised
training method to train the convolutional neural network,
compare the output result of the network with the preset
label, and calculate and output the error term. According to
the idea of back propagation, the error is transferred to each
node layer by layer, and the weight value is updated.
Through continuous iterative training, the error term of
the network will be smaller and the weight update range
will be smaller and smaller. When the weight value gradu-
ally becomes stable, the network training task is completed.

Images have their representative characteristics. After
learning some features from a certain area of the image,
these features can be used as detectors and extended to all
areas to obtain the activation values of different areas. The
purpose of the convolution operation is to extract the input
features of the sample data, the first convolution layer
usually only extracts some primary features, such as edges,
lines, corners, and other basic levels, while the multi-layer
convolution neural network will extract more complex and
critical features.

The structure of convolution neural network model is
shown in Figure 1.

In convolution neural network, image data can increase
the number of training sets and improve the characteristic
dimension of data after convolution processing, but it may
lead to the occurrence of dimension disaster. In order to
improve this problem, it is necessary to aggregate and
pool the feature images obtained by convolution. Pooling
can effectively reduce the resolution of the output feature
map, while still maintaining the features at high resolution.
After the pooled image data is processed through the fully
connected network, the local features extracted previously
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Figure 1: Structure of convolution neural network model.

can be recombined into a complete image using the weight
matrix. Each nerve module node in the full connection layer
is connected with the nerve module node in the feature map
output from the previous layer. Second, the optimizer is
used to process the processed image of the fully connected
network to update and calculate the network parameters
that affect the model training and model output, so as to
make it approximate or reach the optimal value. Finally, the
data are passed through the softmax classifier and output
the corresponding classification results [13,14].

2.3.2 Adam optimizer

The Adam optimizer can still guarantee high accuracy for
nonlinear separable and high-dimensional data sets. Because
image data also have the characteristics of high dimension
and nonlinear separability, Adam optimizer has obvious
advantages over neural network in recognition applications.
However, when the training sample dataset is large, the
training time complexity of the Adam optimizer will become
very high, and the traditional data processing architecture
can no longer meet the requirements. The rise of distributed
computing platform provides technical support for tasks
requiring large amount of computation, and makes it possible
for Adam optimizer to process large data sets.

The Adam optimizer algorithm iteratively updates the
weights of the neural network based on the training data,
and performs a stepwise optimization of the random objec-
tive function. The diagonal scaling of the gradient of Adam
algorithm is invariable, which is suitable for solving the
non-stationary problems with large data or parameters
and large noise and sparse gradient. The basic algorithm
of the Adam optimizer can be described as follows.

Set the noise target function f;(6), which is a random func-
tion of the parameter 6 in the ¢ period (the ¢ iteration). In order to
reduce the expected size of the function, it is necessary to use

<§ Softm @ Optimizer <§
Full connection )
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randomness to describe the noise of the small batch sample func-
tion and calculate the gradient of the objective function with
respect to parameters, as shown in formula (12):

& = Vfi(0).

The expressions of the exponential moving mean m;
and the square gradient v; of the gradient in the ¢ period
are as follows (13):

my = Bime—1 + (1 - B&,,
Ve = Bver + (1= B

The parameter j,, B, € [0,1) represents the decay rate of
the moving average index. When the initial time and decay
rate are very small, the moment estimation will be biased to 0.

In order to eliminate the initialization deviation, it is
generally necessary to correct the deviation of the exponen-
tial moving mean value and the square gradient respec-
tively during the attenuation process, the expressions of
the corrected exponential moving mean i, and the square
gradient v; are as follows (14):

e = mg/(1 - B),
Ve = v/ - By)-

./ /V; is the signal noise ratio (SNR), which represents
the ratio of signal to noise in the system. When the SNR
value is small and At tends to infinity, the objective func-
tion will converge to the extreme value.

If the initial mean square gradient is 0, the update
expression of the mean square gradient in the first phase
is as follows (15):

(12)

13)

(14)

Ve

Bpve-r + (1 = Bz)gtz

t ) (15)
- BB gk
i=1

At each iteration step, the value of parameter 6 should
be updated, and the update expression of 6 is as follows (16):
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0 = 61 = it /(5 + &), (16)

where 1) is the learning rate, representing the magnitude of
the effective step in the parameter space; € = 10~® repre-
sents a constant parameter. Through parameter updating,
the algorithm iteration is realized, and the objective func-
tion gradually converges to the optimal value. In the Adam
optimizer algorithm, the estimation of the first moment to
the non-central second moment is modified to reduce the
offset; however, in the classification processing of complex
and large-scale electron microscope images, the iterative
curve of the algorithm oscillates violently and the conver-
gence performance is poor [15].

2.4 Industrial robot trajectory planning
based on optimal time angle

2.4.1 Constraint planning

The motion trajectory of the industrial robot is based on
the specific key node of the robot motion, the Cartesian
space coordinates are defined for the key point (gq), the
time series corresponding to the key point is defined as ¢,
let h be the time interval between two time nodes, then the
following formula (17):
hi = tis1 — t;
m-1

T(hi) = hy + hy ++ hpy = Y hy.

i=1

a7

T(h;) here refers to the total running time of the industrial
robot from the starting point to the end point, and the indus-
trial robot needs to achieve time synchronization at each key
node during its re-movement. Therefore, in order to achieve
the optimal time planning of the robot, all joints of the robot
need to be synchronized, so as to reduce the movement
energy consumption caused by the complex trajectory.
Therefore, it is necessary to carry out kinematic con-
straints on each joint of the industrial robot. In order to
bring convenience to each key motion path of industrial
robot, it is necessary to describe the upper and lower limits
of joint position in the way of joint constraint; the absolute
value of the maximum acceleration of the joint is calcu-
lated according to the maximum speed of the joint. The
absolute value of the maximum second order velocity of
the industrial robot joint is calculated according to the
maximum acceleration of the joint. Therefore, when sol-
ving the trajectory position corresponding to the robot
joint point, it is necessary to calculate the limit value of
the ith segment of the jth joint node and compare it with
the end point of the segment to obtain the maximum and
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minimum limit values, save value. In the Buffer array,
after the cyclic calculation of ADAM algorithm, the max-
imum and minimum values of the trajectory position of the
jth joint node are obtained [16]. The specific process of
solving the trajectory position is shown in Figure 2.

2.4.2 Solve the optimal solution of the trajectory
function

In the process of solving the trajectory of industrial robots,
the maximum value of different trajectory functions can be
solved according to the trajectory operation function, and
the maximum value of the trajectory function can be deter-
mined according to the complex trajectory function using
the extremum trajectory solution method. The solution
process of solving the trajectory function with Matlab is
as follows:

2.4.2.1 Solution of function extremum locus

Because the solution function of the trajectory belongs to
the category of artificial intelligence, and the definition of
its mathematical function belongs to the high-order poly-
nomial, the limit value of the application position can be
obtained by using Matlab to analyze the solve() function.

2.4.2.2 Solution of the trajectory velocity of function
extremum

The speed function of industrial robot’s trajectory is also a

high order polynomial, so when it is solved by Matlab, the limit

value expression (three extreme points) of the trajectory speed

function is obtained by using three root expressions.

2.4.2.3 Solution of acceleration of function extreme
point trajectory
The second-order function of the motion trajectory of the
articulated arm of the industrial robot is established,
namely, Parabolic function, and the function vertex expres-
sion corresponding to the extreme point is obtained. Before
determining the extreme value of the joint point function,
the relevant extreme points were checked and brought
them into the extreme value of the track function [17].

2.4.3 Coding mode

Without the commonly used binary encoding, the binary
encoding of adjacent integers may have a large Hamming
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Figure 2: Specific process for solving the trajectory position.

distance, and the real number encoding method is adopted,
that is, each gene value of an individual is represented by
the real number within a specific range. This method is
easy to deal with multi-dimensional and high precision
problems, but also improves the computational complexity
and improves the operation efficiency of the algorithm.

2.4.4 Optimal individual retention

The basic method is to choose according to the proportion of
individual fitness. In this paper, the individual with the highest
fimess is directly copied to the next generation, so that the indi-
vidual with the highest fithess, namely the best individual, does
not exchange and vary in this generation. This method acceler-
ates the search speed and improves the local search ability.

3 Result analysis

3.1 Stability analysis

The robot dynamics of equation (2) is the control input of
equation (11), and the whole system is asymptotically
stable, when t — oo, the tracking error s(t) and the subse-
quent tracking error e(t) tend to zero. The following for-
mulas (18) and (19):
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From Value_ The maximum
and minimum values
selected in the buffer are the
maximum values of the jth ..
. . . J+1
joint track position c
W = Lw¢(0)s”, (18)
@ = LOllsll, 19

where Ly = Iy; € R¥V and I, = I; € R*k are posi-
tive definite matrices.

After summarizing and analyzing the above simula-
tion model and simulation results, a 2-joint robot system
is shown in Figure 3.

After a period of time, the characteristic points of the
end effector converge to the ideal trajectory. For trajectory
planning, the length of simulation time has no effect on the
final planned trajectory, as shown in Figure 4. It can be
seen that they all converge to the true value, which proves
the effectiveness of the algorithm [18].

3.2 Time optimal trajectory planning
simulation

In order to determine the effectiveness of the ADAM algorithm
encoded in this project, Matlab simulation is used to realize the
data analysis of the ADAM algorithm results, and the optimal
trajectory information of the key nodes of the industrial robot
trajectory is calculated through the data value obtained from
the simulation. The optimal trajectory was obtained from the
above optimization results, and the motion was analyzed in
ADAMS to derive kinematic parameter curves to test whether
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Figure 3: Schematic diagram of neural network adaptive control system.

they satisfy the constraints. If the constraint is satisfied, the
result is optimal; if not, the optimization result is reselected
and simulated again until the constraint is satisfied. Among
them, the speed of the joint key starting point of the
PUMAS560 industrial robot is set to 0, the speed of the end
point is also set to 0, and the acceleration is set to 1, after
filling in the initial data, the time-optimal trajectory plan-
ning simulation of the industrial robot is carried out. The
specific ADAM algorithm simulation process is as follows:
(1) Set all joint kinematics constraints of the industrial
robot, and write the source code of the adaptive func-
tion, and optimize the writing statement of the source
code to achieve time optimization.

0.10

0.08

0.06

e2

0.04

0.02

0.00

€0.024—¥¥F—F

Figure 4: Tracking error.

(2) Through the ADAM algorithm provided in Matlab, the
upper and lower limits of the specified individuals are
set in the defined population function, and other rele-
vant parameters and variables are set by default to
expand the calculation of the time optimal trajectory.
Optimize the trajectory calculation process to obtain
the final time optimization simulation results of each
trajectory.

©)

Through the calculation of the optimization results
and the simulation curve data value, the simulation results
of the time optimal trajectory planning of industrial robots
based on the ADAM algorithm can be calculated, as shown
in Table 1: From the simulation results, it can be seen that

Table 1: Matlab simulation results of this project

Joint h1 h2 h3 h4 h5 h6 h7 Total
point time
1 024 1643 1634 1.04 179% 1264 1786 9.42

2 0.475 1421 2.866 1.105 1202 2104 1.196 10.37
3 0.943 1495 1.663 1.157 1358 1986 1973 10.57
Table 2: Matlab simulation results after optimization

Joint h1 h2 h3 h4 h5 hé h7 Total
point time
1 0.24 1667 1636 110 1798 1.287 1.189 8.9

2 0.475 1.421 2838 1.105 1.202 2.107 1.108 10.25
3 0.933 1475 1.653 1.145 1.838 1.855 1.353 10.25
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the track running time difference corresponding to the
three joint points is small, in order to make the position
of each joint point basically synchronized in time; it is
necessary to select the optimal node position for the time
track, so as to ensure the synchronization between key
nodes [19]. Therefore, adjust the joint node position so that
the total time and time of the final simulation results are
basically synchronized, both 10.35s, as shown in Table 2.

At this time, the time required for the three joint nodes
to complete the time-optimal trajectory is less than the
trajectory planning time optimized by the ADAM algorithm
in terms of total time and shows a better synchronization
result. The simulation results prove that the ADAM algo-
rithm realizes the trajectory optimization of industrial
robots in terms of time planning, which can make each
joint point of the industrial robot basically synchronize
in the time trajectory [20].

4 Conclusion

In the process of mechanized production and application
of industrial robots, time efficiency, and work quality are
important indicators to evaluate their own performance.
Taking the time trajectory planning of the PUMAS560 industrial
robot as the research object, the author uses the ADAM algo-
rithm to optimize the running time of each joint node of the
industrial robot and takes the time optimization as the goal on
the basis of setting constraints, expanding Matlab trajectory
planning coding and simulation. Improving ADAM improves
the operation efficiency, local search ability, and real-time
performance of the algorithm. The improved ADAM optimiza-
tion objective function is used to find the optimal result,
which obtains the optimal trajectory as the motion trajec-
tory of the robot simulation model. The kinematic para-
meters and dynamic parameters of each joint of the robot
meet the constraints in ADAMS, which verifies the ration-
ality of the optimization trajectory. The simulation results
show that the orbital time difference corresponding to the
three joint points is small. To substantially synchronize the
temporal locations of each joint point, selecting the optimal
node locations for the temporal track is required to ensure
synchronization between key nodes. The position of the
joint nodes was adjusted so that the total time and time of
the final simulation results were basically synchronized,
both at 10.35s. PUMA 560 Industrial robots can effectively
complete industrial manufacturing tasks under a specific
ADAM algorithm. The content studied in this article does
not involve mechanical dynamics, but the current motor
cannot meet the demand, so the motor with torque sensor
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drives the robot joint and realizes closed-loop control, which
can achieve better control effect and effectively reduce the
vibration of the robot movement. The content of the study of
trajectory planning did not consider the dynamics of con-
tinuous; in some high-end robots, industrial applications are
needed to consider it, achieve higher precision control
requirements, and can further reduce the potential impact
of the robot arm structure, so the next work is to consider
the degree of a continuous excellent solution.
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